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Some properties on quadratic infinite programs of integral type
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Abstract

In this work, we investigate the properties of a class of quadratic infinite programs where the objective is a quadratic functional
of integral type and the feasible region is a subset of the infinite dimensional space L p([0, 1]). We first derive a dual problem of
the primal problem to demonstrate that there is no duality gap between them. Then we prove that the objective function depends
continuously on the design function. Two existence theorems for this kind of optimization problem are presented. These theoretical
results may prove useful in the design of efficient algorithms for this class of infinite programming problem.
c© 2006 Elsevier Ltd. All rights reserved.

Keywords: Infinite programs; Existence of solutions; Quadratic programs; Duality gap

1. Introduction

Recently, the importance of quadratic semi-infinite programming (QSIP) has been well recognized. In [3,5–9]
and [11] etc., the authors developed a series of theoretical results, proposed many efficient algorithms and found a
lot of applications in the field of engineering for QSIP. For comprehensive survey on the early contribution in this
connection, one can refer to [13]. As a natural extension of QSIP, we consider the following infinite dimensional
quadratic programming problem:

(Q I P) : min
h

1
2

∫ 1

0

∫ 1

0
f (s, t)h(s)h(t) ds dt +

∫ 1

0
c(s)h(s) ds

s.t.
∫ 1

0
φ(s, y)h(s) ds ≤ g(y), ∀y ∈ Y = [0, T ],

h ∈ L p([0, 1]), h ≥ 0, a.e., (1)

where h ∈ L p([0, 1]) (1 < p < ∞) is the design (or control) function, and f : [0, 1] × [0, 1] → R, c : [0, 1] → R,
φ : [0, 1] × [0, T ] → R and g : [0, T ] → R are given continuously differentiable functions.
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In fact, the above infinite programs of integral type belong to the functional optimization problems, which can
model a variety of tasks arising in emerging fields of interest in Operations Research (see [2,10,12,16]). One can find
interesting examples and more detailed knowledge in [1,4,17] and the references therein.

We say that f is symmetric and positive definite with respect to the cone

{h ∈ L p([0, 1]) : h ≥ 0}

if and only if f has the following properties:

(1) f (s, t) = f (t, s), for any (s, t) ∈ [0, 1] × [0, 1].
(2) For all h(∈ L p([0, 1])) > 0,∫ 1

0

∫ 1

0
f (s, t)h(s)h(t) ds dt > 0. (2)

Throughout this work, we assume that f is symmetric and positive definite.
Obviously, if h ∈ L p([0, 1]) is restricted to being a piecewise constant function, then the problem (1) turns out to

be an ordinary quadratic semi-infinite programming except for the additional bound constraints h ≥ 0.
Because both the dimension of the design variables and the number of the constraints are infinite, the above

problem QIP (1) is a complicated nonconvex optimization problem even if the objective is positive definite. Hence,
the question of the existence of the solutions to (1) is usually not easy to answer. To our knowledge, there is no specific
consideration for this kind of mathematical programming problem in the literature.

In this work, we first intend to derive a dual problem of (1) such that there is no duality gap between them. Then
we will prove that the objective function of integral type in (1) has some continuity in the space L p([0, 1]) in the next
section. Two existence theorems for this kind of optimization problem will be presented in Section 3. Final remarks
are given in the last section.

We introduce some notation as follows. Denote by C(Y ) the Banach space of all continuous real functions on Y
equipped with the supremum norm, and by M(Y ) the space of all signed finite regular Borel measures on Y . It is
known that M(Y ) is the dual space of C(Y ). Denote by M+(Y ) the cone consisting of all nonnegative elements of
M(Y ).

2. Duality and continuity

Before we derive the duality theorem, we first state the Slater constraint qualification, which we assume problem
(1) to be subject to.

