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Abstract

We present recent research of Eisenbud, Flgystad, Schreyer, and others, which was discovered
with the help of experimentation witMacaulay 2 In this invited, expository paper, we start by
considering the exterior algebra, and the computation ab@et bases. We then present, in an
elementary manner, the explicit form of the Bernstein—Gelfand—Gelfand relationship between graded
modules over the polynomial ring and complexes over the exterior algebra, that Eisenbud, Flgystad
and Schreyer found. We present two applications of these techniques: cohomology of sheaves, and
the construction of determinantal formulae for (powers of) Macaulay resultants. We show how to use
Macaulay 2to perform these computations. © 2003 Published by Elsevier Ltd.

1. Introduction

This invited talk at ISSAC 2002 has three goals. We wish to present some exciting new
research of Eisenbud, Flgystad, Schreyed, @hers, with was discovered with the help
of experimentation wittMacaulay 2 In the process, we hope to convince the reader that
it is possible to compute with relatively abstract notions in algebraic geometry, and finally,
we show howhese computations can be performed uditagaulay 2

Macaulay 2is computer softwa for algebraic geometry, commutative algebra and
related fields. Grayson and | have been working/tataulay 2since we started the project
in 1993.Macaulay 2is freely available Grayson and StillmariL993—2003.

This paper is an introduction to the work of Eisenbud, Flgystad, and Schreyer. More
details and proofs can be found in the pap&isénbud et a]2001; Eisenbud and Schreyer
200% Decker and Eisenbyd2001) and in the book Eisenbud 2003. In particular,
they prove considerably more than we eipl here. What we do instead is explain
their constructins and apply them to examples. We present two applications of these
techniques: cohomology of sheaves, and the construction of determinantal formulae for
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(powers of) Macaulay resultants. We culmaia with finding an explicit skew symmetric
8 x 8 matrix whose pfaffian (square root of thetdrminant) is the Macaulay resultant
of three ternary quadratic forms. This is onetloé new determinantal-like formulae that
Eisenbud and Schreyer foundtisenbud and Schrey€007).

2. Theexterior algebra

Fix a field k. The exteror algebraE on n lettersey, ..., &, is defined to be the free
associativek-algebra orey, . . ., e,, modulo the relations

e%:...:eﬁzo’

and

€€ = —€j§,
for all i and j. There isno truly standard notation for this algebra. We will denote
this exterior algebra b = k{ey, ..., e,). A k-basis forE consists of all square-free

monomials, so has dimensioR s a vector space ovkr

Since multiplication is almost commutative,@brier bases and Buchberger's algorithm
both extend, with simple modifications, to idealsEnas well as to modules oveE. (We
always consider right-ideals and right modules.) The only difference is that the notion of
“S-pair” must be modified. An example should make it clear.

Examplel. LetE = Q(a, b, c, d) be the exteriorlgebra on letters, ..., d. Let| be the
ideal gaerated byF = ac— bd andG = bc— ad.

Over the usual polynomial ring, the Buchberger algorithm works by selecting pairs
of polynomials, cancelling their lead termy laking a linear combiation of the two
polynomials, and computing its remainder.

We start to ompute a Gobner basis by considering the péit, G). The comination
that cancels lead terms is

bF +aG =b(ac— bd) + a(bc—ad) = 0.

The one difference, other than arithmetic, is that we may uncover new lead terms by
multiplying a polynomial such aB by any variable which occurs in its lead term. Thus,

aF =a(ac— bd) = —abd
and
cF =c(ac— bd) = bcd.

H = abdis not divisible by the lead terms d¥ or G, and so we add it to the Gbher
bass. The elemenbcd does reduce to zero, by subtractohG.

All other “S-pairs” on each oF, G andH reduce to zero, and §&, G, H} is a Gobner
basis ofl .

