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Poly(ADP-ribose)polymerase (PARP) inhibitors prevent or alleviate diabetic nephropathy. This study
evaluated the role for PARP-1 in diabetic kidney disease using the PARP-1-deficient mouse. PARP-1—/— and
the wild-type (129S1/Svim]) mice were made diabetic with streptozotocin, and were maintained for
12 weeks. Final blood glucose concentrations were increased ~3.7-fold in both diabetic groups. PARP-1
protein expression (Western blot analysis) in the renal cortex was similar in non-diabetic and diabetic wild-
type mice (100% and 107%) whereas all knockouts were PARP-1-negative. PARP-1 gene deficiency reduced
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Albuminuria urinary albumin (ELISA) and protein excretion prevented diabetes-induced kidney hypertrophy, and
Collagen decreased mesangial expansion and collagen deposition (both assessed by histochemistry) as well as

fibronectin expression. Renal podocyte loss (immunohistochemistry) and nitrotyrosine and transforming
growth factor-f3; accumulations (both by ELISA) were slightly lower in diabetic PARP-1—/— mice, but the
differences with diabetic wild-type group did not achieve statistical significance. In conclusion, PARP-1—/—
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gene deficiency alleviates although does not completely prevent diabetic kidney disease.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Diabetic nephropathy is one of the most severe complications of
diabetes mellitus which develops in 30% to 40% of patients with both
Type 1 and Type 2 diabetes mellitus [1,2], and is responsible for at
least ~35% of all new cases of end-stage renal disease in the United
States [3]. Despite a significant breakthrough in prevention and
treatment of diabetic kidney disease in the last decade, due to
development of angiotensin-converting enzyme inhibitors and
angiotensin receptor blockers, there is still a vital need to discover
and target novel pathophysiologic pathways. Recent studies in animal
models identified NAD(P)H-oxidase [4], 12/15-lipoxygenase [5],
AMP-activated protein kinase [6], fatty acid imbalances [7], and a
number of other compelling drug targets for prevention and
treatment of diabetic nephropathy.

Poly(ADP-ribose) polymerase-1 (PARP-1) a highly conserved
protein of 116 kDa, catalyzes the cleavage of NAD™" into nicotinamide
and ADP-ribose [8]. PARP-1 belongs to an 18-member superfamily of
PARP enzymes synthesizing poly(ADP-ribose) polymer which cova-
lently attaches to acceptor proteins i.e., histones, DNA repair enzymes,
transcription factors and PARPs themselves [8,9]. PARP-1 has been
localized in cell nucleus [8] and mitochondria [10], whereas poly
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(ADP-ribosyl)ated proteins can also be found in other cell compart-
ments because poly(ADP-ribosyl)ation occurs during protein (e.g.,
glyceraldehyde 3-phosphate dehydrogenase [11]) trafficking through
the nucleus. PARP-1 activation is triggered by reactive oxygen and
nitrogen-induced DNA single-strand breakage [8,9,12,13], and by
several other factors [14,15], and affects multiple metabolic pathways,
transcriptional regulation, and gene expression [8,9,16]. The list of
PARP-1-regulated genes includes interleukin (IL)-6, IL-1p, intercellu-
lar adhesion molecule-1, vesicular adhesion molecule-1, c-myc, P- and
E-selectins, granulocyte-macrophage colony-stimulating factor, NF-
KB1, NF-kB2, c-rel, Ikk-or, Ikk-B, TIkk--y, Ikk-i, I-xBa, inducible nitric
oxide synthase, interferon regulatory factor 1, interferon-3, MIF, Gro-
1, IL-1q, IL-2, IL-4, IL-5, IL-10, IL-12A, IL-12B, IL-16, IL-17, IL-18, LT-f3,
transforming growth factor (TGF)-o, TGF-31, TGF-32, TGF-33, tumor
necrosis factor (TNF)-co, TNF-3, monocyte chemoattractant protein-1,
NIK, endothelin-1 and endothelin receptors [16,17]. PARP-1 activation
participates in apoptosis by stabilizing p53, by mediating the
translocation of apoptosis-inducing factor from mitochondria to the
nucleus, or by inhibiting early activation of DNases [8,9,18,19].
Evidence for the important role for PARP and, in particular, the
PARP-1 isoform, activations in many major diseases has been obtained
in experimental studies with PARP inhibitors and PARP-1-deficient
mice and clinical studies and trials (reviewed in [8-10,20-22]).
Recently, the PARP-1 isoform has been implicated in the pathogenesis
of diabetes mellitus [8,9,23] and diabetic complications including
endothelial dysfuncftion [24] and peripheral neuropathy [25,26]. The
present study evaluated the role for PARP-1 in diabetic kidney disease
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using the PARP-1-deficient mouse and the multiple-dose streptozo-
tocin model of diabetes.

