Properties of h-convex functions related to the Hermite-Hadamard-Fejér inequalities

Mea Bombardelli, Sanja Varošanec*
Department of Mathematics, University of Zagreb, Bijenička 30, 10000 Zagreb, Croatia

A R T I C L E I N F O

Article history:

Received 18 August 2008
Received in revised form 29 June 2009
Accepted 9 July 2009

Keywords:

Convex function
h-convex function
Hermite-Hadamard-Fejér inequalities
Mean of order p
p-logarithmic mean

Abstract

In this paper we prove the Hermite-Hadamard-Fejér inequalities for an h-convex function and we point out the results for some special classes of functions. Also, some generalization of the Hermite-Hadamard inequalities and some properties of functions H and F which are naturally joined to the h-convex function are given. Finally, applications on p-logarithmic mean and mean of the order p are obtained.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In the paper [1] a large class of non-negative functions, the so-called h-convex functions is considered. This class contains several well-known classes of functions such as non-negative convex functions, s-convex in the second sense, GodunovaLevin functions and P-functions. Let us repeat the definition of an h-convex function.

Definition 1. Let I, J be intervals in $\mathbb{R},(0,1) \subseteq J$, and let $h: J \rightarrow \mathbb{R}$ be a non-negative function, $h \not \equiv 0$. A non-negative function $f: I \rightarrow \mathbb{R}$ is called h-convex if for all $x, y \in I, \alpha \in(0,1)$ we have

$$
\begin{equation*}
f(\alpha x+(1-\alpha) y) \leq h(\alpha) f(x)+h(1-\alpha) f(y) . \tag{1}
\end{equation*}
$$

If the inequality in (1) is reversed, then f is said to be h-concave.
In the above-mentioned paper [1], a structure of that class is described, some examples are given and the Jensen-type inequality is obtained. This paper is devoted to the Hermite-Hadamard inequalities for h-convex functions. But before that, let us say a few words about assumptions about functions f and h. The referee remarked that not all convex functions belong to the class of h-convex ones and suggested that this inconvenience can be avoided omitting the assumption that f is nonnegative. So, in the further text we assume that h and f are real functions without assumption of non-negativity.

The most well-known inequalities related to the integral mean of a convex function f are the Hermite-Hadamard inequalities or its weighted versions, the so-called Hermite-Hadamard-Fejér inequalities.

Theorem 2 (The Hermite-Hadamard-Fejér Inequalities). If $f:[a, b] \rightarrow \mathbb{R}$ is convex, and $w:[a, b] \rightarrow \mathbb{R}, w \geq 0$, integrable and symmetric about $\frac{a+b}{2}$, then

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \int_{a}^{b} w(x) \mathrm{d} x \leq \int_{a}^{b} f(x) w(x) \mathrm{d} x \leq \frac{f(a)+f(b)}{2} \int_{a}^{b} w(x) \mathrm{d} x \tag{2}
\end{equation*}
$$

If f is a concave function, then the reversed inequalities in (2) hold.

[^0]If $w \equiv 1$, then we are talking about the Hermite-Hadamard inequalities. More about those inequalities can be found in a number of papers and monographies (for example, see $[2,3]$). Here we research which properties connected with the integral mean of the function f still remain if the class of convex functions is expanded to the class of h-convex functions. In the second section we prove both the Hermite-Hadamard-Fejér inequalities for an h-convex function and we point out results for some special classes of functions. Also we proved that the left-hand side inequality is stronger than the right-hand side inequality. At the end of the second section we give some generalization of the Hermite-Hadamard inequalities. In the third section we give some properties of functions H and F which are naturally joined to the function f. Finally, in the last section we give some applications on p-logarithmic mean and mean of the order p.

Throughout this paper we assume that intervals I, J satisfy assumptions from Definition 1 . Also, we assume that all considered integrals exist.

