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Abstract

We present recent research of Eisenbud, Fløystad, Schreyer, and others, which was discovered
with the help of experimentation withMacaulay 2. In this invited, expository paper, we start by
considering the exterior algebra, and the computation of Gr¨obner bases. We then present, in an
elementary manner, the explicit form of the Bernstein–Gelfand–Gelfand relationship between graded
modules over the polynomial ring and complexes over the exterior algebra, that Eisenbud, Fløystad
and Schreyer found. We present two applications of these techniques: cohomology of sheaves, and
the construction of determinantal formulae for (powers of) Macaulay resultants. We show how to use
Macaulay 2to perform these computations. © 2003 Published by Elsevier Ltd.

1. Introduction

This invited talk at ISSAC 2002 has three goals. We wish to present some exciting new
research of Eisenbud, Fløystad, Schreyer, and others, which was discovered with the help
of experimentation withMacaulay 2. In the process, we hope to convince the reader that
it is possible to compute with relatively abstract notions in algebraic geometry, and finally,
we show how these computations can be performed usingMacaulay 2.

Macaulay 2 is computer software for algebraic geometry, commutative algebra and
related fields. Grayson and I have been working onMacaulay 2since we started the project
in 1993.Macaulay 2is freely available (Grayson and Stillman, 1993–2003).

This paper is an introduction to the work of Eisenbud, Fløystad, and Schreyer. More
details and proofs can be found in the papers (Eisenbud et al., 2001; Eisenbud and Schreyer,
2001; Decker and Eisenbud, 2001) and in the book (Eisenbud, 2003). In particular,
they prove considerably more than we explain here. What we do instead is explain
their constructions and apply them to examples. We present two applications of these
techniques: cohomology of sheaves, and the construction of determinantal formulae for
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(powers of) Macaulay resultants. We culminate with finding an explicit skew symmetric
8 × 8 matrix whose pfaffian (square root of the determinant) is the Macaulay resultant
of three ternary quadratic forms. This is one ofthe new determinantal-like formulae that
Eisenbud and Schreyer found inEisenbud and Schreyer(2001).

2. The exterior algebra

Fix a field k. The exterior algebraE on n letterse1, . . . ,en is defined to be the free
associativek-algebra one1, . . . ,en, modulo the relations

e2
1 = · · · = e2

n = 0,

and

ei ej = −ej ei ,

for all i and j . There isno truly standard notation for this algebra. We will denote
this exterior algebra byE = k〈e1, . . . ,en〉. A k-basis forE consists of all square-free
monomials, so has dimension 2n as a vector space overk.

Since multiplication is almost commutative, Gr¨obner bases and Buchberger’s algorithm
both extend, with simple modifications, to ideals inE, as well as to modules overE. (We
always consider right-ideals and right modules.) The only difference is that the notion of
“S-pair” must be modified. An example should make it clear.

Example 1. Let E = Q〈a,b, c,d〉 be the exterior algebra on lettersa, . . . ,d. Let I be the
ideal generated byF = ac− bd andG = bc− ad.

Over the usual polynomial ring, the Buchberger algorithm works by selecting pairs
of polynomials, cancelling their lead terms by taking a linear combination of the two
polynomials, and computing its remainder.

We start to compute a Gr¨obner basis by considering the pair(F,G). The combination
that cancels lead terms is

bF + aG = b(ac− bd)+ a(bc− ad) = 0.

The one difference, other than arithmetic, is that we may uncover new lead terms by
multiplying a polynomial such asF by any variable which occurs in its lead term. Thus,

aF = a(ac− bd) = −abd

and

cF = c(ac− bd) = bcd.

H = abd is not divisible by the lead terms ofF or G, and so we add it to the Gr¨obner
basis. The elementbcddoes reduce to zero, by subtractingdG.

All other “S-pairs” on each ofF , G andH reduce to zero, and so{F,G, H } is a Gröbner
basis ofI .

By using this straightforward extension of Buchberger’s algorithm, we can compute
Gröbner bases. As with polynomial rings, if we extend the algorithm to modules, and keep
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track ofhow Gröbner basis elements are expressed in terms of the original generators, we
can also computesyzygies, i.e. kernels ofr × s matrices

φ : Es Er .