By using tis straightforward extension of Buchberger’s algorithm, we can compute
Grobner bases. As with polynomial rings, if we extend the algorithm to modules, and keep
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track ofhow Grobner basis elements are expressed in terms of the original generators, we
can also computgyzygiesi.e. kenels ofr x s matices

¢ ES—E".
For example, l&$ conpute withthe above ideal usingMacaulay 2

il : E = QQ[a..d, SkewCommutative=>truel];

Multiplication is as defined above.

i2 : c*b
02 = -b*c
o2 : E
i3 : b"2
o3 =0
o3 : E

i4 : I = ideal(a*c-b*d, b*c-a*d)
04 = ideal (a*c - b*d, b*c - axd)

04 : Ideal of E

i5 : transpose gens gb I

o5 = {-2} | bc-ad |

{-2} | ac-bd |
{-3} | abda |
3 1

o5 : Matrix E <--- E

i6 : m = generators I
06 = | ac-bd bc-ad |

1 2
06 : Matrix E <--- E
i7 : ml = syz m

o7 ={2} | ¢ -dabo0o |
{2} | -d c b abdl

2 5
o7 : Matrix E <--- E
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We can compute the kernel of this map.

i8 :

syz ml

o8 = {3}

C

d

p o

{3}

|

| -d
{3} |

|

|

o o
g o oo

Q.
cog o
Io%

{3}
{4}

|
o

o
o o0 |

o
[s'NeNeNeNe)

o O o
(oo eNel
o T M OO
oM o OO
[ea el eNeNe]

|
)
1
o

5 10

08 : Matrix E <--- E

Theresolution routine iterates this process as far as we want, to compute a (minimal)
free resolution for some number of steps.

i9 : resolution(cokernel m, LengthLimit=>7)
1 2 5 10 18 30 47 70
09 =E <-—-E <—-E <-—-E <-- E <-- E <-- E <-- E
0 1 2 3 4 5 6 7

09 : ChainComplex

There are two major differences between computing over the usual polynomial ring
(the symmetric algebra) and the exterior algebra: firshgb@er bases and syzygies are
mucheasier to compute over the exterior algebra. This is in large part due to the small
number of monomials in the exterior algebra. Second, Hilbert proved in 1890 that minimal
free resolutions over the polynomial ring are always finite. Over the exterior algebra, free
resolutions are almost never finite. However, because of the small number of monomials
in E, finite parts of these resolutions can often be found quickly.

3. Thelink between the exterior algebra and the symmetric algebra

Let S=K[X1,...Xn], and letE = k{e, ..., &,) be the corresponding exterior algebra.
Let
M= @Md,
deZ

be a graded®-module, where each degrdepieceMy is a finite dimenmnal vector space
overk. Once and for all, choose a basis of each vector sphcdf m € My, denote by[m]
its representation in this basis. Throughout this section, wenget= dim My, for all d.

The whole theory rests on the following particular method for encoding the data of
multiplication by linear forms fromMy to Mg1.

Definition 2 (Bernstein—Gelfand—Gelfand Maps). For a giwndefine thed th BGG
map

¢a : E™ — EMas
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of M by

n
[m] = > alximl.
i=1
We could do everything without coordinates, and then this would be the adjoint map

to the multiplication map. Given a vector spa¢ef dimensionn, defineW = V* to be
the dual vector space, and then Set= S,V andE = A*W to be the symmetric and
exterior afjebras respectively. ¥ is the span okq, ..., Xn, then his is exactly what we
have considered already. The multiplication mapMs®x Mg — Mg+1. The adjant is
Mg — V* ®k Mg+1. Considering the elements &* = W as linear elements d&, the
adjoint gives a matrix of linear formgy defined by the above formula.

Example 3. As a simpk exampleconsiderS = k[x3, X2] and the corresponding exterior
algebrak = k{e1, ). Let

M = S/(x2,x3) = Mo ® M1 & Mz @ M3,

whereMg = k, My = k%, M, = k2, andM3 = k. We choose monomials as the basis
elements of these vector spaces. The basle®fs {[1]}, thebasis ofM1 is {[x1], [X2]},
the basis oM is {[x1x2], [x%]} and the basis o3 is {[xlxg]}.

