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Abstract

A vertex x in a digraph D is said to resolve a pair u, v of vertices of D if the distance from u to x does not equal the distance from
v to x. A set S of vertices of D is a resolving set for D if every pair of vertices of D is resolved by some vertex of S. The smallest
cardinality of a resolving set for D, denoted by dim(D), is called the metric dimension for D. Sharp upper and lower bounds for
the metric dimension of the Cayley digraphs Cay(4 : I'), where I' is the group Z,, @ Zn, ® --- @ Zp,, and 4 is the canonical
set of generators, are established. The exact value for the metric dimension of Cay({(0, 1), (1,0)} : Z,, & Z,;,) is found. Moreover,
the metric dimension of the Cayley digraph of the dihedral group Dj, of order 2n with a minimum set of generators is established.
The metric dimension of a (di)graph is formulated as an integer programme. The corresponding linear programming formulation
naturally gives rise to a fractional version of the metric dimension of a (di)graph. The fractional dual implies an integer dual for
the metric dimension of a (di)graph which is referred to as the metric independence of the (di)graph. The metric independence
of a (di)graph is the maximum number of pairs of vertices such that no two pairs are resolved by the same vertex. The metric
independence of the n-cube and the Cayley digraph Cay(4 : D), where 4 is a minimum set of generators for D, are established.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Let G be aconnected graph. A vertex x of G is said to resolve two vertices u and v of G if the distance d (u, x) from u
to x does not equal the distance d (v, x) from v to x. A set S of vertices of G is said to be a resolving set for G if, for every
two distinct vertices u and v, there is a vertex x of S that resolves u and v. Alternatively, suppose S = {x1, x2, ..., Xi}
is a set whose vertices have been assigned the given order. The k-vector r(v|S) = (d(v, x1),d(v, x2), ..., d (v, xk))
is called the representation of v with respect to S. Then S is a resolving set for G if and only if no two vertices of G
have the same representation with respect to S. Note that x; is the only vertex of S for which the ith coordinate of its
representation with respect to S is 0. Therefore, when checking if S is a resolving set for G, one need only check that
the vertices of V(G) — S have distinct representations with respect to S. The minimum cardinality of a resolving set
for G is called the metric dimension of G and is denoted by dim(G). A minimum resolving set is called a metric basis
for G.
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Harary and Melter [7] and independently Slater in [13,14] introduced this concept. Slater referred to the metric
dimension of a graph as its location number and motivated the study of this invariant by its application to the placement
of a minimum number of sonar/loran detecting devices in a network so that the position of every vertex in the network
can be uniquely described in terms of its distances to the devices in the set. It was noted in [6] that the problem of finding
the metric dimension of a graph is NP-hard. Khuller et al. [8] gave a construction that shows that the metric dimension of
a graph is NP-hard. Their interest in this invariant was motivated by the navigation of robots in a graph space. A resolving
set for a graph corresponds to the presence of distinctively labelled “landmark” nodes in the graph. It is assumed that
a robot navigating a graph can sense the distance to each of the landmarks and hence uniquely determine its location
in the graph. They also gave approximation algorithms for this invariant and established properties of graphs with
metric dimension 2. Motivated by a problem from Pharmaceutical Chemistry, this problem received renewed attention
in [1].