For example, let’s compute withthe above idealI usingMacaulay 2.

i1 : E = QQ[a..d, SkewCommutative=>true];

Multiplication is as defined above.

i2 : c*b

o2 = -b*c

o2 : E

i3 : b^2

o3 = 0

o3 : E

i4 : I = ideal(a*c-b*d, b*c-a*d)

o4 = ideal (a*c - b*d, b*c - a*d)

o4 : Ideal of E

i5 : transpose gens gb I

o5 = {-2} | bc-ad |
{-2} | ac-bd |
{-3} | abd |

3 1
o5 : Matrix E <--- E

i6 : m = generators I

o6 = | ac-bd bc-ad |

1 2
o6 : Matrix E <--- E

i7 : m1 = syz m

o7 = {2} | c -d a b 0 |
{2} | -d c b a bd |

2 5
o7 : Matrix E <--- E
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We can compute the kernel of this map.

i8 : syz m1

o8 = {3} | c -d 0 0 a b 0 0 0 0 |
{3} | -d c 0 0 b a 0 0 0 bd |
{3} | 0 0 a b c -d 0 0 0 0 |
{3} | 0 0 b a -d c 0 0 bd 0 |
{4} | 0 0 0 0 0 0 d b -a -c |

5 10
o8 : Matrix E <--- E

Theresolution routine iterates this process as far as we want, to compute a (minimal)
free resolution for some number of steps.

i9 : resolution(cokernel m, LengthLimit=>7)

1 2 5 10 18 30 47 70
o9 = E <-- E <-- E <-- E <-- E <-- E <-- E <-- E

0 1 2 3 4 5 6 7

o9 : ChainComplex

There are two major differences between computing over the usual polynomial ring
(the symmetric algebra) and the exterior algebra: first, Gr¨obner bases and syzygies are
mucheasier to compute over the exterior algebra. This is in large part due to the small
number of monomials in the exterior algebra. Second, Hilbert proved in 1890 that minimal
free resolutions over the polynomial ring are always finite. Over the exterior algebra, free
resolutions are almost never finite. However, because of the small number of monomials
in E, finite parts of these resolutions can often be found quickly.

3. The link between the exterior algebra and the symmetric algebra

Let S = k[x1, . . . xn], and letE = k〈e1, . . . ,en〉 be the corresponding exterior algebra.
Let

M = Md,

be a gradedS-module, where each degreed pieceMd is a finite dimensional vector space
overk. Once and for all, choose a basis of each vector spaceMd. If m ∈ Md, denote by[m]
its representation in this basis. Throughout this section, we setmd := dim Md, for all d.

The whole theory rests on the following particular method for encoding the data of
multiplication by linear forms fromMd to Md+1.

Definition 2 (Bernstein–Gelfand–Gelfand Maps). For a givend, define thed th BGG
map

φd : Emd Emd+1
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of M by

[m] �→
n∑

i=1

ei [xi m].

We could do everything without coordinates, and then this would be the adjoint map
to the multiplication map. Given a vector spaceV of dimensionn, defineW = V∗ to be
the dual vector space, and then setS = S∗V and E = Λ∗W to be the symmetric and
exterior algebras respectively. IfV is the span ofx1, . . . , xn, then this is exactly what we
have considered already. The multiplication map isV ⊗k Md Md+1. The adjoint is
Md V∗ ⊗k Md+1. Considering the elements ofV∗ = W as linear elements ofE, the
adjoint gives a matrix of linear formsφd defined by the above formula.

Example 3. As a simple example, considerS = k[x1, x2] and the corresponding exterior
algebraE = k〈e1,e2〉. Let

M = S/(x2
1, x

3
2) = M0 ⊕ M1 ⊕ M2 ⊕ M3,

whereM0 = k, M1 = k2, M2 = k2, and M3 = k. We choose monomials as the basis
elements of these vector spaces. The basis ofM0 is {[1]}, thebasis ofM1 is {[x1], [x2]},
the basis ofM2 is {[x1x2], [x2

2]} and the basis ofM3 is {[x1x2
2]}.

Settingd = 1 for example,φ1 : E2 E2 is defined by

[x1] �→ e1[x2
1] + e2[x1x2],

and

[x2] �→ e1[x1x2] + e2[x2
2].

Since[x2
1] = 0,φ1 =

(
e2 e1

0 e2

)
.

Computingφ0 andφ2, weobtain a sequence

Note that this is a complex: applying two maps in a row gives zero.

In the general case, if we apply the construction for eachd to a gradedS-moduleM, we
get a (possibly infinite) sequence of maps:

There are two basic facts about this sequence.

• This is acomplex, i.e.φi+1φi = 0 for all i . This is a simple exercise, using the fact
that multiplication inS is commutative.

• This complex is eventually exact, i.e. fori 	 0, ker(φi+1) = im(di ). This theorem is
proved inEisenbud et al.(2001). They alsoshow that if the Castelnuovo–Mumford
regularity ofM is r , then this sequence is exact after ther th step.
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The cohomology of this sequence would be interesting to investigate, but for now, we
take a tail of this complex which is exact:

The crucial link is the following exact sequence.