We say that the Slater constraint qualification holds in the problem (1) if there exist some h̄ ∈ L p([0, 1]) and h̄ ≥ 0
such that∫ 1

0
φ(s, y)h̄(s) ds < g(y), for all y ∈ Y = [0, T ]. (3)

Associated with the problem (1), let us define the Lagrangian L : L p([0, 1]) × Lq([0, 1]) × M+(Y ) → R:

L(h, λ, µ) =
1
2

∫ 1

0

∫ 1

0
f (s, t)h(s)h(t) ds dt +

∫ 1

0
c(s)h(s) ds −

∫ 1

0
λ(s)h(s) ds

+

∫
Y

[∫ 1

0
(φ(s, y)h(s) ds − g(y))

]
dµ(y) (4)

where q is a constant scalar satisfying

1
p

+
1
q

= 1, (5)

and λ : [0, 1] → R and µ ∈ M+(Y ) are the so called Lagrangian multipliers corresponding to the ordinary and
infinite dimensional constraints in (1), respectively.
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If (4) is equivalently rewritten into the following form:

L(h, λ, µ) = −
1
2

∫ 1

0

∫ 1

0
f (s, t)h(s)h(t) ds dt −

∫
Y

g(y) dµ(y)

+

∫ 1

0
h(s)

[∫ 1

0
f (s, t)h(t) dt + c(s) − λ(s) +

∫
Y

φ(s, y) dµ(y)

]
ds,

then the variation of L with respect to h is

∇hL(h, λ, µ) =

∫ 1

0
f (s, t)h(t) dt + c(s) − λ(s) +

∫
Y

φ(s, y) dµ(y), s ∈ [0, 1]. (6)

Therefore, on the basis of the idea of Dorn’s dual (see [14,15]), we get the dual problem of (1) as follows:

(DQIP) : min
h,λ,µ

1
2

∫ 1

0

∫ 1

0
f (s, t)h(s)h(t) ds dt +

∫
Y

g(y) dµ(y)

s.t.
∫ 1

0
f (s, t)h(t) dt + c(s) − λ(s) +

∫
Y

φ(s, y) dµ(y) = 0, ∀s ∈ [0, 1],

λ(s) ≥ 0, λ ∈ Lq([0, 1]),

µ ∈ M+(Y ). (7)

It is easy to see that (7) is equivalent to the following problem:

(DQIP′) : min
h,µ

1
2

∫ 1

0

∫ 1

0
f (s, t)h(s)h(t) ds dt +

∫
Y

g(y) dµ(y)

s.t.
∫ 1

0
f (s, t)h(t) dt + c(s) +

∫
Y

φ(s, y) dµ(y) ≥ 0, ∀s ∈ [0, 1],

µ ∈ M+(Y ). (8)

Like with the approach in [15], we can prove the following result.

Theorem 1 (Duality). Assume that the Slater constraint qualification holds in (1). If h∗
∈ L p([0, 1]) is the minimizer

of (1), then there exist Lagrangian multipliers λ∗
∈ Lq([0, 1]) and µ∗

∈ M+(Y ) such that the tuple (h∗, λ∗, µ∗)

solves the problem (7), and there is no duality gap between (1) and (7).
Obviously, (h∗, µ∗) solves the problem (8), and there is no duality gap between (1) and (8).

Remark. The above duality theorem is helpful in designing an algorithm for finding the numerical solution of the
primal problem (1).

The following theorem shows that the objective function of the problem (1) has continuity of a certain meaning on
the space L p([0, 1]).

Theorem 2 (Continuity). Let {hk
} be one function sequence in the space L p([0, 1]). If this sequence is weak (or

weak*) compact, i.e. there exists one subsequence {hkl } of {hk
} such that hkl weakly converges to some function h∗,

then ∣∣∣∣∣
∫ 1

0

∫ 1

0
f (s, t)hkl (s)hkl (t) ds dt −

∫ 1

0

∫ 1

0
f (s, t)h∗(s)h∗(t) ds dt

∣∣∣∣∣ → 0

as kl → +∞.

Proof. From the weak convergence of the sequence {hk
} in L p([0, 1]), it follows that for each β(t) ∈ Lq([0, 1])

where q satisfies (5), we have∫ 1

0
(hkl (t) − h∗(t))β(t) dt → 0

as kl → +∞.