The metric dimension of a connected digraph D has the expected definition, namely, the smallest cardinality of a set
S of vertices with the property that, for every two vertices u, v of D, there is some x € S such that d(u, x) # d(v, x).
Since the distance between two vertices in a digraph need not be defined, the metric dimension of a digraph may not
be defined. The metric dimension of oriented graphs was first studied by Chartrand et al. in [2] and further in [3]. It
was pointed out by these authors that it remains an open problem to determine for which directed graphs the directed
distance dimension is defined. In this paper we study the metric dimension of Cayley digraphs for which the metric
dimension is defined. These digraphs with their high degree of symmetry are of interest in this context as the metric
dimension appears to be related to both local and global symmetry in regular (di)graphs. We establish sharp bounds
for this invariant and conclude the paper with an integer programming formulation of this problem as described in [4].
The linear programming relaxation yields a fractional version of the metric dimension whose dual yields a dual for the
metric dimension of a graph called the metric independence of the graph. This invariant is defined as the maximum
number of pairs of vertices in a connected graph G such that no vertex of G simultaneously resolves two distinct pairs
in such a set. In [4] a geometric proof was given to show that the metric independence of the n-cube, Q,, is 2. However,
the proof was found to contain a gap. We present here a proof of this fact using the fractional version of the metric
dimension and a combinatorial argument. The metric independence of the Cayley digraph for the dihedral group of
order 2n, with a minimum set of generators, is also established.

2. The metric dimension of Cayley digraphs

In this section we focus on determining the dimension of Cayley digraphs. First, recall the definition of the Cayley
digraph for a given group with a specified set of generators (see [5]).

Let I be a finite group and 4 a set of generators for I'. The Cayley digraph of I' with generating set A, denoted by
Cay(4 : I), is defined as follows:

(1) The vertices of Cay(4 : I') are precisely the elements of I'.
(2) For u and v in I', there is an arc from u to v if and only if ug = v for some generator g € 4.

Note that for a given finite group I" and a specified set of generators 4 of I', every element of the group can be expressed
as a product of generators in I'. Hence, in the graph G = Cay(4 : I'), there exists a path in G from any vertex of G
to every other vertex of G. Thus, any Cayley digraph is strongly connected, and the metric dimension of any Cayley
digraph is therefore defined.

We now find the metric dimension of some specific Cayley digraphs. Let G be the Cayley digraph for the group
I' = 7, & 74 with the canonical set of generators A4 = {(1, 0), (0, 1)}. The graph G is shown in Fig. 1(a). The vertices
of G are the elements of the group Z, & Z4, and the arcs between vertices correspond to the generators in 4. In
Fig. 1(a) the dashed arcs correspond to the generator (1, 0), and the solid arcs correspond to the generator (0, 1). The
two shaded vertices in Fig. 1(a) constitute a resolving set for G, and one can verify that no single vertex of G resolves
every pair of vertices of G. Thus, the dimension of G is 2.

Now consider the group of symmetries of the regular n-gon, called the dihedral group of order 2n, denoted by D,,.
This group consists of n rotations and n reflections. For n = 4, this is the group of symmetries of the square, consisting
of the four rotations, denoted by Rg, Rog, R180, R270, and the four reflections, denoted by A, B, C, D. Let H be the
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Fig. 1. Cayley graphs for Z, @ Z4 and Dy.
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Fig. 2. Cay({(1,2), (1,2,3,4)} : S4).

Cayley digraph for the group D4 with generating set 4 = {Rqg, A}. The graph H is shown in Fig. 1(b). The structure
of this graph is very similar to that of G in Fig. 1(a), except that the two directed 4-cycles in H are oriented in opposite
directions, while those of G are oriented in the same direction. Both of these Cayley digraphs are constructed with two
generators, and in both cases the minimum order of a generator in 4 is 2. However, while the dimension of G is 2, the
dimension of H is 4. The four shaded vertices in Fig. 1(b) constitute a resolving set for H, and it can be verified that no
three vertices of H resolve every pair of vertices of H (see Theorem 4).

Fig. 2 shows the Cayley digraph for the non-abelian symmetric group of degree 4, denoted by S4, with generating set
A={(1,2), (1, 2, 3, 4)}. The vertices w1, wz, w3 form a resolving set for this graph as the representations of the vertices
of Cay({(1, 2), (1,2, 3,4)} : S4) with respect to the set {w1, wy, w3} are all distinct. These distinct representations are
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Fig. 3. The graph H'.

displayed in Fig. 2. Furthermore, no two vertices of the graph constitute a resolving set. Thus, the dimension of this
graph is 3.