Definition 4. The Tate resolution T(M) of M is the exact complex (possibly infinite in
both directions)

obtained by computing afree resolutionof ker(φr ), wherer is chosen large enough so that
the tail of the complex is exact, andψi = φi , for i ≥ r .

In the example above, the Tate resolution is the zero complex, since the complex is
eventually zero.

Eisenbud, Fløystad, and Schreyer prove that the Tate resolution is independent (in a
suitable sense) of the truncation locationr , as long as it is chosen so that the tail is exact.
This implies that ifM≥e := d≥eMd is theeth truncation ofM, thenT(M) = T(M≥e).

This is reminiscent of a property of sheaveson projective space. So, before continuing,
let us brush up on sheaves.

3.1. An aside: a crash course on implementing coherent sheaves onPn−1

Serre’s famous FAC paper (Serre, 1955) introduced sheaves to algebraic geometry.
What is perhaps less well known is that he describes (in essence) how to represent
sheaves on projective space as modules, and how to compute their cohomology. In
this sense, his paper is perhaps the first paper in computational abstract algebraic
geometry.

A gradedS-moduleM determines in a canonical manner a coherent sheafM̃ on Pn−1,
and all coherent sheaves onPn−1 arise in this manner. Unfortunately, the correspondence is
not one to one. For example, ifM≥e is theeth truncation of the moduleM, thenM̃ = M̃≥e.
In fact, two coherent sheaves̃M and Ñ are isomorphic if and only if there is an integere
suchthatM≥e � N≥e.

If X ⊂ Pn−1 is a projective variety defined by an idealI X ⊂ S, thenOX := S̃/I X is
called the sheaf of regular functions onX.

Another important construction is the twist of a sheaf. Ife is an integer, theñM(e) :=
M̃(e), whereM(e) is the same module asM, but with a shift in the grading:M(e)d :=
Me+d.

Cohomology of sheaves can be computed using the representation of the sheaf as a
gradedS-module. We will not describe these algorithms here (see Eisenbud’s chapter in
Vasconcelos, 1998). Instead, we useMacaulay 2 to compute some of the cohomology
groups of the sheavesOC(d), whereC ⊂ P3 is the twisted cubic curve. Note that
hi (M̃) := dimk H i (M̃) is the notation often used for the dimensions of the cohomology
groups (and are alsok vector spaces).
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Example 5. The twisted cubic curve is the image of the map

P1 P3

which sends

(s, t) �→ (W, X,Y, Z) = (s3, s2t, st2, t3).

The idealIC of the image is generated by{X2 − WY,Y2 − X Z,W Z − XY}.
i10 : S = QQ[W,X,Y,Z];

i11 : IC = ideal(X^2-W*Y, Y^2-X*Z, W*Z-X*Y);

o11 : Ideal of S

i12 : C = variety IC

o12 = C

o12 : ProjectiveVariety

i13 : (HH^0(OO_C), HH^0(OO_C(1)), HH^1(OO_C(-5)))

1 4 14
o13 = (QQ , QQ , QQ )

o13 : Sequence

So h0(OC) = 1,h0(OC(1)) = 4, andh1(OC(−5)) = 14. Here are more cohomology
groups:

i14 : apply(-3..4, i -> HH^0(OO_C(i)))

1 4 7 10 13
o14 = (0, 0, 0, QQ , QQ , QQ , QQ , QQ )

o14 : Sequence

i15 : apply(-6..4, i -> HH^1(OO_C(i)))

17 14 11 8 5 2
o15 = (QQ , QQ , QQ , QQ , QQ , QQ , 0, 0, 0, 0, 0)

o15 : Sequence

3.2. Tate resolutions and cohomology of coherent sheaves

What have we done so far? We start with a gradedS-moduleM, or its associated sheaf
M̃ and obtain an exact complexT(M) of free E-modules, which is eventually linear. This
is cute, and pretty, but so what? What good is it? Well, it turns out to be amazingly useful.
We will see two completely different applications below. In addition, there are several other
applications that we do not have the time or space to describe (seeEisenbud et al., 2001;
Eisenbud and Schreyer, 2001; Decker and Eisenbud, 2001).
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Let us compute the Tate resolution of the twisted cubic curve in projective 3-space.
We’ll useMacaulay 2to do the computations for us.

i16 : load "bgg.m2"; -- described in the appendix

i17 : E = QQ[w,x,y,z, SkewCommutative => true];

i18 : M = cokernel generators IC;

