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a b s t r a c t
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naturally joined to the h-convex function are given. Finally, applications on p-logarithmic
mean and mean of the order p are obtained.
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1. Introduction

In the paper [1] a large class of non-negative functions, the so-called h-convex functions is considered. This class contains
several well-known classes of functions such as non-negative convex functions, s-convex in the second sense, Godunova–
Levin functions and P-functions. Let us repeat the definition of an h-convex function.

Definition 1. Let I , J be intervals in R, (0, 1) ⊆ J , and let h : J → R be a non-negative function, h 6≡ 0. A non-negative
function f : I → R is called h-convex if for all x, y ∈ I , α ∈ (0, 1)we have

f (αx+ (1− α)y) ≤ h(α)f (x)+ h(1− α)f (y). (1)

If the inequality in (1) is reversed, then f is said to be h-concave.

In the above-mentioned paper [1], a structure of that class is described, some examples are given and the Jensen-type
inequality is obtained. This paper is devoted to the Hermite–Hadamard inequalities for h-convex functions. But before that,
let us say a fewwords about assumptions about functions f and h. The referee remarked that not all convex functions belong
to the class of h-convex ones and suggested that this inconvenience can be avoided omitting the assumption that f is non-
negative. So, in the further text we assume that h and f are real functions without assumption of non-negativity.
The most well-known inequalities related to the integral mean of a convex function f are the Hermite–Hadamard

inequalities or its weighted versions, the so-called Hermite–Hadamard–Fejér inequalities.

Theorem 2 (The Hermite–Hadamard–Fejér Inequalities). If f : [a, b] → R is convex, and w : [a, b] → R, w ≥ 0, integrable
and symmetric about a+b2 , then

f
(
a+ b
2

)∫ b

a
w(x)dx ≤

∫ b

a
f (x)w(x)dx ≤

f (a)+ f (b)
2

∫ b

a
w(x)dx. (2)

If f is a concave function, then the reversed inequalities in (2) hold.
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If w ≡ 1, then we are talking about the Hermite–Hadamard inequalities. More about those inequalities can be found
in a number of papers and monographies (for example, see [2,3]). Here we research which properties connected with the
integral mean of the function f still remain if the class of convex functions is expanded to the class of h-convex functions.
In the second section we prove both the Hermite–Hadamard–Fejér inequalities for an h-convex function and we point out
results for some special classes of functions. Alsowe proved that the left-hand side inequality is stronger than the right-hand
side inequality. At the end of the second section we give some generalization of the Hermite–Hadamard inequalities. In the
third section we give some properties of functions H and F which are naturally joined to the function f . Finally, in the last
section we give some applications on p-logarithmic mean and mean of the order p.
Throughout this paper we assume that intervals I, J satisfy assumptions from Definition 1. Also, we assume that all

considered integrals exist.

2. The Hermite–Hadamard–Fejér inequalities for an h-convex function

Theorem 3 (The Second Hermite–Hadamard–Fejér Inequality for an h-convex Function). Let f : [a, b] → R be h-convex, w :
[a, b] → R,w ≥ 0, symmetric with respect to a+b2 . Then

1
b− a

∫ b

a
f (t)w(t)dt ≤ [f (a)+ f (b)]

∫ 1

0
h(t)w (ta+ (1− t)b) dt. (3)

If f is an h-concave function, then the inequality in (3) is reversed.

Proof. For any x ∈ (a, b) exists α ∈ (0, 1) such that x = αa+ ᾱb, ᾱ = 1− α.
From the definition of an h-convex function we have

f (αa+ ᾱb)w(αa+ ᾱb) ≤ (h(α)f (a)+ h(ᾱ)f (b)) w(αa+ ᾱb) (4)
f (ᾱa+ αb)w(ᾱa+ αb) ≤ (h(ᾱ)f (a)+ h(α)f (b)) w(αa+ αb). (5)

After adding (4) and (5), and integrating we obtain∫ 1

0
f (αa+ ᾱb)w(αa+ ᾱb)dα +

∫ 1

0
f (ᾱa+ αb)w(ᾱa+ αb)dα

≤

∫ 1

0
[h(α)f (a)w(αa+ ᾱb)+ h(α)f (b)w(αa+ ᾱb)+ h(ᾱ)f (a)w(ᾱa+ αb)+ h(α)f (b)w(ᾱa+ αb)] dα