Some familiar graphs are Cayley digraphs. For example, the n-cube is the Cayley digraph for the group I'=7Z, ®Z, @
-+ @ Z5 (n times), with the canonical set of generators 4 = {(1,0,0,...,0),(0,1,0,0,...,0),...,(0,0,...,0, 1)}.
Later in this section, Corollary 3 shows that2 < dim(Q,,) <n. More generally, we will establish bounds on the dimension
of the Cayley digraph for the direct product of any number of cyclic groups with the canonical set of generators. To this
end, we first look at how the dimension of the Cayley digraph for a group I' changes when we take the direct product of
I' and the cyclic group of order m, where m is a positive integer. Clearly, the Cayley digraph for the new group I @ Z,,
and its dimension will depend on the set of generators chosen. The following theorem bounds this dimension subject
to a specific choice of generators.

Theorem 1. Let I' be a group of order n and let A ={g1, g2, ..., gk} be a generating set for I'. Let H = Cay(4 : I').
Let A" ={(g1,0), (g2, 0), ..., (g 0), (er, 1)} be a generating set for the group I’ =T & Z,,, where m >2 and ey is
the identity element of I'. Then for H' = Cay (A’ : I'),

dim(H) < dim(H') < dim(H) +m — 1.

Proof. The graph H’ consists of m copies of the graph H. Label these copies Hi, Ha, ..., Hy,. Let V(H;) =
{urj,uzj, ..., uuj}, for 1< j<m, where for each i (1<i<n)), u;; is in the same position in H; as u; is in Hy
(for 1 < j, k<m). The arcs between the m copies of H are precisely the arcs on the directed cycles C; given by

Cituji,uip, .o Ui, uip - (for 1<i <n).

That is, H’' is constructed by taking m copies of H, H,, H,, ..., H,,, and placing arcs from H; to H; | (subscripts
modulo m) between corresponding vertices (for 1 <<i <m).

To establish the upper bound in the theorem we need to find a resolving set for H' of cardinality dim(H) +m — 1. Let
W={w1, w2, ..., w,} beabasis for H. Then dim(H)=¢, and there exists a corresponding set W; ={w1;, w2, ..., w;;}
of vertices of the graph H; which is a basis for H; (for 1< j <m). Let W ={wi1, wWat, ..., Wil, W12, W3y -« Wim)-
Then |W'|=t+m — 1 =dim(H) +m — 1. We claim that W’ is a resolving set for H'.

The graph H' is shown in Fig. 3. Note that, for simplicity, only one of the m-cycles of H' is shown in Fig. 3 and that
the shaded vertices in the figure are the vertices of W’'.

To demonstrate that W' is a resolving set for H’, let u and v be distinct vertices of H'. We show that u and v are
resolved by some vertex of W’. We consider two cases.

Case 1: Both u and v are vertices of H; for somej (1< j <m).Since W; is abasis for H}, it follows that de (u, wij) #
de (v, w;;) for some i (1 <i <). For this i, the structure of H' guarantees that d g (u, w;y) =de (w, wij)+m—j+1#
de (W, w;j) +m — j+1=dp (v, w;1). Thus, dy (u, wi1) # dy'(v, wi1), and so w;; resolves u and v in this case.
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Case2:u € V(H;) and v € V(H;) for some i and j (where 1<i < j <m). We consider two subcases.

Subcase 2.1: u and v are in corresponding positions in H; and H;, respectively. That is, u = u,; and v = uy; for
some g (1< g <n).In this case, wy resolves u and v. To see this note dy, (u, wy;) = dH/. (v, wyj),soif i =1 we have
that dp (u, wi1) = dp, (u, wi;) <dp; (v, wi;) + m — j+ 1=dp (v, wi1), and if i # 1, since i < j, dpy'(u, wi1) =
du;(u, wi;)) +m —i+1>du;(v,wij) +m—j+1=dy (v, wi1). Ineither case, dy'(u, wi1) # dp (v, wi1).