M is the homogeneous coordinate ring of the twisted cubic curve. The degree one and two
parts have bases consisting of the following sets of monomials.

i19 : basis(1,M)

o19 = | W X Y Z |

o19 : Matrix

i20 : basis(2,M)

o20 = | W2 WX WY WZ XZ YZ Z2 |

o20 : Matrix

The routinebgg computes the mapφd defined above.

i21 : phi1 = bgg(1,M,E)

o21 = {-2} | w 0 0 0 |
{-2} | x w 0 0 |
{-2} | y x w 0 |
{-2} | z y x w |
{-2} | 0 z y x |
{-2} | 0 0 z y |
{-2} | 0 0 0 z |

7 4
o21 : Matrix E <--- E

i22 : phi2 = bgg(2,M,E)

o22 = {-3} | w 0 0 0 0 0 0 |
{-3} | x w 0 0 0 0 0 |
{-3} | y x w 0 0 0 0 |
{-3} | z y x w 0 0 0 |
{-3} | 0 z y x w 0 0 |
{-3} | 0 0 z y x w 0 |
{-3} | 0 0 0 z y x w |
{-3} | 0 0 0 0 z y x |
{-3} | 0 0 0 0 0 z y |
{-3} | 0 0 0 0 0 0 z |

10 7
o22 : Matrix E <--- E

i23 : phi2 * phi1
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o23 = 0

10 4
o23 : Matrix E <--- E

Here is aMacaulay 2routine for computing (a part of) the Tate resolution. The routine first
truncatesM at the regularity ofM, callsbgg, and thencomputes several steps of a free
resolution. Notice that the second matrix from the left isφ2 : E7 E10 (up to change
of basis).

i24 : Ta = tateResolution(presentation M,E,-3,4)

13 10 7 4 3 5 8 11
o24 = E <-- E <-- E <-- E <-- E <-- E <-- E <-- E

-4 -3 -2 -1 0 1 2 3

o24 : ChainComplex

Caution! Macaulay 2displays maps from right to left, so the eventually linear part here is
the leftmost displayedpart of the Tate resolution. For example,ψ−1 : E5 E3 is

i25 : Ta.dd_1

o25 = {0} | 0 0 -wz wy wx |
{1} | z y x -w 0 |
{1} | 0 z y -x -w |

3 5
o25 : Matrix E <--- E

The graded pieces of each module are displayed using thebetti command.

i26 : betti Ta

o26 = total: 13 10 7 4 3 5 8 11
0: 13 10 7 4 1 . . .
1: . . . . 2 5 8 11

The entry in rowd: and columnc (where the first column displayed isc = −4) is the
number of generators of degreed + c in thecth free module, where each variable in the
exterior algebra has degree 1. For example,ψ−1, as amap of graded free modules, has the
form ψ−1 : E(−2)5 E(−1)2 ⊕ E, whereE(−d) is the graded free module of rank
one, having its generator in degreed.

Wait! These numbers in the betti diagram are the same numbers we encountered
when computing the cohomology ofOC and its twists. Eisenbud, Fløystad, and Schreyer
observed this, and then were able to prove ingeneral that the graded pieces of the Tate
resolution T(M) are exactly the cohomology modules of̃M and its twists. In terms of this
betti diagram, the statement is:
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Theorem 6 (Eisenbud et al., 2001). Let M be a graded S= k[x1, . . . , xn] module. LetM̃
be the corresponding sheaf. Then: the betti diagram of the Tate resolution of M has the
form

· · · h0(M̃(1)) h0(M̃) h0(M̃(−1)) · · ·
· · · h1(M̃) h1(M̃(−1)) h1(M̃(−2)) · · ·

...
...

· · · hn−1(M̃(−n + 2)) hn−1(M̃(−n + 1)) hn−1(M̃(−n)) · · ·

4. Resultants, Chow forms, and the Tate resolution

There has been a great deal of interest in finding determinantal formulae for multivariate
resultants (theMacaulayresultant), and for sparse resultants. For one such result from these
proceedings, with pointers to the literature for others, seeKhetan(2002).

Khetan(2002) discovered that their exterior algebra methods can be used to construct
determinantal formulae for some of these resultants. In this section, we present a part of
this work, leading up to an explicit Bezout formula for the Macaulay resultant of three
quadratic forms in three variables.

Macaulay resultants are the Chow forms of Veronese varieties, and Eisenbud and
Schreyer find formulae for Chow forms. Thus, our story starts with Chow forms.

4.1. The Chow divisor and Chow form of V

Let X ⊂ Pn−1 be a projective variety of dimensiond. Let G be the set of all
codimensiond + 1 planesL in Pn−1. This is a Grassmann variety, and has dimension
(d + 1)(n − d − 1).