=

∫ 1

0
{f (a) [h(α)w(αa+ ᾱb)+ h(ᾱ)w(ᾱa+ αb)]+ f (b) [h(α)w(αa+ ᾱb)+ h(α)w(ᾱa+ αb)]} dα

= 2f (a)
∫ 1

0
h(t)w(ta+ (1− t)b)dt + 2f (b)

∫ 1

0
h(t)w((1− t)a+ tb)dt

= 2[f (a)+ f (b)]
∫ 1

0
h(t)w(ta+ (1− t)b)dt,

where we use the symmetricity of the weightw.
After suitable substitutions we obtain that both the integrals in the first line are equal to 1

b−a

∫ b
a f (t)w(t)dt , and the

theorem has been established. �

Remark 4. (a) If h(t) = t in Theorem 3 i.e. if f is a convex function we have the right-hand side of the classical inequality
(2).

(b) For h(t) = ts, s ∈ (0, 1), i.e. if f is an s-convex function in the second sense, thenwe have a result of Theorem 2.1 from [4]

1
b− a

∫ b

a
f (t)dt ≤

f (a)+ f (b)
s+ 1

.

Theorem 5 (The First Hermite–Hadamard–Fejér Inequality for an h-Convex Function). Let h be defined on [0,max{1, b − a}]
and f : [a, b] → R be h-convex,w : [a, b] → R,w ≥ 0, symmetric with respect to a+b2 and

∫ b
a w(t)dt > 0. Then

f
(
a+ b
2

)
≤ C

∫ b

a
f (t)w(t)dt, (6)

where C =
2h
(
1
2

)
∫ b
a w(t)dt

.
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Furthermore, if
∫ a+b

2
a

∫ b
a+b
2
h(y− x)w(y)w(x)dydx 6= 0, h(x) 6= 0 for x 6= 0 and

(i) h is multiplicative or
(ii) h is supermultiplicative and f is non-negative
and if f is an h-convex function, then inequality (6) holds for

C = min

 2h
( 1
2

)∫ b
a w(t)dt

,

∫ b−a
2

0 h(x)w
(
x+ a+b

2

)
dx∫ a+b

2
a

∫ b
a+b
2
h(y− x)w(y)w(x)dydx

 . (7)

Proof. Let f be an h-convex function. If α = 1
2 , x = ta+ (1− t)b and y = (1− t)a+ tb, from the definition of an h-convex

function we have the following

f
(
a+ b
2

)
≤ h

(
1
2

)
(f (ta+ (1− t)b)+ f ((1− t)a+ tb)).

Now we multiply it withw(ta+ (1− t)b) = w((1− t)a+ tb) and integrate by t over [0, 1] to obtain inequality

f
(
a+ b
2

)
≤

2h
( 1
2

)∫ b
a w(t)dt

∫ b

a
f (t)w(t)dt, (8)

which holds in general case.
Let h be supermultiplicative h(x) 6= 0 for x 6= 0. Then h(x) > 0 for x > 0. For x, y ∈ [a, b] such that a ≤ x < a+b

2 < y ≤ b
we have

a+ b
2
=

(
y− a+b

2

y− x

)
x+

(
a+b
2 − x
y− x

)
y.

Denote α = y− a+b2
y−x > 0. Then ᾱ = 1− α =

a+b
2 −x
y−x and

a+b
2 = αx+ ᾱy, and f (

a+b
2 ) = f (αx+ ᾱy) ≤ h(α)f (x)+ h(ᾱ)f (y).

Since h is supermultiplicative, we have

h(α) = h

(
y− a+b

2

y− x

)
≤
h
(
y− a+b

2

)
h(y− x)

and h(ᾱ) ≤
h
( a+b
2 − x

)
h(y− x)

.