2. Materials and methods
2.1. Reagents

Unless otherwise stated, all chemicals were of reagent-grade
quality, and were purchased from Sigma Chemical Co., St. Louis, MO.
Rabbit polyclonal anti-PARP-1 antibody was obtained from Enzo Life
Sciences International, Inc., Plymouth Meeting, PA. Mouse monoclonal
anti-poly(ADP-ribose) antibody was purchased from Trevigen, Inc.,
Gaithersburg, MD, rabbit polyclonal anti-Wilms tumor gene product-
1 (WT1) antibody from Santa Cruz Biotechnology, Inc., Santa Cruz, CA,
and mouse monoclonal anti-fibronectin antibody from BD Transduc-
tion Laboratories, Lexington, KY. Other reagents for immunohisto-
chemistry have been purchased from Vector Laboratories, Inc.,
Burlingame, CA.

2.2. Animals

The experiments were performed in accordance with regulations
specified by the National Institutes of Health “Principles of Laboratory
Animal Care, 1985 Revised Version” and Pennington Biomedical
Research Center Protocol for Animal Studies. Male PARP-1—/—
(129S-Parp1tm1Zqw/]) and the corresponding wild-type (129S1/
SvimJ) mice were fed a standard rat chow (PMI Nutrition Int.,
Brentwood, MO) and had access to water ad libitum. The multiple
low-dose streptozotocin (STZ)-diabetes was induced as described
[25]. Blood samples for glucose measurements were taken from the
tail vein ~48 h after the STZ injection and the day prior to the study
termination. All mice with blood glucose levels >13.8 mM were
considered diabetic. The duration of experiment was 12 weeks. At the
end of the study, mice were placed in individual metabolic cages (Lab
Products, Inc., Seaford, DE) and urine collected for 48 h. Urine
specimen were centrifuged at 12,000g (4 °C, 10 min) and frozen for
subsequent assessment of albumin by ELISA.

2.3. Anesthesia, euthanasia, and tissue sampling

The animals were sedated by CO,, and immediately sacrificed by
cervical dislocation. Kidneys were weighed. One kidney was imme-
diately frozen in liquid nitrogen for subsequent Western blot analyses
of PARP-1, poly(ADP-ribosyl)ated proteins, and fibronectin, and ELISA
measurements of transforming growth factor—p;(TGF-¢), and
nitrotyrosine (NT). The second kidney was fixed in normal buffered
4% formalin for further assessment of collagen deposition, podocyte
counts, and periodic acid-Schiff (PAS)-positive substance
accumulation.

2.4. Specific methods

2.4.1. Urinary albumin, protein, creatinine, and renal TGF-f3;, and NT
Urinary albumin was assessed by ELISA (AssayMax mouse albumin
ELISA kit, Assaypro, St. Charles, MO). Urinary protein was measured
with the bicinchoninic acid protein assay (Pierce Biotechnology,
Rockford, IL). Urinary creatinine was measured spectrophotometri-
cally, using Creatinine Parameter assay kit (R&D Systems, Minneapo-
lis, MN). For measurements of TGF-p; and NT concentrations, renal
cortex samples were homogenized on ice in RIPA buffer (1:10 w/v)
containing 50 mM Tris-HCl, pH 7.2; 150 mM NaCl; 0.1% sodium
dodecyl sulfate; 1% NP-40; 5 mM EDTA; 1 mM EGTA; 1% sodium
deoxycholate and the protease/phosphatase inhibitors leupeptin
(10 pg/ml), aprotinin (20 pg/ml), benzamidine (10 mM), phenyl-
methylsulfonyl fluoride (1 mM), sodium orthovanadate (1 mM).
Homogenates were sonicated (3x5s) and centrifuged at 14,000g

(4 °C, 20 min). TGF-B; and NT concentrations were measured with the
Quantikine mouse/rat/porcine/canine TGF-3; kit (R&D Systems,
Minneapolis, MN) and the OxiSelect Nitrotyrosine ELISA kit (Cell
Biolabs, San Diego, CA). All the assays were performed in accordance
with the manufacturer's instructions. Protein was measured with the
bicinchoninic acid protein assay (Pierce Biotechnology, Rockford, IL).