TheChow divisor DX of X is

DX = {L ∈ G | X ∩ L �= ∅}.
It is an exercise in dimension theory to show thatDX has codimension one inG.

An elementL of G is represented by a(d + 1) × n matrix M such that if Hi =
Mi1x1 + · · · + Min xn, then L = (H1 = 0) ∩ · · · ∩ (Hd+1 = 0). The Chowdivisor
DX is definedby a single equationChX (theChow form) in the indeterminatesMij . This
polynomial may also be expressed as a polynomial in the Pl¨ucker coordinates

[i1, . . . , i d+1] = det




M1,i1 M1,i2 . . . M1,id+1

... . . .
...

Md+1,i1 Md+1,i2 . . . Md+1,id+1


 .

The degree of the polynomial in the Pl¨ucker coordinates is the degree ofX.
Let us now specialize to the Veronese surfaceV ⊂ P5. This surface is the image of the

map

P2 P5
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given by

(r, s, t) �→ (A, B,C, D, E, F) = (r 2, rs, r t , s2, st, t2).

The varietyV has dimension 2 and degree 4.
What is the Chow formChV of the Veronese surface? In this situation,G is the

Grassmannian of codimension 3 subspaces ofP5. Each elementL ∈ G is determined
by a 3× 6 matrix

M =

 a1 . . . a6

b1 . . . b6

c1 . . . c6




where if

Ha = a1x1 + · · · + a6x6,

Hb = b1x1 + · · · + b6x6,

Hc = c1x1 + · · · + c6x6,

thenL = (Ha = 0) ∩ (Hb = 0) ∩ (Hc = 0). The Plücker coordinates are

[i , j , k] := det


 ai aj ak

bi bj bk

ci cj ck


 .

ChV is apolynomial in the 18 variablesa, b, c. ChV can also be expressed in terms of the
Plücker coordinates. Since the degree of the Veronese surface is four, general theory tells
us thatChV is apolynomial of degree four in the Pl¨ucker coordinates (and so of degree 12
in thea, b, c variables).

Let

Fa = a1r
2 + a2rs + a3r t + a4s2 + a5st + a6t2

Fb = b1r
2 + b2rs + b3r t + b4s2 + b5st + b6t2

Fc = c1r
2 + c2rs + c3r t + c4s2 + c5st + c6t2.

We now identify the Chow form ofV .

ChV (a,b, c) = 0

V ∩ (Ha = 0) ∩ (Hb = 0) ∩ (Hc = 0) �= ∅
Fa(r, s, t) = Fb(r, s, t) = Fc(r, s, t) = 0 for some(r, s, t) ∈ P2

Res2,2,2(Fa, Fb, Fc) = 0.

Therefore (since both are irreducible polynomials)

ChV (a,b, c) = Res2,2,2(Fa, Fb, Fc)

is the Macaulay resultant of three ternary quadratic forms.
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The goal is to find determinantal formulae for resultants such as this. Here is one
example, which appears in the list inGelfand et al.(1994). The Chow formChV is the
determinant of the 6× 6 matrix



a1 b1 c1 [1,2,6] 0 [1,2,3]
a2 b2 c2 [1,4,6] [1,4,5] [1,2,5] − [1,3,4]
a3 b3 c3 [1,5,6] − [2,3,6] [1,4,6] [1,2,6]
a4 b4 c4 0 [2,4,5] [1,4,5]
a5 b5 c5 [3,4,6] [3,4,5] + [2,4,6] [1,4,6]
a6 b6 c6 [3,5,6] [3,4,6] 0



.

If we use a Laplace expansion with the first three columns, we see that the determinant is
a polynomial of degree 4 in the cubics[i , j , k].

Question: Can the polynomialChV be expressed as the determinant of a 4× 4 matrix
whose entries are linear in the Pl¨ucker coordinates[i , j , k]? Or, if not, is thereany nice
formula involving only the[i , j , k]’s? In fact, there is no such 4× 4 determinant, but
Eisenbud and Schreyer construct an 8× 8 skew symmetric matrix whose pfaffian is
ChV = Res2,2,2. In the restof this section, we describe their construction, and at the
end we obtain the 8× 8 matrix explicitly.

4.2. The Eisenbud–Schreyer construction

For thegeneral construction, seeEisenbud and Schreyer(2001). Here we present an
important special case, which works for the Veronese and many other cases.