So, when f > 0 we have

f
(
a+ b
2

)
≤
h
(
y− a+b

2

)
h(y− x)

f (x)+
h
( a+b
2 − x

)
h(y− x)

f (y),

h(y− x)f
(
a+ b
2

)
≤ h

(
y−

a+ b
2

)
f (x)+ h

(
a+ b
2
− x

)
f (y). (9)

This inequality also holds if h is multiplicative, regardless the positivity of f .
Multiplying (9) withw(x) and integrating over interval

[
a, a+b2

]
with respect to dx, and after that multiplying withw(y)

and integrating over interval
[ a+b
2 , b

]
with respect to dywe get

f
(
a+ b
2

)∫ b

a+b
2

(∫ a+b
2

a
h(y− x)w(x)dx

)
w(y)dy ≤

∫ b

a+b
2

h
(
y−

a+ b
2

)
w(y)dy

∫ a+b
2

a
f (x)w(x)dx

+

∫ b

a+b
2

f (y)w(y)dy
∫ a+b

2

a
h
(
a+ b
2
− x

)
w(x)dx.

After substitution y− a+b
2 = t in the first integral on the right-hand side and substitution

a+b
2 − x = t in the integral in the

second term of sum, we get

f
(
a+ b
2

)∫ b

a+b
2

∫ a+b
2

a
h(y− x)w(x)w(y)dxdy ≤

∫ b−a
2

0
h(t)w

(
t +
a+ b
2

)
dt
∫ a+b

2

a
f (x)w(x)dx

+

∫ b−a
2

0
h(t)w

(
a+ b
2
− t
)
dt
∫ b

a+b
2

f (y)w(y)dy

=

∫ b−a
2

0
h(t)w

(
t +
a+ b
2

)
dt ·

∫ b

a
f (x)w(x)dx,
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where in the first equality we use that the functionw is symmetric on the interval [a, b], i.e.w
( a+b
2 − t

)
= w

( a+b
2 + t

)
for

t ∈
[
0, b−a2

]
. �

Remark 6. Under the conditions of Theorem 5:

(a) If f is an h-concave function, then the inequality in (6) is reversed.

(b) If h submultiplicative,
∫ a+b

2
a

∫ b
a+b
2
h(y− x)w(y)w(x)dydx 6= 0, h ≥ 0, and if f is an h-concave function then the inequality

in (6) is reversed, with constant C as in (7) with change min→ max.

Remark 7. (a) If f is convex, i.e. h(t) = t , then inequality (6) becomes the left-hand side of inequality (2).
(b) Let w = 1 and let f be an s-convex function in the second sense, i.e. f be an h-convex function with multiplicative
h(t) = ts, s ∈ (0, 1). Then the constant C from Theorem 5 has a form

C = min

 21−sb− a
,

∫ b−a
2

0 tsdt∫ a+b
2

a

∫ b
a+b
2
(y− x)sdydx

 = min
{
21−s

b− a
,

s+ 2
(b− a)(2s+1 − 1)

}
.

In [5] Jagers shows that

2s−1 <
2s+1 − 1
s+ 2

, for s ∈ (0, 1).

So, the first Hermite–Hadamard inequality for s-convex function in the second sense states:

2s+1 − 1
s+ 2

· f
(
a+ b
2

)
≤

1
b− a

∫ b

a
f (t)dt. (10)

The inequality (10) can be found in [5] and it is an improvement of the Dragomir–Fitzpatrick result from [4] where they
used constant 2s−1 instead of 2

s+1
−1

s+2 .

In the following text we will deal with the non-weighted Hermite–Hadamard inequalities for h-convex function in the
form

1
2h
( 1
2

) f (a+ b
2

)
≤

1
b− a

∫ b

a
f (t)dt ≤ (f (a)+ f (b))

∫ 1

0
h(t)dt, (11)

where h
( 1
2

)
> 0.

Let us define:

L : [a, b] → R, L(y) = (f (a)+ f (y))(y− a)
∫ 1

0
h(t)dt −

∫ y

a
f (t)dt

P : [a, b] → R, P(y) =
∫ y

a
f (t)dt − f

(
a+ y
2

)
y− a
2h
( 1
2

) .
Theorem 8. If the function f is h-convex, f ≥ 0, h

( 1
2

)
> 0 and 1

4h
(
1
2

) ≥ ∫ 10 h(t)dt, then
L(y) ≥ P(y) ≥ 0 for all y ∈ [a, b]. (12)

Proof. The second non-weighted Hermite–Hadamard inequality (11) on intervals
[
a, a+y2