2.4.2. Western blot analysis

Western blot analyses of PARP-1, poly(ADP-ribosyl)ated proteins,
and fibronectin were performed as described previously [27,28].
Protein bands were visualized with the Amersham ECL Western
blotting detection reagents and analysis system (GE Healthcare,
Buckinghampshire, UK). Membranes were then stripped and
reprobed with B-actin antibody to verify equal protein loading. All
poly(ADP-ribosyl)ated protein bands were used for calculations. The
data were quantified by densitometry (Quantity One 4.5.0 software,
Bio-Rad Laboratories, Richmond, CA), and the density of non-specific
bands (obtained without primary antibody) subtracted from the
results.

2.4.3. Immunohistochemical studies

All renal sections were processed by a single investigator and
evaluated blindly. Collagen and PAS-positive substance stainings were
performed by conventional histochemical methods. At least, ten fields
of each section (~50 glomeruli) were examined to select one
representative image. Color intensity of renal sections stained for
PAS-positive substances was calculated using the Image] 1.43q
software (National Institutes of Health, Bethesda, MD). 25-40
glomeruli were evaluated in a blinded fashion for each animal. 4-pm
renal sections were stained for collagen with Masson's trichrome as
described [29], after which the percentage of areas positively stained
for collagen was quantified in 10 randomly taken microphotographs
of each section using the Threshold Colour plug-in of Image] 1.43q
program, and the average per mouse was calculated. Podocyte nuclei
were detected in 3-um sections with an anti-WT1 antibody and the
ABC staining kit, and visualized with the DAB detection kit (both kits
from Vector Laboratories Inc., Burlingame, CA). Podocyte numbers
were counted per glomerular section, and 20-25 glomeruli were
examined for each animal. Low power observations of renal sections
were made using a Olympus BX41 microscope. Color images were
captured with a MiniVID digital camera (LW Scientific, Inc, Law-
renceville, GA) at 1280 x 1024 resolution.

2.5. Statistical analysis

The results are expressed as Mean 4- SEM. Data were subjected to
equality of variance F test, and then to log transformation, if necessary,
before one-way analysis of variance. Where overall significance
(p<0.05) was attained, individual between group comparisons were
made using the Student-Newman-Keuls multiple range test. Signif-
icance was defined at p<0.05. When between-group variance
differences could not be normalized by log transformation (datasets
for body weights and plasma glucose), the data were analyzed by the
nonparametric Kruskal-Wallis one-way analysis of variance, followed
by the Bonferroni/Dunn or Fisher's PLSD tests for multiple
comparisons.

3. Results
3.1. Effect of PARP-1 gene deficiency on body weights and glycemia

The initial (prior to STZ administration) body weights were
similar in both groups of wild-type mice as well as in both groups of
PARP-1—/— mice (Table 1). Weight gain was reduced in non-
diabetic and diabetic PARP-1—/— mice (19% and —16% vs. 29% and
6% in non-diabetic and diabetic wild-type mice, respectively). PARP-
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Table 1
Initial and final body weights and blood glucose concentrations in control and diabetic
wild-type and poly(ADP-ribose) polymerase-1-deficient mice.

Variable Body weight (g) Blood glucose (mmol/1)
Group Initial Final Initial Final
PARP-1+/+, C 242404 31.2+1.0 6.7+0.1 71403
PARP-14/4,D 243405 25.64+0.5" 14.6 +0.6** 26.240.9"
PARP-1—/—, C 299+1.0 355+20 6.6+£0.2 73+03
PARP-1—/—,D 306+1.1 258 +0.7" 13.84+0.6" 26.8 +£1.7**

Initial and final blood glucose concentrations were measured after confirmation of
diabetes (after 7-8 daily consecutive streptozotocin injections [33]) and at the 12-
week time point, respectively. Data are expressed as Means + SEM. n=10-15 per
group. C—control mice; D—diabetic mice; PARP-1—poly(ADP-ribose) polymerase-1.
**p<0.01 vs. corresponding non-diabetic groups.