Settingd = 1 for example,¢1 : E2 — EZ? is defired by

[x1] — e1[x?] + ex[x1x2],
and

[X2] > e1lXiXz] + e2[X3].
. € €
Since[x?] = 0,¢1 = < 5 e2>'
Computingpg andg2, we obtain a sequence

o, 6
%) 2 0 e 2 (62 e])

Note that this is a complex: apfhg two maps in a row gives zero.

0 k

In the general case, if we apply the construction for ehttha gradeds-moduleM, we
get a (possibly infinite) sequence of maps:

[ [ [}

Em() Em] Emz

There are two basic facts about this sequence.

e Thisis acomplexi.e.¢i11¢i = O for alli. This is a simple egrcise, using the fact
that multiplication inSis commutative.

e This complexis eventually exact, i.e. fior> 0, ken¢i+1) = im(d;). This heorem is
proved inEisenbud et al(2001). They alscshow that if the Castelnuovo—Mumford
regularity ofM isr, then his sequence is exact after thé step.



600 M. Stillman / Journal of Symbolic Computation 36 (2003) 595-611

The cohomology of this sequence would be interesting to investigate, but for now, we
take a tail of his complex which is exact:

Emr Or Em,,_H ¢r+] ¢r+2

EMr+2

The crucial link is the following exact sequence.

Definition 4. The Tate resolution T(M) of M is the exact complex (possibly infinite in
both directions)

Yr—2 Yr—1 Yr . Yrs1

. 5 Emr—z E’”r—] Emr Emr+1 > e

obtained by computing fiee resolutiorof ker(¢r ), wherer is chosen large enough so that
the tail of the complex is exact, and = ¢;j, fori >r.

In the examfe above, the Tate resolution is the zero complex, since the complex is
eventally zero.

Eisenbud, Flgystad, and Schreyer prove that the Tate resolution is independent (in a
suitable sense) of the truncation locatigras bng as it is chosen so that the tail is exact.
This implies that ifM. := Dg-eMq is theeth truncation oM, thenT(M) = T(M=e).

This is reminiscent of a property of sheawasprojective space. So, before continuing,
let us brush up on sheaves.

3.1. An aside: a crash course on implementing coherent sheaves én

Serre’s famous FAC papeBére, 1955 introduced sheaves to algebraic geometry.
What is perlaps less well known is that he describes (in essence) how to represent
sheaves on projective space as modules, and how to compute their cohomology. In
this sense, his paper is pegs the first paper in computational abstract algebraic
geometry.

A gradedS-moduleM determines in a canonical manner a coherent skieaf P"1,
and all coherent sheaves Bfi 1 arise in this manner. Unfortunately, the correspondence is
not one to one. For example, M>e is theeth truncation of the modul#/, thenM = M>e
In fact, two coherent sheavés andN are isomorphic if and only if there is an integer
suchthatMse >~ Nse.

If X ¢ P"1is a projective variety defined by an iddal ¢ S, thenOx := §/T;< is
called the sheaf of regular functions &n
A/inother important construction is the twist of a sheat i§ an integer, theM (e) :=
M(e), whereM(e) is the same module a$/, but with a shift in the gradingM (e)q :=
Me+d.

Cohomology of sheaves can be computed using the representation of the sheaf as a
gradedS-module. We will not describe these algorithms here (see Eisenbud’s chapter in
Vascortelos 1998. Instead, we usdlacaulay 2to compute some of the cohomology
groups of the sheave®c(d), whereC < P2 is the twisted cula curve. Note that
hi (M) = dimg H‘(M) is the notation often used for the dimensions of the cohomology
groups (and are aldovector spaces).



M. Stillman / Journal of Symbolic Computation 36 (2003) 595-611 601

Example 5. The twisted cubic curve is the image of the map
P p3
which £nds
(s,1) > (W, X, Y, Z) = (%, ¢, st?, t3).
The ideallc of the image is generated B2 — WY, Y2 — XZ, WZ — XY]}.

i10 : S = QQ[W,X,Y,Z];

i11 : IC = ideal (X"2-WxY, Y 2-X*Z, WxZ-X*Y);

0l1l : Ideal of S

i12 : C = variety IC
0l2 = C

012 : ProjectiveVariety

i13 : (HH"0(00_C), HH"0(00_C(1)), HH"1(00_C(-5)))