]
and

[ a+y
2 , y

]
gives us:∫ a+y

2

a
f (t)dt ≤

f (a)+ f
( a+y
2

)
2

(y− a)
∫ 1

0
h(t)dt (13)∫ y

a+y
2

f (t)dt ≤
f
( a+y
2

)
+ f (y)
2

(y− a)
∫ 1

0
h(t)dt. (14)

Adding (13) and (14) we obtain:∫ y

a
f (t)dt ≤ (y− a)

∫ 1

0
h(t)dt

[
f (a)+ f (y)

2
+ f

(
a+ y
2

)]
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which is (after multiplying by 2) equivalent to∫ y

a
f (t)dt − (y− a)

∫ 1

0
h(t)dt · (f (a)+ f (y)) ≤ 2(y− a)

∫ 1

0
h(t)dt · f

(
a+ y
2

)
−

∫ y

a
f (t)dt.

Now,

P(y) =
∫ y

a
f (t)dt − f

(
a+ y
2

)
y− a
2h
( 1
2

)
≤

∫ y

a
f (t)dt − f

(
a+ y
2

)
2
∫ 1

0
h(t)dt · (y− a)

≤ (y− a)(f (a)+ f (y))
∫ 1

0
h(t)dt −

∫ y

a
f (t)dt = L(y).

The second inequality in (12) is a simple consequence of the first non-weighted Hermite–Hadamard inequality (11). �

Remark 9. If y = b and under the same conditions of Theorem 8 we get that the first inequality in (11) is stronger than the
second inequality in the non-weighted Hermite–Hadamard inequalities, i.e. we have the following inequality

1
b− a

∫ b

a
f (t)dt −

1
2h
( 1
2

) f (a+ b
2

)
≤ (f (a)+ f (b))

∫ 1

0
h(t)dt −

1
b− a

∫ b

a
f (t)dt. (15)

Similar result for convex functions is given in [2, p. 140].

Next theorem gives us some results on errors in trapezoidal and mid-point formulae. Let us define

Tn(f ; a, b) =
δ

2

(
n−1∑
k=0

f (a+ kδ)+
n∑
j=1

f (a+ jδ)

)
and

Mn(f ; a, b) = δ
n−1∑
k=0

f
(
a+

(
k+

1
2

)
δ

)
,

where δ = b−a
n .

The Hermite–Hadamard inequalities (11) can be written as

1
2h
( 1
2

)M1(f ; a, b) ≤ ∫ b

a
f (t)dt ≤ 2T1(f ; a, b)

∫ 1

0
h(t)dt. (16)

Next theorem extends (15) and (16).

Theorem 10. Let f : [a, b] → R+ be an h-convex function, h
( 1
2

)
> 0. Then

1
2h
( 1
2

)Mn(f ; a, b) ≤ ∫ b

a
f (t)dt ≤ 2Tn(f ; a, b) ·

∫ 1

0
h(t)dt (17)

and if 1

4h
(
1
2

) ≥ ∫ 10 h(t)dt, then
0 ≤

∫ b

a
f (t)dt −

1
2h
( 1
2

)Mn(f ; a, b) ≤ 2Tn(f ; a, b) ∫ 1

0
h(t)dt −

∫ b

a
f (t)dt. (18)

Proof. Applying (11) to the segment [a+ kδ, a+ (k+ 1)δ], δ = b−a
n , we obtain:

δ

2h
( 1
2

) · f (a+ (k+ 1)δ + a+ kδ
2

)
≤

∫ a+(k+1)δ

a+kδ
f (t)dt

≤ 2δ ·
f (a+ kδ)+ f (a+ (k+ 1)δ)

2
·

∫ 1

0
h(t)dt,
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and summing up for k = 0 to k = n− 1

δ

2h
( 1
2

) · n−1∑
k=0

f
(
a+

(
k+

1
2

)
δ

)
≤

∫ b

a
f (t)dt

≤ 2δ ·
∫ 1

0
h(t)dt ·

n−1∑
k=0

f (a+ kδ)+ f (a+ (k+ 1)δ)
2

.

Since δ
∑n−1
k=0 f

(
a+ (k+ 1

2 )δ
)
= Mn(f ; a, b) and δ

∑n−1
k=0

f (a+kδ)+f (a+(k+1)δ)
2 = Tn(f ; a, b), this proves (17).