Subcase 2.2: u and v are in different positions in H; and H}, respectively. That is, u = uy; and v = u,; for some
s,r where 1<s # r<n.If u and v are resolved by wjj, then u and v are resolved by a vertex of W', so we may
assume that # and v are not resolved by wy;. Then dp (u, wi1) = dg'(v, wi1). Now if i = 1 and u € V(Hy), then
dy/(u, wij) =dpg(u, wi) +j—1#dy @, wn) —(m—j+1)=dp (v, w;), and so dy (u, wi;) # dp (v, wi;).
(These distances differ by m.) Thus if i = 1, wy; resolves u and v. On the other hand, if i # 1 and u € V (H;) for
somei € {2,3,...,m},thendy (u, wy;) =dg(u, wy1) — (m —i+1) #dg (v, wi1) + @ — 1) =dy (v, wy;), and
sodpy (u, wy;) # dg (v, wy;). (Again these distances differ by m.) Thus if i # 1, wy; resolves u and v. In either case,
u and v are resolved by some vertex of W'.

Thus W' is a resolving set for the graph H’, as claimed, and so dim(H")<|W'| =t +m — 1 =dim(H) +m — 1.

To establish the lower bound in the theorem, let Hy, Hy, . .., H,, be the m copies of H in H’'. Let W be a basis for
H'. Let W; = W N V(H;) (for 1<i<m). Let Wl.’ be the vertices of H; that correspond to the vertices of W; in H;
(2<i<m).Let Uy € V(H)) be the union of Wy and the sets W3, Wy, ..., W, . Thus,

m
U)| = |W1u<Uw;>
2

= Wil + [Wal + W3] + - + [Wi| = [W].

Wi+ W5+ [W5| + -+ [W,|

We claim that U is a resolving set for H;. Let # and v be distinct vertices of Hj. We show that u and v are resolved
by some vertex of Uj. Since W is a basis for H', and u and v are vertices of H’, there exists a vertex w € W such
that dy'(u, w) # dg/(v, w). Recall that W = W; U W U --- U W,,. Thus either w € W; or w € W; for some
ie€{2,3,...,m}.

If w € Wy, then w € Uj since Wi C Uy, and w resolves u and v in Hj. This follows from the fact that dy, (u, w) =
dy (u, w) #dy (v, w) =dpg, (v, w).

If w e W, forsomei € {2, 3, ..., m}, then let w’ be the vertex in Wi/ C U, corresponding to w. Then w’ resolves u
and v. This follows from the fact that dg, (u, w') =dy (u, w) — ( — 1) #dy (v, w) — (@ — 1) =dp, (v, w).

In either case, # and v are resolved by some vertex of U;. So U is a resolving set for H;. This implies that

dim(H) = dim(H)) <|U1 | <|W| = dim(H),

from which the lower bound in the theorem follows. [

Recall the Cayley digraph in Fig. 1(a) for the group Z, @ Z4 with the canonical set of generators. This graph has
dimension 2. In the following theorem we generalize this result and show that, for positive integers m and n, the
dimension of the Cayley digraph for the group Z,, @ Z, with the canonical set of generators {(1, 0), (0, 1)} is the
minimum of m and n.

Theorem 2. Let m and n be positive integers. Let H' be the Cayley digraph for the group 7,, & Z,, with generating
set {(1,0), (0, 1)}. Then dim(H') = min(m, n).

Proof. Suppose that m <n. First we show that dim(H’) < min(m, n) = m. Let H be the Cayley digraph for the
group I' = Z, with generating set 4 = {1}. Then H is the directed n-cycle, which clearly has dimension 1. Let
A'={(1,0), (e, D}={(1,0), (0, 1)}. Then A’ is a generating set for the group H' = H & Z,, =7, & Z,,. By Theorem
L,dm(H)<dm(H)+m—-1=14+m—1=m.