Start with a varietyX ⊂ Pn−1. Let M be a gradedS = k[x1, . . . , xn] module, which is
supported onX (i.e. I X ⊂ ann(M)). Assume that the sheaf associated toM is locally free
on X of rankr . There is anadditional assumption onM (M is “Ulrich”) for the formula
below to work as nicely as it does, but we will not get into that here. SeeEisenbud and
Schreyer(2001) for the specific condition.

From this moduleM, find the Tate resolution ofM. In thecase whenM is suitably nice,
i.e. is “Ulrich”, the resolution has the form

The entries of all of the matrices exceptψ are linear ine1, . . . ,en, and the non-zero entries
of the matrixψ all have degreed+1. The final step of the construction is to create theα×α
matrix U(ψ) whose entries are obtained from those ofψ by settingT(ei ej ek) = [i , j , k],
and extending viak-linearity. For example,T(e1e2e3 + e1e2e4) = [1,2,3] + [1,2,4].
Theorem 7. If M̃ is locally free on X of rank r , and M is “Ulrich”, then

detU(ψ) = (ChX)
r .

In particular, if M̃ is a line bundle (r = 1), then the construction provides a
determinantal formula forChX.
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To summarize,

Construction 8 (A Power of the Chow Form).
input: An S-moduleM, such that the sheaf̃M is locally free of rankr on

a variety X ⊂ Pn−1, andM is “Ulrich”.
output: A square matrix U(ψ) whose entries are linear forms in the Pl¨ucker

coordinates, such that(ChX)
r = detU(ψ).

begin
Compute the matrixψ = ψ−1 in the Tate resolution.
if the matrixψ is not square or has entries not of degreed + 1

then error M is not Ulrich.
ReturnU(ψ).

end.

In practice, such an Ulrich moduleM may not exist, or at least might be difficult to find.
Eisenbud and Schreyer(2001) give criteria for when such a module exists, and how to find
one. In particular, with their construction they can reproduce all of the known determinantal
formulae (at least the ones that appear inGelfand et al., 1994for Macaulay resultants).

4.3. The resultant Res2,2,2(Fa, Fb, Fc)

In our example of the Veronese surfaceV ⊂ P5, we chooseM = T V to be a graded
S-module which corresponds to the (rank two) tangent bundle ofV . In this case, the module
M is “Ulrich”. When we apply the above construction, we obtain an 8× 8 skew symmetric
matrix whose determinant is the square ofChV = Res2,2,2(Fa, Fb, Fc). Recall that the
determinant of a skew symmetric matrix (even a matrix of polynomials) is a square. Its
square root is called thepfaffian of the matrix. Therefore the resultantRes2,2,2 is the
pfaffian of an 8× 8 matrix of linear forms in the Pl¨ucker coordinates[i , j , k]. We will
construct this matrix usingMacaulay 2.

i27 : S3= QQ[r,s,t];

We use the variablesA, . . . , F , and a, . . . , f instead ofxi and ei , to improve the

readability of theMacaulay 2output.
i28 : S6 = QQ[A..F,Degrees=>{2,2,2,2,2,2}];

i29 : E6 = QQ[symbol a..symbol f,SkewCommutative=>true]

o29 = E6

o29 : PolynomialRing

i30 : FV = map(S3,S6,{r^2, r*s, r*t, s^2, s*t, t^2})

2 2 2
o30 = map(S3,S6,{r , r*s, r*t, s , s*t, t })

o30 : RingMap S3 <--- S6

The following three lines ofMacaulay 2code is one way to computeTV, a module in
S6 corresponding to the tangent sheaf ofV . This method starts with the tangent bundle
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of P2, truncates it so that all of the generators are in degree zero, and pushes it forward to
a bundle on the imageV .

i31 : TP2 = coker transpose vars S3

o31 = cokernel {-1} | r |
{-1} | s |
{-1} | t |

3
o31 : S3-module, quotient of S3

i32 : M0 = prune truncate(0, TP2)

o32 = cokernel | 0 0 s 0 0 0 0 r t |
| 0 0 -t 0 r t 0 0 0 |
| 0 0 0 0 -s 0 0 -t 0 |
| 0 s 0 0 0 0 r 0 0 |
| 0 -t 0 r 0 s 0 0 t |
| 0 0 0 -s 0 0 -t 0 0 |
| s 0 0 0 0 0 0 0 r |
| -t 0 0 0 0 r 0 0 0 |