The proof of (18) is based on the identity

T2n(f ; a, b) =
Mn(f ; a, b)+ Tn(f ; a, b)

2
.

From (17) we have∫ b

a
f (t)dt ≤ 2T2n(f ; a, b)

∫ 1

0
h(t)dt = (Mn(f ; a, b)+ Tn(f ; a, b))

∫ 1

0
h(t)dt,∫ b

a
f (t)dt − 2Mn(f ; a, b)

∫ 1

0
h(t)dt ≤ 2Tn(f ; a, b)

∫ 1

0
h(t)dt −

∫ b

a
f (t)dt.

Since 1

4h
(
1
2

) ≥ ∫ 10 h(t)dt , we get the second inequality from (18). �

Remark 11. The result for a convex function f is due to Allasia, Giordano and Pečarić, [6].

3. Mappings H and F

Let us define two functions on the interval [0, 1]

H(t) =
1
b− a

∫ b

a
f
(
tx+ (1− t)

a+ b
2

)
dx

and

F(t) =
1

(b− a)2

∫ b

a

∫ b

a
f (tx+ (1− t)y)dxdy.

Obviously H(0) = f
( a+b
2

)
, H(1) = 1

b−a

∫ b
a f (x)dx. Some properties of these two mappings for convex functions and

s-convex functions are given in [4,7] respectively. Here we investigate which of these properties can be generalized for
h-convex functions.

Theorem 12. Let f be h-convex on the interval [a, b], h : J → R, [0, 1] ⊆ J . Then the function H is h-convex on [0, 1] and for
t ∈ [0, 1]

H(0) ≤ C1(t)H(t) (19)

where

C1(t) =


2h
(
1
2

)
, in general case

min

{
2h
(
1
2

)
,

2
∫ 1
0 h

( b−a
2 tx

)
dx∫ 1

0

∫ 1
0 h

( b−a
2 t(y− x+ 1)

)
dydx

}
, h satisfies (i) or (ii) of Theorem 5.

Proof. The h-convexity of the function H is a consequence of the h-convexity of the function f . Namely, we have

H(αt + βu) =
1
b− a

∫ b

a
f
(
(αt + βu)x+ (1− αt − βu)

a+ b
2

)
dx

=
1
b− a

∫ b

a
f
(
α

(
tx+ (1− t)

a+ b
2

)
+ β

(
ux+ (1− u)

a+ b
2

))
dx

≤
1
b− a

∫ b

a

[
h(α)f

(
tx+ (1− t)

a+ b
2

)
+ h(β)f

(
ux+ (1− u)

a+ b
2

)]
dx

= h(α)H(t)+ h(β)H(u).
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After changing the variable u = tx+ (1− t) a+b2 we have

C1(t)H(t) =
C1(t)
b− a

∫ b

a
f
(
tx+ (1− t)

a+ b
2

)
dx

=
C1(t)
b− a

∫ uU

uL
f (u)

b− a
uU − uL

du =
C1(t)
uU − uL

∫ uU

uL
f (u)du

≥ f
(
uU + uL
2

)
= f

(
a+ b
2

)
where C1(t)

uU−uL
is a constant defined in Theorem 5 but with respect to the interval [uL, uU ] where uL = ta + (1 − t) a+b2 and

uU = tb+ (1− t) a+b2 . �

Remark 13. If f is a convex function, then we get H(t) ≥ H(0). It is known result for a convex function. If f is an s-convex
function in the second sense, then C1(t) = s+2

2s+1−1
and we have the following refinement of the result from [4]:

H(t) ≥
2s+1 − 1
s+ 2

H(0) ≥ 2s−1H(0).

Theorem 14. Let f be an h-convex function on the interval [a, b], h : J → R, [0, 1] ⊆ J . Then the function F is symmetric with
respect to 12 and h-convex on [0, 1]. Also, the following inequalities hold

2h
(
1
2

)
F(t) ≥ F

(
1
2

)
, C1(t)F(t) ≥ H(1− t),

where C1 is defined as in the previous theorem.

Proof. Let us prove the first inequality. From
x+ y
2
=
1
2
(tx+ (1− t)y)+

1
2
((1− t)x+ ty), x, y ∈ [a, b], t ∈ [0, 1],

we obtain

f
(
x+ y
2

)
≤ h

(
1
2

)
f (tx+ (1− t)y)+ h

(
1
2

)
f ((1− t)x+ ty).