1 gene deficiency did not affect the development of diabetes induced
by multiple low-dose STZ administration. Initial blood glucose
concentrations were 118% and 109% higher in diabetic wild-type
and diabetic PARP-1—/— mice, respectively, than in the non-
diabetic controls. The progression of diabetic hyperglycemia was
also similar in the two diabetic groups. Final blood glucose
concentrations were increased by 269% and by 267% in diabetic
wild-type and diabetic PARP-1—/— mice compared with the
corresponding controls. PARP-1 gene deficiency did not affect
glycemia in non-diabetic mice.

3.2. Effect of PARP-1 gene deficiency on renal cortex
poly(ADP-ribosyl)ation

PARP-1 expression in renal cortex was 7% higher in diabetic
wild-type mice, but the difference with the corresponding non-
diabetic group did not achieve statistical significance (p=0.20,
Fig. 1A and B). Poly(ADP-ribosyl)ated proteins were clearly
identifiable in all experimental groups (Fig. 2A and B). Renal cortex
poly(ADP-ribosyl)ation was increased in both diabetic wild-type
and diabetic PARP-1—/— mice, compared with the corresponding
controls (by 18% and by 14%, p<0.01 and<0.05, respectively). No
statistically significant differences in poly(ADP-ribosyl)ated protein
abundance were found between diabetic wild-type and diabetic
PARP-1—/— mice (p=0.133). Poly(ADP-ribosyl)ated protein level
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was 5% lower in non-diabetic PARP-1—/— mice than in the
corresponding wild-type mice, but the difference between the
two groups did not achieve statistical significance (p =0.41).

3.3. Effect of PARP-1 gene deficiency on water consumption, urination
volume, and urinary albumin, protein, and creatinine excretions

No statistically significant differences in either water consumption
or urination volumes were found between non-diabetic wild-type and
PARP-1—/— mice (Table 2). Diabetes was associated with 6.2-fold
and 40-fold increases in water consumption and urination volumes in
wild-type mice. Interestingly and surprisingly, despite similar levels
of hyperglycemia in diabetic wild-type and diabetic PARP-1—/—
mice, the latter displayed less dramatic elevation in both variables
(2.7-fold and 8.5-fold increases compared with the corresponding
non-diabetic group, p<0.01 for both comparisons). Urinary albumin,
protein, and creatinine excretions were increased 21-, 14-, and 12.5-
fold, and 13-, 7-, and 12-fold, respectively, in diabetic wild-type and
diabetic PARP-1—/— mice, compared with the corresponding non-
diabetic groups. Urinary albumin/creatinine and protein/creatinine
ratios were increased 1.78- and 3-fold in diabetic wild-type mice, and
1.33- and 1.38-fold in diabetic PARP-1—/— mice. The differences
between the two diabetic groups for all the variables, except
creatinine excretion, were of statistical significance (p<0.05). PARP-
1 gene deficiency did not affect urinary albumin, creatinine, and
protein excretions, or urinary albumin/creatinine and protein/
creatinine ratios in non-diabetic mice.

3.4. Effect of PARP-1 gene deficiency on diabetes-associated kidney
hypertrophy, mesangial expansion, fibronectin expression, and podocyte
loss

PARP-1 gene deficiency did not affect kidney weight in non-
diabetic mice (Fig. 3A). Whereas diabetic wild-type mice displayed
clearly manifest kidney hypertrophy (22% increase in kidney
weight, compared with the non-diabetic group, p<0.01), diabetic
PARP-1—/— mice maintained the kidney weights indistinguishable
from those in the corresponding non-diabetic controls. Because of a
reduced weight gain, kidney-to-body weight ratios were increased
in both diabetic groups; however, this increase was ~10% greater in
diabetic wild-type than in diabetic PARP-1—/— mice (p<0.01,
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Fig. 1. (A) Representative Western blot analysis of renal cortex poly(ADP-ribose) polymerase-1 and (B) poly(ADP-ribose)polymerase-1 content (densitometry), in control and
diabetic wild-type and poly(ADP-ribose) polymerase-1-deficient mice. C—control; D—diabetic, PARP-1—poly(ADP-ribose) polymerase-1. Mean 4 SEM, n=8-10 per group.
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Fig. 2. (A) Representative Western blot analysis of renal cortex poly(ADP-ribosyl)ated proteins and (B) poly(ADP-ribosyl)ated protein content (densitometry), in control
and diabetic wild-type and poly(ADP-ribose)polymerase-1-deficient mice. C—control; D—diabetic, PARP-1—poly(ADP-ribose) polymerase-1. Mean 4+ SEM, n = 9-12 per group.