It remains to show that dim(H") >m. Suppose, to the contrary, that there exists a basis B for H’ such that |B| < m.
As in Theorem 1, H' is constructed from m copies of the directed n-cycle, label them Hy, Hy, ..., H,,, by placing
arcs from H; to H;y (subscripts modulo m) between corresponding vertices (for 1 <i <m). Thus, there are n vertex
disjoint directed m-cycles in the graph H’, as well as m vertex disjoint directed n-cycles. A vertex in the ith n-cycle
has first coordinate i (for 0 <<i <m — 1), and a vertex in the jth m-cycle has second coordinate j (for 0< j <n — 1).
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Table 1
Table of dimensions of the graph Cay({(1, 0, 0), (0, 1,0), (0,0, 1)} : Zy, ® Z, ® Zy) form,n, k<5

m n k Lower bound Upper bound Dimension
2 2 2 2 3 3
2 2 3 2 3 3
2 2 4 2 3 3
2 2 5 2 3 3
2 3 3 3 4 3
2 3 4 3 4 3
2 3 5 3 4 3
2 4 4 4 5 4
2 4 5 4 5 4
2 5 5 5 6 5
3 3 3 3 5 5
3 3 4 3 5 4
3 3 5 3 5 5
3 4 4 4 6 4
3 4 5 4 6 4
3 5 5 5 7 5
4 4 4 4 7 6
4 4 5 4 8 5
4 5 5 5 8 5
5 5 5 5 9 7

Since there are less than m vertices in the basis B, and there are m n-cycles, there must be at least one directed n-cycle
which contains no vertex of B. Due to the symmetry of the graph H' we can assume, without loss of generality, that
the Oth n-cycle contains no vertex of B. Also, since | B| <m <n, and there are n m-cycles, there is at least one directed
m-cycle which contains no vertex of B. Again, by the symmetry of the graph H’, we can assume that the Oth m-cycle
contains no vertex of B. Now consider the vertices (1, 0) and (0, 1) and any vertex w € B. Since no vertex of B lies
on either the Oth m-cycle or the Oth n-cycle, there exists a shortest path from (0, 1) to w, and also one from (1, 0) to
w, which contains (1, 1). However, both vertices (0, 1) and (1, 0) are adjacent to (1, 1). Thus, for any vertex w of B,
d((0, 1), w) =d((1, 0), w), and so the vertices (0, 1) and (1, 0) are not resolved by any vertex of B, which contradicts
the fact that B is a basis for H'. Hence dim(H) >m. O

Theorem 2 illustrates that the upper bound of Theorem 1 is attained for Cay({(1, 0), (0, 1)} : Z,, ® Z,,). Using the
integer programming formulation for (di)graphs, as described in the next section, values for the metric dimension of
the Cayley digraphs for the direct product of three cyclic groups with the canonical set of generators are obtained (see
Table 1). The upper and lower bounds of Theorem 1 are also included in Table 1.

From these values we conclude that it is possible to have equality for either bound in Theorem 1 and that intermediate
values can also be attained. Finding exact values for the metric dimension of Cayley digraphs of abelian groups of the
form Z,, @ Z,, ® - - - ® Z,, (for k >3) with the canonical set of generators 4 = {(1,0,0,...,0),(0,1,0,0,...,0),
...,(0,0,...,0, 1)} is an open problem. However, the previous two theorems can be used to bound the dimension of
these Cayley digraphs. These bounds are given in the following corollary.

Corollary 3. Letk,ny,na, ..., ng be positive integers where k =2 andny zna2n3 > - 2ng. LetI' =2, & Z,, ®
@2y, and A =1{(1,0,0,...,0),(0,1,0,0,...,0),...,(0,0,...,0, D}. If G =Cay(4 : I), then
k
ny < dim(G)<ny + Y _(mi — 1.
i=3

Proof. This result follows immediately from repeated applications of Theorem 1 and from Theorem 2. [

The values given in Table 1 support our intuition that there appears to be a correlation between higher degrees of
symmetry in a graph and the metric dimension. In particular, if m, n and k are all distinct (so that there is less symmetry)
the lower bound of the previous corollary is always achieved.
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(1, 0)

(1,1)

Fig. 4. Cay({R360/n, A} : Dn).