Integrating over x ∈ [a, b] and over y ∈ [a, b] and using the fact that∫ b

a

∫ b

a
f (tx+ (1− t)y)dxdy =

∫ b

a

∫ b

a
f ((1− t)x+ ty)dxdy

we get∫ b

a

∫ b

a
f
(
x+ y
2

)
dxdy ≤ 2h

(
1
2

)∫ b

a

∫ b

a
f (tx+ (1− t)y) dxdy = 2h

(
1
2

)
F(t)(b− a)2

which established the proof.
To get the second inequality we define a function

Hy(t) =
1
b− a

∫ b

a
f (tx+ (1− t)y)dx

for fixed y. Using the substitution u = tx+ (1− t)y, we obtain

Hy(t) =
1

uU − uL

∫ uU

uL
f (u)du.

Using the result from Theorem 5 for h-convex function f we get

C1(t)Hy(t) ≥ f
(
uU + uL
2

)
= f

(
t ·
a+ b
2
+ (1− t)y

)
.

Integrating over y ∈ [a, b] and dividing by (b− a)we get that

C1(t)F(t) ≥ H(1− t). �
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Remark 15. If C1(t) > 0, then we have F(t) ≥ 1
C1(t)
H(1− t) and for variable 1− t we have similar: F(1− t) ≥ 1

C1(1−t)
H(t).

But F is symmetric, i.e. F(t) = F(1− t), so we have F(t) ≥ max
{ 1
C1(t)
H(1− t), 1

C1(1−t)
H(t)

}
.

If f is a convex function, then we get a known result F(t) ≥ max{H(1− t),H(t)}.
If h is a multiplicative function, then C1(t) = C1(1− t) and

F(t) ≥
1
C1(t)

·max {H(1− t),H(t)} .

Especially, if h(t) = ts, then we get a refinement of the Dragomir–Fitzpatrick result from [4]:

F(t) ≥
2s+1 − 1
s+ 2

·max{H(1− t),H(t)} ≥ 2s−1 ·max{H(1− t),H(t)}.

4. Applications

It is interesting to consider a situation when the function f is concave and h-convex simultaneously, or vice versa, when
f is convex and h-concave. If f is a concave and h-convex functionwith

∫ 1
0 h(t)dt > 0, then the classical Hermite–Hadamard

inequalities, Theorems 3 and 5 give us

1
b− a

∫ b

a
f (t)dt ≤ f

(
a+ b
2

)
≤ C

∫ b

a
f (t)dt (20)

and

1

(b− a)
∫ 1
0 h(t)dt

∫ b

a
f (t)dt ≤ f (a)+ f (b) ≤

2
b− a

∫ b

a
f (t)dt. (21)

If f is a convex and h-concave function simultaneously, then reversed signs in inequalities (20) and (21) hold.
Putting for f and h special functions we obtain new results for inequalities between p-logarithmic mean and mean of

the order p. Let us recall the definition of these means. If p ∈ R \ {0,−1}, p-logarithmic mean Lp of two different numbers
a, b ∈ R is defined as

Lp =
[
bp+1 − ap+1

(p+ 1)(b− a)

]1/p
and the mean of the order p is defined asMp =

( ap+bp
2

)1/p
. If a = b, then Lp = Mp = a.

In [1] the following result for functions f and hk defined as hk(x) = xk, f (x) = xp, x > 0, k, p ∈ R is given:

• the function f is hk-convex if
1. p ∈ (−∞, 0] ∪ [1,∞) and k ≤ 1;
2. p ∈ (0, 1) and k ≤ p;
• the function f is hk-concave if
1. p ∈ (0, 1) and k ≥ 1;
2. p > 1 and k ≥ p.

So, for p ∈ (0, 1) and 0 ≤ k ≤ pwe have the following inequalities:(
k+ 2
2k+1 − 1

)1/p
Lp ≥ M1 ≥ Lp,

Lp ≥ Mp ≥
(
k+ 1
2

)1/p
Lp.

If p > 1 and k ≥ p, then reversed signs in the previous inequalities hold.
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