2. The Hermite-Hadamard-Fejér inequalities for an h-convex function

Theorem 3 (The Second Hermite-Hadamard-Fejér Inequality for an h-convex Function). Let $f:[a, b] \rightarrow \mathbb{R}$ be h-convex, w : $[a, b] \rightarrow \mathbb{R}, w \geq 0$, symmetric with respect to $\frac{a+b}{2}$. Then

$$
\begin{equation*}
\frac{1}{b-a} \int_{a}^{b} f(t) w(t) \mathrm{d} t \leq[f(a)+f(b)] \int_{0}^{1} h(t) w(t a+(1-t) b) \mathrm{d} t \tag{3}
\end{equation*}
$$

If f is an h-concave function, then the inequality in (3) is reversed.
Proof. For any $x \in(a, b)$ exists $\alpha \in(0,1)$ such that $x=\alpha a+\bar{\alpha} b, \bar{\alpha}=1-\alpha$.
From the definition of an h-convex function we have

$$
\begin{align*}
& f(\alpha a+\bar{\alpha} b) w(\alpha a+\bar{\alpha} b) \leq(h(\alpha) f(a)+h(\bar{\alpha}) f(b)) w(\alpha a+\bar{\alpha} b) \tag{4}\\
& f(\bar{\alpha} a+\alpha b) w(\bar{\alpha} a+\alpha b) \leq(h(\bar{\alpha}) f(a)+h(\alpha) f(b)) w(\bar{\alpha} a+\alpha b) \tag{5}
\end{align*}
$$

After adding (4) and (5), and integrating we obtain

$$
\begin{aligned}
& \int_{0}^{1} f(\alpha a+\bar{\alpha} b) w(\alpha a+\bar{\alpha} b) \mathrm{d} \alpha+\int_{0}^{1} f(\bar{\alpha} a+\alpha b) w(\bar{\alpha} a+\alpha b) \mathrm{d} \alpha \\
& \leq \int_{0}^{1}[h(\alpha) f(a) w(\alpha a+\bar{\alpha} b)+h(\bar{\alpha}) f(b) w(\alpha a+\bar{\alpha} b)+h(\bar{\alpha}) f(a) w(\bar{\alpha} a+\alpha b)+h(\alpha) f(b) w(\bar{\alpha} a+\alpha b)] \mathrm{d} \alpha \\
& =\int_{0}^{1}\{f(a)[h(\alpha) w(\alpha a+\bar{\alpha} b)+h(\bar{\alpha}) w(\bar{\alpha} a+\alpha b)]+f(b)[h(\bar{\alpha}) w(\alpha a+\bar{\alpha} b)+h(\alpha) w(\bar{\alpha} a+\alpha b)]\} \mathrm{d} \alpha \\
& =2 f(a) \int_{0}^{1} h(t) w(t a+(1-t) b) \mathrm{d} t+2 f(b) \int_{0}^{1} h(t) w((1-t) a+t b) \mathrm{d} t \\
& =2[f(a)+f(b)] \int_{0}^{1} h(t) w(t a+(1-t) b) \mathrm{d} t,
\end{aligned}
$$

where we use the symmetricity of the weight w.
After suitable substitutions we obtain that both the integrals in the first line are equal to $\frac{1}{b-a} \int_{a}^{b} f(t) w(t) \mathrm{d} t$, and the theorem has been established.

Remark 4. (a) If $h(t)=t$ in Theorem 3 i.e. if f is a convex function we have the right-hand side of the classical inequality (2).
(b) For $h(t)=t^{s}, s \in(0,1)$, i.e. if f is an s-convex function in the second sense, then we have a result of Theorem 2.1 from [4]

$$
\frac{1}{b-a} \int_{a}^{b} f(t) \mathrm{d} t \leq \frac{f(a)+f(b)}{s+1}
$$

Theorem 5 (The First Hermite-Hadamard-Fejér Inequality for an h-Convex Function). Let h be defined on [0, $\max \{1, b-a\}]$ and $f:[a, b] \rightarrow \mathbb{R}$ be h-convex, $w:[a, b] \rightarrow \mathbb{R}, w \geq 0$, symmetric with respect to $\frac{a+b}{2}$ and $\int_{a}^{b} w(t) \mathrm{d} t>0$. Then

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq C \int_{a}^{b} f(t) w(t) \mathrm{d} t \tag{6}
\end{equation*}
$$

where $C=\frac{2 h\left(\frac{1}{2}\right)}{\int_{a}^{b} w(t) \mathrm{d} t}$.