8
o32 : S3-module, quotient of S3

i33 : TV = prune coker pushForward1(FV,M0)

o33 = cokernel | -F 0 0 -E 0 0 C 0 0 0 0 0 B 0 0 0 0 0 A 0 0 · · ·
| E 0 0 D 0 0 0 C 0 0 0 0 0 B 0 0 0 0 0 A 0 · · ·
| 0 0 0 0 0 0 0 0 -E -F 0 0 0 0 -D -E 0 0 D E -B · · ·
| 0 -F 0 0 -E 0 E F C 0 0 0 D E B 0 0 0 0 0 A · · ·
| 0 E 0 0 D 0 0 0 0 C 0 0 0 0 0 B 0 0 0 0 0 · · ·
| 0 0 0 0 0 0 0 0 0 0 -E -F 0 0 0 0 -D -E E F 0 · · ·
| 0 0 -F 0 0 -E F 0 0 0 C 0 E F 0 0 B 0 0 0 0 · · ·
| 0 0 E 0 0 D 0 F 0 0 0 C 0 0 0 0 0 B 0 0 0 · · ·

8
o33 : S6-module, quotient of S6

The degreesof the ring S6 were chosen so thatFV would be homogeneous. We must adjust
the degrees of the ring to be all of degree1, before computing the Tate resolution.

i34 : R6 = QQ[A..F];

i35 : TV = coker substitute(presentation TV, R6);

i36 : Ta = tateResolution(presentation TV,E6,-3,4)

120 80 48 24 8 8 24 48
o36 = E6 <-- E6 <-- E6 <-- E6 <-- E6 <-- E6 <-- E6 <-- E6

-4 -3 -2 -1 0 1 2 3

o36 : ChainComplex

i37 : betti Ta
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o37 = total: 120 80 48 24 8 8 24 48
0: 120 80 48 24 8 . . .
1: . . . . . . . .
2: . . . . . 8 24 48

i38 : Ta.dd_1

o38 = | -aef -acf -adf -ace -ace+abf 0 -acd abc |
| -bef -bcf -bdf -bce+adf -bce+adf abf -bcd+ade -acd+abe |
| -cef 0 -cdf aef -bcf+aef acf adf abf |
| adf abf ade abe acd abc abd 0 |
| bdf adf bde ade bcd -acd 0 -abd |
| cdf -bcf+aef cde -bce+adf 0 -ace+abf -bcd -acd |
| -def cdf 0 cde+bdf cde adf bde ade |
| 0 cef def cdf+bef cdf aef bdf adf |

8 8
o38 : Matrix E6 <--- E6

This is the mapψ−1. This matrix is almost the desired 8× 8 skew symmetric matrix,
except for one problem: it is not skew symmetric! This is because of the choices made
by Macaulay 2 in computing the resolution. Byrow and column operations overk, it
is straightforward to produce the desired skew-symmetric matrix. The following lines of
Macaulay 2code perform these row and column operations.

i39 : load "sparsemat.m2";

i40 : (m = sparseMutableMatrix Ta.dd_1;
rflip(m,0,7);rflip(m,1,2);rflip(m,6,2);cflip(m,3,6);
rflip(m,3,4);rscale(m,-1_E6,3);cflip(m,4,5);rflip(m,7,4);
cflip(m,5,7);rflip(m,7,5);rscale(m,-1_E6,5);caxy(m,-1_E6,7,6);
rscale(m,-1_E6,7);
matrix m)

o40 = | 0 cef def bdf aef adf bef cdf |
| -cef 0 -cdf adf acf abf bcf -bcf+aef |
| -def cdf 0 bde adf ade bdf cde |
| -bdf -adf -bde 0 acd abd bcd-ade -bcd |
| -aef -acf -adf -acd 0 abc -abf -ace+abf |
| -adf -abf -ade -abd -abc 0 acd-abe -acd |
| -bef -bcf -bdf -bcd+ade abf -acd+abe 0 -bce+adf |
| -cdf bcf-aef -cde bcd ace-abf acd bce-adf 0 |

8 8

o40 : Matrix E6 <--- E6

Theorem 9 (Eisenbud and Schreyer, 2001). The Macaulay resultant

Res2,2,2(Fa, Fb, Fc)

is the pfaffian of the8× 8 matrixU(m) where m is the skew symmetric8× 8 matrix in the
Macaulay 2 code above.
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Appendix A. Macaulay 2 code used in this paper

The code that we use here appeared inDecker and Eisenbud(2001). They also include
Macaulay 2 code to compute the Beilinson monad, which is another interesting and
important application of these exterior algebra techniques. All of these make up the file
“bgg.m2”.