1 4 14
@ , Q@ , Q@ )

013

013 : Sequence

Soh%Oc) = 1,h%Oc(1)) = 4, andhl(Oc(—5)) = 14. Here are more cohomology
groups:
i14 : apply(-3..4, i -> HH"0(00_C(i)))

1 4 7 10 13
014 = (0, 0, 0, QQ , QQ , QQ , Q@ , QQ )

0l4 : Sequence

i15 : apply(-6..4, i -> HH"1(00_C(i)))

7 14 11 8 5 2
ol5=(QQ ,0Q ,Q ,Q,0Q,Q,0,0,0,0,0)

0l5 : Sequence

3.2. Tate resolutions and cohomology of coherent sheaves

What have we done so far? We start with a graBadoduleM, or its associated sheaf
M and obtain an exact compléM) of free E-modules, which is eventually linear. This
is cute, and pretty, but so what? What good is it? Well, it turns out to be amazingly useful.
We will see two completely different applications below. In addition, there are several other
applications that we do not have the time or space to describés{seebud et aJ.2001;
Eisenbud and Schreye&t001, Decker and Eisenbu@001).



602 M. Stillman / Journal of Symbolic Computation 36 (2003) 595-611

Let us compute the Tate resolution of the twisted cubic curve in projective 3-space.
We'll use Macaulay 2to do the omputations for us.

i16 : load "bgg.m2"; -- described in the appendix

i1l7 : E

QQ[w,x,y,z, SkewCommutative => truel;

i18 : M = cokernel generators IC;

M is the honogeneous coordinate ring of the twisted cubic curve. The degree one and two
parts have bases consisting of the following sets of monomials.

i19 : basis(1,M)

019 = | WXYZ|

019 : Matrix

i20 : basis(2,M)

020

| W2 WX WY WZ XZ YZ Z2 |

020 : Matrix

The routinebgg computes the magq defined above.
i21 : phil = bgg(1,M,E)

021 = {-2}
{-2}
{-2}
{-2}
{-2}
{-2}
{-2}

0

O OONS K =
O ONW X =

ONS< M 5 OO
N< X & O OO

7 4
021 : Matrix E <--- E

i22 : phi2 = bgg(2,M,E)

022 = {-3}
{-3}
{-3}
{-3}
{-3}
{-3}
{-3}
{-3}
{-3}
{-3}

o

OO OOOONN K 8
OO OOONN X =

OO OONN MW == OO0
OO ONS XM & OOO0
OON< M s OO OO
ONS< M 5 OO O OO0
N< X & OO0 OO0 OO0

-
o
~

022 : Matrix

]
A
|
I
o]

i23 : phi2 * phil
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023 =0

10 4
023 : Matrix E <--- E

Here is aMlacaulay 2routine for computing (a part of) the Tate resolution. The routine first
truncatesM at the regularity ofM, callsbgg, and thencomputes several steps of a free
resoluion. Notice that the second matrix from the lefifis : E/ — E10 (up to change

of basis).

i24 : Ta = tateResolution(presentation M,E,-3,4)

13 10 7 4 3 5 8 11
024 =E <-E <-E <-E <-E <-E <—-E <-E

-4 -3 -2 -1 0 1 2 3

024 : ChainComplex

Caution! Macaulay Xisplays maps from right to leftpsthe eventally linear part here is
the leftmost displayegart of the Tate resolution. For example,; : E5> — E3is

i25 : Ta.dd_1

025 = {0} | 0 0 -wz wy wx |
1Yl zyx -wo |
{131 0zy -x-w |l

3 5
025 : Matrix E <--- E
The graded pieces of each module are displayed usingettiei command.

i26 : betti Ta

026 = total: 13 10 7
0: 13 10 7
1:

RPN

The entry in rowd: and columnc (where the first column displayed éis= —4) is the
number of generators of degrdet c in the cth free module, where each variable in the
exterior ajebra has degree 1. For example, as amap of graded free modules, has the
form y_1 : E(-2)° — E(-1)2 @ E, whereE(—d) is the gaded free module of rank
one, having its generator in degree