Recall that the Cayley digraph for the dihedral group D4 with generating set 4 = {Rgp, A} has dimension 4. In the
next theorem we generalize this result to the dihedral group D,, of order 2n.

Theorem 4. Let n be a positive integer, n>3. Let G be the Cayley digraph for the group D,, with generating set
{R360/n, A}, where A is any reflection in the group Dy,. Then dim(G) =n.

Proof. Label each vertex of G with an ordered pair, where the first coordinate is O (or 1) if the vertex is on the “inner”
(or “outer”) n-cycle, respectively. The outer n-cycle is directed counter-clockwise, and the inner n-cycle is directed
clockwise. The second coordinate denotes the position of the vertex on the n-cycle, from O to n — 1 in the clockwise
direction. The resulting Cayley digraph is shown in Fig. 4.

To show that the dimension is at most n, let W = {(1, 0), (1, 1), ..., (1, n — 1)}. All pairs of vertices in V(G) — W
(i.e. pairs of vertices on the inner cycle) are resolved since (0, i) is the unique vertex in V(G) — W that is adjacent to
(1, 7) and is thus the only vertex whose representation has ith coordinate 1. Hence dim(G) <n.

To establish the lower bound, observe that the only vertices that resolve the pair {(0, i — 1), (1, i)} (for 1 <i <n) are
the two vertices in the pair (see Fig. 4). Hence, any resolving set contains at least n vertices. Thus, dim(G) >n. U

3. A fractional version of the metric dimension problem and its dual

Currie and Oellermann in [4] formulated the problem of finding the metric dimension of a graph as an integer
programme. This formulation naturally gives rise to a fractional version of the metric dimension of a graph, and its
fractional dual implies an integer dual for the metric dimension of a graph. Fractional versions of other graph invariants
are discussed in [11].

Let G be a connected graph of order n. Suppose V is the vertex set of G and V), the collection of all (’;) pairs of
vertices of G. Let R(G) denote the bipartite graph with partite sets V and V), such that x in V is joined to a pair {u, v}
in V), if and only if x resolves u and v in G. We call R(G) the resolving graph of G.

The smallest cardinality of a subset S of V such that the neighborhood N(S) of § in R(G) is V,, is thus the

metric dimension of G. Suppose V = {v1,v2,...,v,} and V), = {51, 52, ..., s(g)}. Let A = (a;;) be the (g) X n
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matrix with

= 1 ifsivjeE(R(G)),
Y710 otherwise

for 1<i< () and 1< j <n.
The integer programming formulation of the metric dimension is given by: minimize

SO xo, o x)=x1+x24+ -+ x,

subject to the constraints

Ax=le)
and
x =2[0],,
where x = [x1, x2, ..., xn1%, [1]f is the k x 1 matrix all of whose entries are 1, [0], is the n x 1 matrix all of whose

entries are 0 and x; € {0, 1} for 1 <i <n.
If we relax the condition that x; € {0, 1} for every i and require only that x; >0 for all i, then we obtain the following
linear programming problem: minimize

frxo, o xn) =x1+ x4+ X
subject to the constraints

Ax=Ie)
and

x >1[0],.

In terms of the resolving graph R (G) of G, solving this linear programming problem amounts to assigning nonnegative
weights to the vertices in V so that for each vertex in V), the sum of the weights in its neighborhood is at least 1 and such
that the sum of the weights of the vertices in V is as small as possible. The smallest value for fis called the fractional
dimension of G and is denoted by frdim(G).

The dual of this linear programming problem is given by: maximize

JOLY2 oy =yttt e
subject to the constraints

ATy<[1,
and

y=[0](ny,

where y = [y1, y2, ...,y(»zz)]T.