***p<0.05 and <0.01 vs. corresponding non-diabetic groups.

Fig. 3B). PAS-positive substance staining intensity was increased by
52% in diabetic wild-type mice compared with the non-diabetic
controls (Fig. 4A and B), indicative of a mesangial expansion, and
this increase was blunted in diabetic PARP-1—/— mice (23%,
p<0.01 vs. non-diabetic PARP-1—/— mice, and<0.05 vs. diabetic
wild-type group). PARP-1 gene deficiency did not affect PAS-
positive substance staining intensity in non-diabetic mice. Renal
fibronectin expression was increased by 42% in diabetic wild-type
mice, and by 20% in diabetic PARP-1—/— mice, compared with the
corresponding non-diabetic groups (p<0.01 for all comparisons,
Fig. 5A and B). Both diabetic wild-type and diabetic PARP-1—/—
mice displayed the loss of glomerular podocytes (to 75% and 83% vs.
corresponding non-diabetic groups, p<0.01 for both comparisons,
Fig. 6A and B). Although podocyte loss was 8% smaller in diabetic
PARP-1—/— mice than in the diabetic wild-type group, the
difference did not achieve statistical significance (p=0.36). Non-
diabetic PARP-1—/— mice contained 6% less podocytes in their
glomeruli than non-diabetic wild-type mice (p =0.068).

Table 2

Water intake, urination volume, urinary albumin, total protein and creatinine
excretions, albumin-to-creatinine and protein-to-creatinine ratios in control and
diabetic wild-type and poly(ADP-ribose) polymerase-1-deficient mice.

Group PARP-1+/ PARP-1+/+, PARP-1—/ PARP-1—/—,
aF )

Variable C D C D

Water intake (ml)  4.6+1.5 285+52"  61+1.7 16.3 4+ 6.0% ##

Urination 0.534+0.14 20.84+4.4" 1.26+£0.40 10.7 £3.2% ##
volume (ml)

Albuminuria 148+42 314445 1554+6.9 200453 #
(ug48h~")

Proteinuria 22.0+5.0 317 +£41" 285471 203 4 51**#
(mg48h~1)

Creatinine excretion 255444 3,187 £473** 287 +38 3,517 £570**
(mg/48h~")

UA/CR (ug/mg) 0.09+0.01 0.16 £0.02** 0.0940.01 0.12+£0.01**#

UP/CR (mg/mg) 0.0540.01 0.1540.02** 0.08 £0.01 0.11+0.01**

Data are expressed as Means + SEM. n=7-15 per group. C—control mice; D—diabetic
mice; PARP-1—poly(ADP-ribose) polymerase-1; UA/CR—urinary albumin-to-
creatinine ratio; UP/CR—urinary protein-to-creatinine ratio. **p<0.01 vs.
corresponding non-diabetic groups; #*##p<0.05 and <0.01 vs. diabetic wild-type mice.

3.5. Effect of PARP-1 gene deficiency on diabetes-induced renal TGF-3
accumulation, nitrosative stress, and glomerular collagen deposition