Wait! These numbers in the betti diagram are the same numbers we encountered
when computing the cohomology @¥c and its twists. Eisenbud, Flgystad, and Schreyer
observed this, and then were able to provgémeral that the graded pieces of the Tate
resoldion T(M) are exactly the cohomology moduleshfand its twists. In terms of this
betti diagram, themtement is:
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Theorem 6 (Eisenbud et al2001). Let M be a gaded S= k[x4, ..., Xy] module. LetM
be the corresponding sheaf. Then: the betti diagram of the Tate resolution of M has the
form

hO(M (1)) hO(M) hO(M (-1)
h1(M) h1(M(-1)) h1(M(-2))

h"=Y(M(=n+2) h"Y(M(=n+1) h"}(M(-n))

4, Resultants, Chow forms, and the Tate resolution

There has been a great deal of interest in finding determinantal formulae for multivariate
resutants (theMacaulayresultant), and for spae resultants. For one such result from these
proceedings, with pointers to the literature for others,lsbetan(2002.

Khetan(2002 discovered that their exterior algebra methods can be used to construct
determinantal formulae for some of these resultants. In this section, we present a part of
this work, leading up to an explicit Bezoutrfaula for the Macaulay resultant of three
qguadratic forms in three variables.

Macaulay resultants are the Chow forms of Veronese varieties, and Eisenbud and
Schreyer find formiae for Chow foms. Thus, our story starts with Chow forms.

4.1. The Chow divisor and Chow form of V

Let X c P"1 be a projective variety of dimensiod. Let G be the set of all
codimensiond + 1 planesL in P"1. This is a Gassmann variety, and has dimension
d+1(n—-d-—1).

TheChow divisor Dx of X is

Dx ={LeG|XNL %0,

It is an exercise in dimension theory to show tBst has codimension one i@.

An elementL of G is represented by & + 1) x n matix M such that if H; =
Mi1X1 4+ - -+ + MinXn, thenL = (H1 = 0) N --- N (Hg+1 = 0). The Chowdivisor
Dy is definedby a single equatio@hy (the Chow form) in the indeterninatesM;j . This
polynomial may also be expressed as a polynomial in thek@l’coordinates

Mai, Ma,i, M1ig,q

li1, ..., id41] = det : :
Md+1i;  Md+1i, -+ Md4Lig,

The degree of the polynomial in theueKer coordinates is the degreeXf

Let us now specialize to the Veronese surfdce P°. This surface is the image of the
map

P2 _Pp°
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given by
(r,s,t) —~ (A, B,C,D, E,F) = (r? rs, rt, %, st, t?).

The varietyV has dimension 2 and degree 4.

What is the Chow formChy of the Veronese surface? In this situatidh,is the
Grassmannian of codimension 3 subspaceB%fEach element e G is determined
by a 3x 6 matrix

a ... as
M=1|by ... bg
CiT ... GCs

where if

Ha = a1X1 + - - - 4 agXe,
Hp = biXxs + - - - + bgXe,
Hc = CiX1 + - - - + CsXe,

thenL = (Ha = 0) N (Hp, = 0) N (He = 0). The Plicker coordinates are

a a4 &
[i, .kl :==det| bi bj; by
G Cj Ck

Chy isapolynomial in the 18 variables, b, c. Chy can also be expressed in terms of the
Plicker coordinates. Since the degree of the Veronese surface is four, general theory tells
us thatChy is apolynomial of degree four in the &ker coordinates (and so of degree 12
in thea, b, c variables).

Let

Fa = a1r? + aors + agrt + ass® + asst + agt?
F = bar? + bors + bart + bas? + bsst + be'[2
Fe = C1r2 + Cor s + Cart + CaS2 + CsSt + cot?.