Furthermore, if $\int_{a}^{\frac{a+b}{2}} \int_{\frac{a+b}{2}}^{b} h(y-x) w(y) w(x) \mathrm{d} y \mathrm{~d} x \neq 0, h(x) \neq 0$ for $x \neq 0$ and
(i) h is multiplicative or
(ii) h is supermultiplicative and f is non-negative
and if f is an h-convex function, then inequality (6) holds for

$$
\begin{equation*}
C=\min \left\{\frac{2 h\left(\frac{1}{2}\right)}{\int_{a}^{b} w(t) \mathrm{d} t}, \frac{\int_{0}^{\frac{b-a}{2}} h(x) w\left(x+\frac{a+b}{2}\right) \mathrm{d} x}{\int_{a}^{\frac{a+b}{2}} \int_{\frac{a+b}{2}}^{b} h(y-x) w(y) w(x) \mathrm{d} y \mathrm{~d} x}\right\} . \tag{7}
\end{equation*}
$$

Proof. Let f be an h-convex function. If $\alpha=\frac{1}{2}, x=t a+(1-t) b$ and $y=(1-t) a+t b$, from the definition of an h-convex function we have the following

$$
f\left(\frac{a+b}{2}\right) \leq h\left(\frac{1}{2}\right)(f(t a+(1-t) b)+f((1-t) a+t b)) .
$$

Now we multiply it with $w(t a+(1-t) b)=w((1-t) a+t b)$ and integrate by t over [0, 1] to obtain inequality

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{2 h\left(\frac{1}{2}\right)}{\int_{a}^{b} w(t) \mathrm{d} t} \int_{a}^{b} f(t) w(t) \mathrm{d} t \tag{8}
\end{equation*}
$$

which holds in general case.
Let h be supermultiplicative $h(x) \neq 0$ for $x \neq 0$. Then $h(x)>0$ for $x>0$. For $x, y \in[a, b]$ such that $a \leq x<\frac{a+b}{2}<y \leq b$ we have

$$
\frac{a+b}{2}=\left(\frac{y-\frac{a+b}{2}}{y-x}\right) x+\left(\frac{\frac{a+b}{2}-x}{y-x}\right) y .
$$

Denote $\alpha=\frac{y-\frac{a+b}{2}}{y-x}>0$. Then $\bar{\alpha}=1-\alpha=\frac{\frac{a+b}{2}-x}{y-x}$ and $\frac{a+b}{2}=\alpha x+\bar{\alpha} y$, and $f\left(\frac{a+b}{2}\right)=f(\alpha x+\bar{\alpha} y) \leq h(\alpha) f(x)+h(\bar{\alpha}) f(y)$.
Since h is supermultiplicative, we have

$$
h(\alpha)=h\left(\frac{y-\frac{a+b}{2}}{y-x}\right) \leq \frac{h\left(y-\frac{a+b}{2}\right)}{h(y-x)} \quad \text { and } \quad h(\bar{\alpha}) \leq \frac{h\left(\frac{a+b}{2}-x\right)}{h(y-x)}
$$

So, when $f>0$ we have

$$
\begin{align*}
& f\left(\frac{a+b}{2}\right) \leq \frac{h\left(y-\frac{a+b}{2}\right)}{h(y-x)} f(x)+\frac{h\left(\frac{a+b}{2}-x\right)}{h(y-x)} f(y) \\
& h(y-x) f\left(\frac{a+b}{2}\right) \leq h\left(y-\frac{a+b}{2}\right) f(x)+h\left(\frac{a+b}{2}-x\right) f(y) \tag{9}
\end{align*}
$$