The routinebgg computes the matrixφi corresponding to multiplication fromMi to
Mi+1. The “BGG” stands for Bernstein–Gelfand–Gelfand.

i41 : code bgg

o41 = -- bgg.m2:10-20
bgg = (i,M,E) ->(

S :=ring(M);
numvarsE := rank source vars E;
ev:=map(E,S,vars E);
f0:=basis(i,M);
f1:=basis(i+1,M);
g :=((vars S)**f0)//f1;
b:=(ev g)*((transpose vars E)**(ev source f0));
--correct the degrees (which are otherwise
--wrong in the transpose)

map(E^{(rank target b):i+1},E^{(rank source b):i}, b));

The routinesymExt is a subroutine oftateResolution. The input is a presentation
matrix for the moduleM above, and it is a method to obtainbgg(coker m, 0, E) with
less computation.

i42 : code symExt

o42 = -- bgg.m2:1-9
symExt = (m,E) ->(

ev := map(E,ring m,vars E);
mt := transpose jacobian m;
jn := gens kernel mt;
q := vars(ring m)**id_(target m);
ans:= transpose ev(q*jn);
--now correct the degrees:
map(E^{(rank target ans):1}, E^{(rank source ans):0},

ans));

The routinetateResolution takes as input a presentation matrix for the moduleM,
the corresponding exterior algebraE, and a low and high degreeloDeg andhiDeg which
determines the part of the Tate resolution to return. Ifr is the regularity of the moduleM,
the piece that is returned is

Tmax(r+2,hiDeg)(M) · · · TloDeg(M).

We have modified the code slightly fromDecker and Eisenbud(2001) by shifting the
cohomological degrees of the result, so that ifT is the result, thenT (-d) is Td(M).
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i43 : code tateResolution

o43 = -- bgg.m2:21-32
tateResolution = (m,E,loDeg,hiDeg)->(

M := coker m;
reg := regularity M;
bnd := max(reg+1,hiDeg-1);
mt := presentation truncate(bnd,M);
o := symExt(mt,E);
--adjust degrees, since symExt forgets them
ofixed := map(E^{(rank target o):bnd+1},

E^{(rank source o):bnd},
o);

C := res(coker ofixed, LengthLimit=>max(1,bnd-loDeg+1));

C[bnd+1])

References

Decker, W., Eisenbud, D., 2001. Sheaf algorithms using the exterior algebra. In: Eisenbud, D.,
Grayson, D.R., Stillman, M.E., Sturmfels, B. (Eds.), Computations in Algebraic Geometry with
Macaulay 2. Algorithms and Computations inMathematics, vol. 8. Springer-Verlag, Berlin, New
York, pp. 131–178. ISBN 3-540-42230-7.

Eisenbud, D., 2003. Geometry of Syzygies. Graduate Texts in Mathematics. Springer-
Verlag(in preparation).

Eisenbud, D., Fløystad, G., Schreyer, F.-O., 2001. Sheaf Cohomology and Free Resolutions over
Exterior Algebras. Available fromhttp://www.arxiv.org/abs/math.AG/0104203/.

Eisenbud, D., Schreyer, F.-O., 2001. Resultants and Chow Forms Via Exterior Syzygies. Available
from http://www.arxiv.org/abs/math.AG/0111040/.

Gelfand, I.M., Kapranov, M., Zelevinsky, A., 1994.Discriminants, Resultants, and Multidimensional
Determinants. Birkh¨auser, Boston.

Grayson, D.R., Stillman, M.E., 1993–2003. Macaulay 2, A Software System for Research in
Algebraic Geometry. Available fromhttp://www.math.uiuc.edu/Macaulay2/.

Khetan, A., 2002. The Resultant of an Unmixed Bivariate System. Available from
http://www.arxiv.org/abs/math.AG/0209115/.

Serre, J.P., 1955. Faisceaux alg´ebriques coh´erents. Ann. Math. 61, 197–278.
Vasconcelos, W., 1998. Computational Methods in Commutative Algebra and Algebraic Geometry.

Algorithms and Computations in Mathematics, vol. 2. Springer-Verlag, Berlin, New York.

http://www.arxiv.org/abs/math.AG/0104203/
http://www.arxiv.org/abs/math.AG/0111040/
http:// www.math.uiuc.edu/Macaulay2/
http://www.arxiv.org/abs/math.AG/0209115/

	Computing in algebraic geometry and commutative algebra using Macaulay 2
	Introduction
	The exterior algebra
	The link between the exterior algebra and the symmetric algebra
	An aside: a crash course on implementing coherent sheaves on  Pn-1
	Tate resolutions and cohomology of coherent sheaves

	Resultants, Chow forms, and the Tate resolution
	The Chow divisor and Chow form of V
	The Eisenbud--Schreyer construction
	The resultant Res2,2,2(Fa,Fb,Fc)

	Acknowledgement
	Macaulay 2 code used in this paper
	References