We now dentify the Chow form oW

Chy(a,b,c)=0
= VNMHa=0NHp,=0N(Hc=0) #£0
& Fa(r,s,t) = Fp(r,s,t) = Fe(r,s,t) =0 for some(r, s, t) € P?
— Re&z,z(l:a, Fb, Fc) = 0
Therefore (since both are irreducible polynomials)
ChV (av bﬂ C) = Re%,Z,Z(Fah Fbﬂ FC)

is the Macaulay resultant of ke ternary quadratic forms.
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The goal is to find determinantal formulae for resultants such as this. Here is one
exampe, which appears in the list iGelfand et al(1994. The Chow formChy is the
determinant of the 6x 6 matrix

a; by c [1, 2, 6] 0 [1,2,3]

a b o [1, 4, 6] [1,4,5] [1,2,5]—[1,3,4]
a3 bs c3 [1,5,6]—1[2 3,6] [1, 4, 6] [1,2,6]

as bs cy 0 [2, 4, 5] [1,4,5]

as bs cs [3, 4, 6] [3,4,5] +[2,4,6] [1, 4, 6]

as bs Cs [3,5, 6] [3.4,6] 0

If we use a Laplace expansion with the first three columns, we see that the determinant is
apolynomial of degree 4 in the cubigis j, k].

Question: Can the polynomi& hy be expressed as the determinant of:a 4 matrix
whose entries are linear in theueker coordinate§, j, k]? Or, if not, is thereany nice
formula involving only theli, j, k]'s? In fact, there is no such 4 4 deerminant, but
Eisenbud and Schreyer construct ark8 skew synmetric marix whose pfaffian is
Chy = Res 2. In the restof this section, we describe their construction, and at the
end we obtain the & 8 matrix explicitly.

4.2. The Eisenbud—-Schreyer construction

For thegeneral construction, sdeisenbud and Schrey¢2001). Here we present an
important special case, which works for the Veronese and many other cases.

Start with a varietyX ¢ P"~1. Let M be a grade® = K[x4, . .., Xn] module, which is
supported ornX (i.e. Ix C ann(M)). Assume that the sheaf associatedtds locally free
on X of rankr. There is aradditional assumption oM (M is “Ulrich”) for the formula
below to work as nicely as it does, but we will not get into that here.Bsenbud and
Schreye(2001) for the pecific condition.

From this moduleM, find the Tate esolution ofM. In thecase whemM is suitably nice,
i.e. is “Ulrich”, the resolution has the form

4

EY E“ E* EP

The entries of all of the matrices excejfptare linear irey, . . ., ey, and the non-zero entries
of the matrixys all have degred+1. The final step of the construction is to createdhex
matix U(y) whose entries are obtained from those/oby settingT (g ejex) = [i, j, kI,
and extending vi&-linearity. For exampleT (e1exe3 + e1e0e4) = [1, 2, 3] + [1, 2, 4].

Theorem 7. If M is locally free on X of rankr, and M is “Ulrich”, then
detU(y) = (Chy)".

In particular, if M is a line undle (r = 1), then he construction provides a
determinantal formula forC hy.
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To sunmarize,

Construction 8 (A Power of the Chow Form).
input: An SSmoduleM, such hat the sheak is locally free of rank on
avaiety X ¢ P"1 andM is “Ulrich”.
output: A square mé&ix U(yr) whose entries are linear forms in theuBkér
coordinates, such tha€hx)" = detU(y).
begin
Conpute the matrixy = ¥_1 in the Tate resolution.
if the matrixys is not square or has entries not of degdee 1
then error M is not Ulrich.
ReturnU(y).
end.

In practice, such an Ulrich modul may not exist, or at least might be difficult to find.
Eisenbud and Schrey&001) give aiteria for when such a module exists, and how to find
one. In particular, with their construction they can reproduce all of the known determinantal
formulae (at least the ones that appeaBiifand et al. 1994for Macaulay resultants).