This inequality also holds if h is multiplicative, regardless the positivity of f.
Multiplying (9) with $w(x)$ and integrating over interval $\left[a, \frac{a+b}{2}\right]$ with respect to $\mathrm{d} x$, and after that multiplying with $w(y)$ and integrating over interval $\left[\frac{a+b}{2}, b\right]$ with respect to $\mathrm{d} y$ we get

$$
\begin{aligned}
f\left(\frac{a+b}{2}\right) \int_{\frac{a+b}{2}}^{b}\left(\int_{a}^{\frac{a+b}{2}} h(y-x) w(x) \mathrm{d} x\right) w(y) \mathrm{d} y \leq & \int_{\frac{a+b}{2}}^{b} h\left(y-\frac{a+b}{2}\right) w(y) \mathrm{d} y \int_{a}^{\frac{a+b}{2}} f(x) w(x) \mathrm{d} x \\
& +\int_{\frac{a+b}{2}}^{b} f(y) w(y) \mathrm{d} y \int_{a}^{\frac{a+b}{2}} h\left(\frac{a+b}{2}-x\right) w(x) \mathrm{d} x
\end{aligned}
$$

After substitution $y-\frac{a+b}{2}=t$ in the first integral on the right-hand side and substitution $\frac{a+b}{2}-x=t$ in the integral in the second term of sum, we get

$$
\begin{aligned}
f\left(\frac{a+b}{2}\right) \int_{\frac{a+b}{2}}^{b} \int_{a}^{\frac{a+b}{2}} h(y-x) w(x) w(y) \mathrm{d} x \mathrm{~d} y \leq & \int_{0}^{\frac{b-a}{2}} h(t) w\left(t+\frac{a+b}{2}\right) \mathrm{d} t \int_{a}^{\frac{a+b}{2}} f(x) w(x) \mathrm{d} x \\
& +\int_{0}^{\frac{b-a}{2}} h(t) w\left(\frac{a+b}{2}-t\right) \mathrm{d} t \int_{\frac{a+b}{2}}^{b} f(y) w(y) \mathrm{d} y \\
= & \int_{0}^{\frac{b-a}{2}} h(t) w\left(t+\frac{a+b}{2}\right) \mathrm{d} t \cdot \int_{a}^{b} f(x) w(x) \mathrm{d} x
\end{aligned}
$$

where in the first equality we use that the function w is symmetric on the interval [a, b], i.e. $w\left(\frac{a+b}{2}-t\right)=w\left(\frac{a+b}{2}+t\right)$ for $t \in\left[0, \frac{b-a}{2}\right]$.

Remark 6. Under the conditions of Theorem 5:
(a) If f is an h-concave function, then the inequality in (6) is reversed.
(b) If h submultiplicative, $\int_{a}^{\frac{a+b}{2}} \int_{\frac{a+b}{2}}^{b} h(y-x) w(y) w(x) \mathrm{d} y \mathrm{~d} x \neq 0, h \geq 0$, and if f is an h-concave function then the inequality in (6) is reversed, with constant C as in (7) with change min \rightarrow max.

Remark 7. (a) If f is convex, i.e. $h(t)=t$, then inequality (6) becomes the left-hand side of inequality (2).
(b) Let $w=1$ and let f be an s-convex function in the second sense, i.e. f be an h-convex function with multiplicative $h(t)=t^{s}, s \in(0,1)$. Then the constant C from Theorem 5 has a form

$$
C=\min \left\{\frac{2^{1-s}}{b-a}, \frac{\int_{0}^{\frac{b-a}{2}} t^{s} \mathrm{~d} t}{\int_{a}^{\frac{a+b}{2}} \int_{\frac{a+b}{2}}^{b}(y-x)^{s} \mathrm{~d} y \mathrm{~d} x}\right\}=\min \left\{\frac{2^{1-s}}{b-a}, \frac{s+2}{(b-a)\left(2^{s+1}-1\right)}\right\}
$$

In [5] Jagers shows that

$$
2^{s-1}<\frac{2^{s+1}-1}{s+2}, \quad \text { for } s \in(0,1)
$$

So, the first Hermite-Hadamard inequality for s-convex function in the second sense states:

$$
\begin{equation*}
\frac{2^{s+1}-1}{s+2} \cdot f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(t) \mathrm{d} t \tag{10}
\end{equation*}
$$

The inequality (10) can be found in [5] and it is an improvement of the Dragomir-Fitzpatrick result from [4] where they used constant 2^{s-1} instead of $\frac{2^{s+1}-1}{s+2}$.