For the resolving graph R(G) of G this amounts to assigning nonnegative weights to the vertices of V), so that for
each vertex in V the sum of the weights in its neighborhood is at most 1 and subject to this such that the sum of the
weights of the vertices in V), is as large as possible.

The corresponding integer programming problem asks for an assignment of 0’s and 1’s to the vertices in V), such
that the sum of the weights of the neighbors of every vertex in V is at most 1 and such that the sum of the weights
of the vertices in V), is as large as possible. This integer programming problem, which corresponds to the dual of the
fractional form of the metric dimension problem, is equivalent to finding the largest collection of pairs of vertices of
G no two of which are resolved by the same vertex. This maximum is called the metric independence number of G,
denoted by mi(G). A collection of pairs of vertices of G, no two of which are resolved by the same vertex, is called an
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independently resolved collection of pairs. The fractional metric independence number of G is defined in the expected
manner and is denoted by frmi(G). Clearly, dim(G) > frdim(G) and frmi(G) > mi(G). It follows from the Duality
Theorem for linear programming that frdim(G) = frmi(G). We thus obtain the following string of inequalities:

dim(G) > frdim(G) = frmi(G) = mi(G).

Note that, for any connected graph G, mi(G) < frdim(G). We now use this fact to show that the metric independence
of the n-cube, denoted by Q,, is 2 for all positive integers n > 2. To this end, the following two lemmas, which can be
established in a straightforward manner using induction, are useful.

Lemma 5. For all positive integers k,

<2k> <%k,
k

Lemma 6. For all positive integers k,
2k =1 <p2%k—2
k—1) '

We are now ready to prove the following theorem.

Theorem 7. Foralln>?2,

mi(Q,) =2.

Proof. To see that mi(Q,) > 2, consider the two pairs of vertices that are diametrically opposite to one another on any
4-cycle in Q. These two pairs are not resolved by the same vertex and are thus metrically independent. It follows that

mi(Qy) =>2.
It remains to show that mi(Q,) <2. We recall here two different ways of describing the graph Q,,.

(i) Q, is the graph whose vertex set consists of all 2" n-tuples of 0's and 1’s, and where two n-tuples are joined by an
edge if and only if they differ in exactly one position.
(i) @, can be obtained from two copies of the (n — 1)-cube, Q,,_1, by joining corresponding vertices.

Let Q) _, and Q"' , denote two vertex disjoint copies of the (n — 1)-cube in the graph Q,,. We may assume that all
of the vertices of Q| have a 0 in the first position and those in Q) _, have a 1 in the first position of their n-tuples.

Assign each vertex of Q! a value of 1 /2"=2 and each vertex of Q) avalue of 0. Let R(Q,) be the resolving
graph of Q) defined above. Let V), be the collection of all pairs of vertices of Q. If we can show, with this assignment
of fractional values to the vertices of Qy, that the sum of the values of the neighbors of the vertices in V), is at least 1,
then we have shown that

frdim(Q,) <2"! <2n_2> +2"10) =2.
Since mi(Q,) <frdim(Q,), the result will follow.

Since Q, is bipartite, vertices from distinct partite sets are resolved by every vertex of Q, and hence every vertex
of Q! _,. So, for such a pair, the sum of the values of its neighbors in R(Q,) is at least 21122 = 2.