Both diabetic wild-type and diabetic PARP-1—/— mice displayed
clearly manifest renal TGF-3; accumulation (to 160% and 141% vs.
corresponding non-diabetic groups, p<0.01 for both comparisons,
Fig. 7A). PARP-1 gene deficiency was associated with an ~15%
reduction in TGF-B concentration in non-diabetic mice, but the
differences between the two non-diabetic and two diabetic groups did
not achieve statistical significance (p=0.44 and p =0.27, respective-
ly). Renal cortex NT concentrations were dramatically increased in
both diabetic wild-type and diabetic PARP-1—/ — mice (to 282% and
258% compared with the corresponding non-diabetic groups, p<0.01
for both comparisons, Fig. 7B). Collagen deposition in renal glomeruli
was increased by 243% and 137% in diabetic wild-type and diabetic
PARP-1—/ — mice vs. corresponding non-diabetic groups (p<0.01 for
both comparisons, Fig. 8A and B). PARP-1—/— gene deficiency was
associated with a 26% reduction in diabetes-induced collagen
deposition (p<0.01 vs. diabetic wild-type group), but did not affect
this variable in the non-diabetic mice.

4. Discussion

The present study revealed that PARP-1 gene deficiency was
associated with alleviation of several manifestations of diabetic
kidney disease i.e., albuminuria and proteinuria, kidney hypertrophy,
glomerular mesangial expansion, fibronectin overexpression, and
collagen deposition.

The effects of PARP-1 inhibitors (INO-1001, PJ34, 1,5-isoquinoli-
nediol, and GPI-15,427) in previous reports [27,30,31] and PARP-1
gene deficiency in the present study on diabetic nephropathy are
unidirectional, i.e., both PARP inhibition and PARP-1 gene deficiency
are nephroprotective. However, whereas PARP inhibitors completely
or essentially prevented albuminuria, renal mesangial expansion, and
renal collagen deposition in STZ-diabetic rats [27], PARP-1 gene
deficiency reduced, but did not completely abrogate, these changes in
the STZ-diabetic mouse model. Furthermore, whereas PARP inhibition
attenuated podocyte loss, TGF- accumulation, and nitrosative stress
[27], the effects of PARP-1 gene deficiency on those variables were
non-significant. Both PARP in general and the PARP-1 isoform
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Fig. 3. (A) Kidney weights and (B) kidney weight-to-body weight ratios, in control and diabetic wild-type and poly(ADP-ribose)polymerase-1-deficient mice. C—control; D—
diabetic, PARP-1—poly(ADP-ribose) polymerase-1. Mean -+ SEM, n = 10-15 per group. **p<0.01 vs. corresponding non-diabetic groups; #*#p<0.01 vs. diabetic wild-type mice.

activations are known to contribute to multiple pathological condi-
tions via two mechanisms. One of them, NAD" depletion, affects the
rate of the NAD-dependent glyceraldehyde 3-phosphate dehydroge-
nase reaction, which slows down glycolysis, electron transport, and
ATP formation, eventually leading to functional impairment or cell
death [8,9,20,21]. Another one, poly(ADP-ribosyl)ation, leads to
changes in transcriptional regulation and gene expression [8,9]. In
the present study, renal cortex poly(ADP-ribosyl)ation was clearly
identifiable in both non-diabetic and diabetic PARP-1-deficient mice.
Furthermore, poly(ADP-ribosyl)ation was increased in both groups of
diabetic mice with a small and statistically non-significant differences
between diabetic wild-type and diabetic PARP-1—/— mice. The latter
suggests that not only PARP-1, but also other PARPs, provide an

—

Intensity, RU (x10%)

important contribution to diabetes-induced poly(ADP-ribosyl)ation
in the renal cortex. It is quite plausible that activation of PARP
isoforms other than PARP-1 also contributes to NAD+ depletion and
concomitant metabolic changes. A much more profound nephropro-
tective effect of PARP inhibition compared with PARP-1 gene
deficiency may be related to the lack of isoform specificity of existing
PARP inhibitors. GPI-15,427, employed in our kidney studies in STZ-
diabetic rats [27], as well as several other PARP inhibitors inhibit not
only PARP-1, but also PARP-2 [32-34, and Xu, personal communica-
tion]. Other PARP inhibitors i.e., INO-1001, PJ34, and 1,5-isoquinoli-
nediol, employed for diabetic nephropathy-related studies [27,30],
have never been tested for their ability to inhibit PARP enzymes other
than PARP-1. Thus, the present findings put forward the possibility of