4.3. The resultant Res 2(Fa, Fo, Fc)

In our example of the Veronese surfagec P°, we chooseM = TV to be a gaded
S-module which corresponds to the (rank two) tangent bundie dri this case, the module
M is “Ulrich”. When we gply the above construction, we obtain ar 8 skew symmetric
matrix whose determinant is the squareGify = Res 2 2(Fa, Fn, Fc). Recall that the
determinant of a skew symmetric matrix (even a matrix of polynomials) is a square. Its
square root is called thefaffian of the matrix. Therefore the resultaRes 2, is the
pfaffian of an 8x 8 matrix of linear fams in the Rlicker coordinate§, j, k]. We will
construct this matrix usiniylacaulay 2

i27 : 83= QQ[r,s,t];

We use he variablesA, ..., F, anda,..., f instead ofx; and g, to improve the
readability of theMacaulay 2output.

i28 : S6 = QQ[A..F,Degrees=>{2,2,2,2,2,2}];

i29 : E6 = QQ[symbol a..symbol f,SkewCommutative=>true]
029 = E6

029 : PolynomialRing

i30 : FV = map(S3,86,{r"2, rxs, rxt, s"2, s*t, t°2})

2 2 2
030 = map(83,86,{r , r*s, r*t, s , s*¥t, t })

030 : RingMap S3 <--- S6

The following three lines oMacaulay 2code is one way to compu®/, amodule in
86 corresponding to the tangent sheaf\of This method starts with the tangent bundle
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of P2, truncates it so that all of the generators are in degree zero, and pushes it forward to
a lundle on the imag¥ .

i31 : TP2 = coker transpose vars S3
031 = cokernel {-1} | r |

{-13 I s |

{-13 1 ¢t |
031 : S3-module, quotient of S3

i32 : MO = prune truncate(0, TP2)

o
2]

032 = cokernel

oR

R OO oo
|
2]

oOHR OOO
|
ot

0
0
0
0 s
0
0
s

o
o

[eNeNelNeNeNeol
HROoOOoOwmw OO ¢ O
|
ot
[eleNelNeNe]
OH Oc OO O ct

-t 0

o

032 : S3-module, quotient of S3

i33 : TV = prune coker pushForwardl(FV,MO)

033 = cokernel | -FO 0 -E0O O COO O O O BOO O O O AOO
|E 0 0D OO OCOO OO OBO O O O OAO
|0 0 0O0O0OOOO-E-FO O O0-D-EO O DE-B
|0 -FO 0 -EO EFC 0 0 O DEB O O O 0O0A
|0 E O ODO 00O C O O 000 B O O 000
|0 0 0O0OOO 000 O -E-FOOO O -D-EEFO
|0 0O -FO O -EFOO 0 C O EFO O B 0 000
|0 0O E O O0ODOFOOOTCUOO0OO0O O O B 000

8
033 : S6-module, quotient of S6

The degreesf the ling S6 were chosen so that would be homogeneous. We must adjust
the degrees of the ring to be all of degfiedefore computing the Tate resolution.

i34 : R6

QQlA..Fl;

i35 : TV = coker substitute(presentation TV, R6);

i36 : Ta = tateResolution(presentation TV,E6,-3,4)

120 80 48 24 8 8 24 48
036 = E6 <-- E6 <-- E6 <-- E6 <-- E6 <-- E6 <-- E6 <-- E6

-4 -3 -2 -1 0 1 2 3

036 : ChainComplex

i37 : betti Ta
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037 = total: 120 80 48 24 8 8 24 48
0: 120 80 48 24 8 .
1: e e e e e e
2: .. . . . 824 48
i38 : Ta.dd_1
038 = | -aef -acf -adf -ace -ace+abf 0 -acd abc |
| -bef -bcf -bdf -bce+adf -bce+adf abf -bcd+ade -acd+abe |
| -cef O -cdf aef -bcf+aef acf adf abf |
| adf abf ade abe acd abc abd 0 |
| bdf adf bde ade becd -acd 0 -abd |
| cdf -bcf+aef cde -bce+adf O -ace+abf -bcd —acd |
| -def cdf 0 cde+bdf cde adf bde ade |
| 0 cef def cdf+bef cdf aef bdf adf |

8 8
038 : Matrix E6 <--—- E6

This is the mapy_1. This matrix is alnost the desired & 8 skew synmetric marix,
except for one problem: it is not skew symtrie! This is because of the choices made
by Macaulay 2in computing the resolution. Byow and column operations ovér it

is straightforward to produce the desired skew-symmetric matrix. The following lines of
Macaulay 2code perform these row and column operations.