Suppose now that u and v are distinct vertices that belong to the same partite set and suppose that d (u, v) = d. Then
d is necessarily even. Let 2 be the collection of all positions for which the n-tuples of u and v agree. There are n — d
such positions. Let 2 be the collection of all positions where the n-tuples for u and v disagree. Then |#'| = d. If a
vertex z of Q, does not resolve u and v, then it is the same distance from « and v. Note that the number of positions
in 2 where the n-tuple for z differs from the one for u is the same as for v. Suppose that the number of positions in %’
where the n-tuple for z differs from the n-tuple for u is k. Then the number of positions in 2’ where the n-tuple for z
differs from the n-tuple for v is d — k. Since d(u, z) = d (v, z) we have that k = d — k. So the n-tuple for z differs from
the one for u and the one for v in exactly k positions belonging to 2’. We consider two cases.
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n—1-

Case 3: Suppose position 1 belongs to 2. Then u and v either both belongto Q/,_, orto Q. There are Qn—2k-1 (zkk)

vertices in Q! | that are the same distance from u and v. By Lemma 5, 2"~2k~1 (2](/‘) L2k (k=1 — on=2 go

there are at least 2~ 1 —2"=2 =2"=2 vertices of Q;;— | thatresolve u and v. Hence, the sum of the values of the neighbors
of {u, v} in R(Q,) is at least 2"~2(1/2""2) = 1.

Case 4: Suppose position 1 belongs to 2. Then one of u and v belongs to Q/,_,, and the other to Q' _,. Suppose
u e V(Q;li]) and v € V(Q,’Ll). Since v necessarily differs in position 1 from all vertices of Q;l—l and as it differs
in exactly k positions from z that belong to 2/, there are 22K <2kk__ll> vertices z in Q/,_, that do not resolve « and v.

-1

resolve the pair {u, v}. Thus the sum of the values of the neighbors of {u, v} in R(Q,) is at least 2"=2(1/2"%) = 1.
Hence frdim(Q,) <2, and the result follows. [

By Lemma 6, on—2k <2kk_l) < (22K (2%k=2) =272 S0 there are at least 2" ~! — 2"=2 =272 vertices in Q) _, that

Note that for any connected graph G of order n, any set S of independently resolved pairs of vertices of G must be
pairwise disjoint; otherwise, any vertex common to two pairs in the set resolves both pairs, contradicting the fact that
the pairs of vertices in S are resolved independently. Thus, mi(G) < |n/2]. This fact and the proof of Theorem 4 lead
to the following result.

Theorem 8. Let n be a positive integer, n > 3. Let G be the Cayley digraph for the dihedral group D,, with generating
set {R360/n, A}, where A is any reflection of Dy,. Then mi(G) = n.

Proof. The proof of Theorem 4 demonstrates that the Cayley digraph G contains n independently resolved pairs of
vertices. Thus mi(G) >n. On the other hand, since G has order 2n, mi(G) < [2n/2] =n. O

4. Closing remarks

This paper studies the metric dimension of Cayley digraphs (with minimal generating sets). Bounds for the metric
dimension of the Cayley digraphs Cay(4 : I'), where I' is the group Z,,, & Z,,, ® - - - @ Z,,,, and A4 is the canonical set of
generators, are established and it is shown that these bounds are sharp if m = 2. The case where m = 3 has been studied
in more depth in [9] but is still partially unresolved. The case where m >4 remains open. The undirected version was
investigated in [10] and was shown to be unrelated to the size of the cyclic groups. More specifically it was shown,
for the case m = 2 and if at least one of the cyclic groups has order at least 3, that the metric dimension is 3 or 4 and
depends on the parity of the cyclic groups.

An integer programming formulation of the metric dimension of (di)graphs and its corresponding dual, the metric
independence, was studied for Cayley digraphs. It was shown that the metric dimension and the metric independence
for the Cayley digraph of the dihedral group D,, with a minimal set of generators, are both equal to n. On the other
hand, it is shown that the metric dimension of the n-cube is 2. The asymptotically exact value for the metric dimension
of the n-cube is 2n/log n (see [12]). Thus the ratio of the metric dimension to the metric independence of Cayley
(di)graphs maybe arbitrarily large.

The metric dimension of the Cayley digraph for the non-abelian symmetric group S4, with generating set 4 =
{(1,2), (1, 2, 3,4)}, is shown to be 3. However, it remains an open problem to determine the metric dimension and
metric independence of these Cayley digraphs for n > 4.
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