s, #
%
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Fig. 4. (A) Representative microphotographs and (B) color intensities of PAS-positive substance stainings in the renal cortex in control and diabetic wild-type and poly(ADP-ribose)
polymerase-1-deficient mice. C—control; D—diabetic, PARP-1—poly(ADP-ribose) polymerase-1. Magnification x 400. Mean 4- SEM, n=10 per group. **p<0.01 vs. corresponding

non-diabetic groups; #*p<0.05 vs. diabetic wild-type mice.
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Fig. 5. (A) Representative Western blot analysis of renal cortex fibronectin and (B) fibronectin content (densitometry), in control and diabetic wild-type and poly(ADP-ribose)

polymerase-1-deficient mice. C—control; D—diabetic, PARP-1—poly(ADP-ribose) polymerase-1. Mean + SEM, n=10-13 per group.

diabetic groups; **p<0.01 vs. diabetic wild-type mice.

a contribution of other PARPs to diabetic nephropathy. Recently,
selective PARP-2 inhibitors and PARP-2 deficient mice became
available for exploring human disease [35-37]. Activation of PARP-2
was identified as an important player in colitis [38], post-ischemic
brain injury [39] and cancer [40]. The roles for PARP-2 and other,
different from PARP-1, PARP isoforms in diabetic complications have
never been elucidated.

Another possible explanation for different efficacies of PARP
inhibition (STZ-rat study [27]) and PARP-1—/— gene deficiency in
preventing biochemical and morphological manifestations of diabetic
nephropathy lies in diverse susceptibility of rats and mice to toxic
effects of STZ. STZ-diabetic rat is considered a good model for diabetic
nephropathy-related studies because all manifestations of both early
(albuminuria, mesangial expansion, podocyte loss) and advanced

PARP- 1+/+

Podocyte number/glomerular section

* **p<0.05 and<0.01 vs. corresponding non-

(glomerulosclerosis, tubulo-interstitial fibrosis) kidney disease are
amenable to a variety of pharmacological interventions [7,27,41-44],
which means that they do not develop because of STZ nephrotoxicity.
In contrast, no good STZ-diabetic mouse model for diabetic nephrop-
athy-related studies has been identified so far [45,46]. In the present
study, diabetic 129S1/SvimJ mice developed robust albuminuria,
kidney hypertrophy, and mesangial expansion, and modest podocyte
loss. Further studies in this model are needed to determine its
susceptibility to STZ nephrotoxicity, and suitability for drug discovery
in diabetic nephropathy.

In conclusion, PARP-1 activation is responsible for kidney
hypertrophy and contributes to albuminuria, proteinuria, mesangial
expansion, and collagen deposition in Type 1 diabetic kidney disease.
However, the nephroprotective effect of PARP-1 gene deficiency was
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Fig. 6. (A) Representative microphotographs of glomerular podocyte immunostaining and (B) podocyte counts, in control and diabetic wild-type and poly(ADP-ribose)polymerase-
1-deficient mice. C—control; D—diabetic, PARP-1—poly(ADP-ribose) polymerase-1. Magnification x400. Mean - SEM, n=10 per group. **p<0.01 vs. corresponding non-diabetic

groups.
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Fig. 7. (A) Transforming growth factor-B; and (B) nitrotyrosine concentrations, in the renal cortex in control and diabetic wild-type and poly(ADP-ribose)polymerase-1-deficient
mice. C—control; D—diabetic, PARP-1—poly(ADP-ribose) polymerase-1. Mean + SEM, n =9-14 per group. **p<0.01 vs. corresponding non-diabetic groups.
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Fig. 8. (A) Representative microphotographs and (B) percentage of positively stained for collagen area in the renal cortex in control and diabetic wild-type and poly(ADP-ribose)
polymerase-1-deficient mice. C—control; D—diabetic, PARP-1—poly(ADP-ribose) polymerase-1. Magnification x200. Mean + SEM, n=8-10 per group. **p<0.01 vs. corresponding

non-diabetic groups; **p<0.01 vs. diabetic wild-type mice.

less pronounced than that of non-selective PARP inhibitors in
previous studies. The current findings provide rationale for (1)
development and further studies of PARP inhibitors and PARP
inhibitor-containing combination therapies, for prevention and
treatment of diabetic nephropathy; and (2) evaluation of the role of
PARP isoforms, other than PARP-1, in the pathogenesis of this
devastating complication of diabetes mellitus.
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