Z. Wan et al. / Applied Mathematics Letters 20 (2007) 676–680 679

Because f : [0, 1] × [0, 1] → R is continuously differentiable, for each t ∈ [0, 1], f (·, t) : [0, 1] → R and
βkl : [0, 1] → R are also continuously differentiable over the interval [0, 1], where βkl is defined as

βkl (t) =

∫ 1

0
f (s, t)hkl (s) ds.

Thus, βkl ∈ Lq([0, 1]) and f (·, t) ∈ Lq([0, 1]) for each t ∈ [0, 1]. From the assumption on the sequence {hk
}, it

follows that for any t ∈ [0, 1],∣∣∣∣∣
∫ 1

0
f (s, t)(hkl (s) − h∗(s)) ds

∣∣∣∣∣ → 0 (9)

and ∣∣∣∣∣
∫ 1

0
(hkl (t) − h∗(t))βkl (t) dt

∣∣∣∣∣ → 0 (10)

as kl → +∞.
Since∣∣∣∣∣

∫ 1

0

∫ 1

0
f (s, t)hkl (s)hkl (t) ds dt −

∫ 1

0

∫ 1

0
f (s, t)h∗(s)h∗(t) ds dt

∣∣∣∣∣
=

∣∣∣∣∣
∫ 1

0
hkl (t)

[∫ 1

0
f (s, t)hkl (s) ds

]
dt −

∫ 1

0
h∗(t)

[∫ 1

0
f (s, t)h∗(s) ds

]
dt

∣∣∣∣∣
=

∣∣∣∣∣
∫ 1

0

[
hkl (t)

∫ 1

0
f (s, t)hkl (s) ds − h∗(t)

∫ 1

0
f (s, t)h∗(s) ds

]
dt

∣∣∣∣∣
=

∣∣∣∣∣
∫ 1

0

[
(hkl (t) − h∗(t))

∫ 1

0
f (s, t)hkl (s) ds + h∗(t)

∫ 1

0
f (s, t)(hkl (s) − h∗(s)) ds

]
dt

∣∣∣∣∣
≤

∣∣∣∣∣
∫ 1

0
(hkl (t) − h∗(t))

∫ 1

0
f (s, t)hkl (s) ds dt

∣∣∣∣∣ +

∫ 1

0
|h∗(t)|

∣∣∣∣∣
∫ 1

0
f (s, t)(hkl (s) − h∗(s)) ds

∣∣∣∣∣ dt

=

∣∣∣∣∣
∫ 1

0
(hkl (t) − h∗(t))βkl (t) dt

∣∣∣∣∣ +

∫ 1

0
|h∗(t)|

∣∣∣∣∣
∫ 1

0
f (s, t)(hkl (s) − h∗(s)) ds

∣∣∣∣∣ dt.

As kl → +∞, we can deduce that the last summation converges to zero from (9) and (10).
The proof is complete. �

Remark. The result in Theorem 2 has been an assumed condition for dealing with a class of quadratic infinite
programs on measure spaces in [15]. However, here we have proved that the result in Theorem 2 is an intrinsic
property of problem (1).

3. Existence

On the basis of Theorem 2, we can derive the conditions for guaranteeing the existence of an optimal solution of
the problem (1). For this, we first define one univariate function Φµ : [0, 1] → R as follows:

Φµ(s) =

∫
Y

φ(s, y) dµ(y), (11)

where µ is some given measure in the cone M+(Y ).
Because φ(·, y) is continuous in the interval [0, 1], it is easy to prove that Φµ(·) is also continuous, i.e. Φµ ∈

C([0, 1]) for every µ ∈ M(Y ). Hence, Φµ is bounded for every µ ∈ M+(Y ).
In the following, we present two existence theorems.
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Theorem 3 (Existence). Suppose that there exists a constant M > 0 such that ‖h‖L p ≤ M for all h ∈ F1. Then, F1
is weakly compact. Furthermore, there exists an h∗

∈ L p([0, 1]) which solves the problem (1).