i39 : load "sparsemat.m2";

i40 : (m = sparseMutableMatrix Ta.dd_1;
rflip(m,0,7) ;rflip(m,1,2);rflip(m,6,2);cflip(m,3,6);
rflip(m,3,4);rscale(m,-1_E6,3);cflip(m,4,5) ;rflip(m,7,4);
cflip(m,5,7) ;rflip(m,7,5) ;rscale(m,-1_E6,5) ;caxy(m,-1_E6,7,6) ;
rscale(m,-1_E6,7);

matrix m)

040 = | O cef def bdf aef adf bef cdf |
| -cef O -cdf adf acf abf bcf -bcf+aef |
| -def cdf 0 bde adf ade bdf cde |
| -bdf -adf -bde 0 acd abd bcd-ade -bced
| -aef -acf -adf -acd 0 abc -abf -ace+abf |
| -adf -abf -ade -abd -abc 0 acd-abe -acd |
| -bef -bcf -bdf -bcd+ade abf -acd+abe 0 -bce+adf |
| -cdf bcf-aef -cde bcd ace-abf acd bce-adf 0 |

8 8

040 : Matrix E6 <--- E6

Theorem 9 (Eisenbud and Schrey&001). The Maaulay resultant
Re&,Z,Z(Faa Fbv FC)

is the pfaffian of th@& x 8 matrix U(m) where m is the skew symmet8« 8 matrix in the
Macaulay 2 code above.
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Appendix A. Macaulay 2 code used in this paper

The code that we use here appeareDatker and Eisenbu@001). They also include
Macaulay 2 code to compute the Beilinson monad, which is another interesting and
important application of these exterioigabra techniques. All of these make up the file
“bgg.m2".

The routinebgg computes the matriy; corresponding to multiplication frorv; to
Mi1. The “BGG” stands for Bernstein—Gelfand—-Gelfand.

i41 : code bgg

041 = -- bgg.m2:10-20

bgg = (i,M,E) ->(
S :=ring(M);
numvarsE := rank source vars E;
ev:=map(E,S,vars E);
f0:=basis(i,M);
f1:=basis(i+1,M);
g :=((vars S)**f0)//f1;
b:=(ev g)*((transpose vars E)**(ev source f0));
--correct the degrees (which are otherwise
--wrong in the transpose)

map (E"{(rank target b):i+1},E"{(rank source b):i}, b));
The routinesymExt is a sibroutine oftateResolution. The input is a presentation

matrix for the moduléV above, and it is a method to obtaigg (coker m, 0, E) with
less computation.

i42 : code symExt
042 = -- bgg.m2:1-9

symExt = (m,E) ->(
ev map(E,ring m,vars E);

mt := transpose jacobian m;

jn := gens kernel mt;

q := vars(ring m)#**id_(target m);
ans:= transpose ev(g*jn);

--now correct the degrees:
map (E"{(rank target ans):1}, E"{(rank source ans):0},

ans));

The routinetateResolution takes & input a presentation matrix for the modiNg
the corresponding exterior algebis, and a low and igh degree.oDeg andhiDeg which
deternines the part of the Tate resolution to returrr. i the regularity of the moduléM,
the piece that is returned is

Tmax(r+2,hiDeg)(M) — ... (_TloDeg(M)'

We have nodified the code slightly fronbDecker and Eisenbu®001) by shifting the
cohomological degrees of the result, so thati$ the result, the_(-d) is T4(M).
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i43 : code tateResolution

043 = -- bgg.m2:21-32
tateResolution = (m,E,loDeg,hiDeg)->(

M := coker m;

reg := regularity M;

bnd := max(reg+l,hiDeg-1);

mt presentation truncate(bnd,M);

o symExt (mt,E) ;

--adjust degrees, since symExt forgets them

ofixed := map(E"{(rank target o):bnd+1},
E~{(rank source o):bnd},
0);

C := res(coker ofixed, LengthLimit=>max(1,bnd-loDeg+1));

C[bnd+11)
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