Proof. We only need to prove that F1 is weakly compact.
By applying the Banach–Alaoglu theorem, we know BM = {h : h ∈ L p

[0, 1] and ‖h‖L p ≤ M} is weakly compact.
From the assumption, we know F1 ⊆ BM .

It is obvious that F1 is weakly closed and hence it is weakly compact. From Theorem 2, it follows that there exists
an h∗

∈ L p([0, 1]) which solves the problem (1).
The desired conclusion holds. �

Theorem 4 (Existence). Suppose that there exists an L p-integrable function g such that h ≤ g for all h ∈ F1. Then,
F1 is weakly compact. Hence there exists h∗

∈ L p([0, 1]) which solves the problem (1).

Proof. For each h ∈ F1, we have h ≤ g. Thus ‖h‖L p ≤ ‖g‖L p . The result follows from Theorem 3. �

4. Final remarks

In this work, a dual problem for a class of infinite programming problem has been derived, and there is no duality
gap between the dual and the primal problem.

Secondly, the continuity of the objective function of the integral type has been proved in the L p space.
Lastly, we gave two sufficient conditions which can guarantee that the optimal solutions exist for the infinite

programs. However, the computability of those conditions needs further investigation in practice.
The above theoretical results provide the possibility of designing some efficient algorithms for the proposed

optimization problem.
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[4] V. Kŭrková, M. Sanguineti, Error estimates for approximate optimization by the extended Ritz method, SIAM J. Optim. 15 (2005) 461–487.
[5] Y. Liu, K.L. Teo, S. Ito, Dual parameterization approach to linear–quadratic semi-infinite programming problems, Optim. Methods Softw. 10

(1999) 471–491.
[6] Y. Liu, K.L. Teo, S. Ito, Global optimization in linear–quadratic semi-infinite programming, Computing 15 (Suppl.) (2001) 119–132.
[7] Y. Liu, K.L. Teo, An adaptive dual parameterization algorithm for quadratic semi-infinite programming problems, J. Global Optim. 24 (2002)

205–217.
[8] Y. Liu, K.L. Teo, S.Y. Wu, A new quadratic semi-infinite programming algorithm based on dual parameterization, J. Global Optim. 29 (2004)

401–413.
[9] Y. Liu, C.H. Tseng, K.L. Teo, A unified quadratic semi-infinite approach to time and frequency domain constrained digital filter design,

Commun. Inf. Syst. 2 (4) (2002) 399–410.
[10] H.C. Lai, S.Y. Wu, Exetremal points and optimal solutions for general capacity problems, Math. Program. 54 (1992) 87–113.
[11] S. Nordebo, Z.Q. Zang, I. Claesson, A semi-infinite quadratic programming algorithm with applications to array pattern synthesis, IEEE

Trans. Circuit Syst. II. Analog Digital Signal Process. 48 (3) (2001) 225–232.
[12] M. Ohtsuka, Generalized capacity and duality theorem in linear programming, J. Sci. Hiroshima Univ. Ser. A-I 30 (1966) 31–39.
[13] R. Reemtsen, S. Görner, Numerical methods for semi-infinite programming: a survey, in: R. Reemstsen, J.-J. Rueckmann (Eds.), Semi-infinite

Programming, Kluwer Academic Publishers, Boston, 1998, pp. 195–275.
[14] H.D. Sherali, Dorn’s duality for quadratic programs revisited: The nonconvex case, European J. Oper. Res. 65 (1993) 417–424.
[15] S.Y. Wu, A cutting plane approach to solving quadratic infinite programs on measure spaces, J. Global Optim. 21 (2001) 67–87.
[16] S.Y. Wu, S.-C. Fang, Solving convex programs with infinitely many linear constraints by relaxed cutting plane method, Comput. Math. Appl.

38 (1999).
[17] R. Zoppoli, M. Sanguineti, T. Parisini, Approximating networks and extended Ritz method for the solution of functional optimization

problems, J. Optim. Theory Appl. 112 (2002) 403–440.


	Some properties on quadratic infinite programs of integral type
	Introduction
	Duality and continuity
	Existence
	Final remarks
	Acknowledgements
	References