In the following text we will deal with the non-weighted Hermite-Hadamard inequalities for h-convex function in the form

$$
\begin{equation*}
\frac{1}{2 h\left(\frac{1}{2}\right)} f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(t) \mathrm{d} t \leq(f(a)+f(b)) \int_{0}^{1} h(t) \mathrm{d} t \tag{11}
\end{equation*}
$$

where $h\left(\frac{1}{2}\right)>0$.
Let us define:

$$
\begin{aligned}
& L:[a, b] \rightarrow \mathbb{R}, L(y)=(f(a)+f(y))(y-a) \int_{0}^{1} h(t) \mathrm{d} t-\int_{a}^{y} f(t) \mathrm{d} t \\
& P:[a, b] \rightarrow \mathbb{R}, P(y)=\int_{a}^{y} f(t) \mathrm{d} t-f\left(\frac{a+y}{2}\right) \frac{y-a}{2 h\left(\frac{1}{2}\right)}
\end{aligned}
$$

Theorem 8. If the function f is h-convex, $f \geq 0, h\left(\frac{1}{2}\right)>0$ and $\frac{1}{4 h\left(\frac{1}{2}\right)} \geq \int_{0}^{1} h(t) \mathrm{d} t$, then

$$
\begin{equation*}
L(y) \geq P(y) \geq 0 \quad \text { for all } y \in[a, b] \tag{12}
\end{equation*}
$$

Proof. The second non-weighted Hermite-Hadamard inequality (11) on intervals $\left[a, \frac{a+y}{2}\right]$ and $\left[\frac{a+y}{2}, y\right]$ gives us:

$$
\begin{align*}
& \int_{a}^{\frac{a+y}{2}} f(t) \mathrm{d} t \leq \frac{f(a)+f\left(\frac{a+y}{2}\right)}{2}(y-a) \int_{0}^{1} h(t) \mathrm{d} t \tag{13}\\
& \int_{\frac{a+y}{2}}^{y} f(t) \mathrm{d} t \leq \frac{f\left(\frac{a+y}{2}\right)+f(y)}{2}(y-a) \int_{0}^{1} h(t) \mathrm{d} t \tag{14}
\end{align*}
$$

Adding (13) and (14) we obtain:

$$
\int_{a}^{y} f(t) \mathrm{d} t \leq(y-a) \int_{0}^{1} h(t) \mathrm{d} t\left[\frac{f(a)+f(y)}{2}+f\left(\frac{a+y}{2}\right)\right]
$$

which is (after multiplying by 2) equivalent to

$$
\int_{a}^{y} f(t) \mathrm{d} t-(y-a) \int_{0}^{1} h(t) \mathrm{d} t \cdot(f(a)+f(y)) \leq 2(y-a) \int_{0}^{1} h(t) \mathrm{d} t \cdot f\left(\frac{a+y}{2}\right)-\int_{a}^{y} f(t) \mathrm{d} t .
$$

Now,

$$
\begin{aligned}
P(y) & =\int_{a}^{y} f(t) \mathrm{d} t-f\left(\frac{a+y}{2}\right) \frac{y-a}{2 h\left(\frac{1}{2}\right)} \\
& \leq \int_{a}^{y} f(t) \mathrm{d} t-f\left(\frac{a+y}{2}\right) 2 \int_{0}^{1} h(t) \mathrm{d} t \cdot(y-a) \\
& \leq(y-a)(f(a)+f(y)) \int_{0}^{1} h(t) \mathrm{d} t-\int_{a}^{y} f(t) \mathrm{d} t=L(y) .
\end{aligned}
$$

The second inequality in (12) is a simple consequence of the first non-weighted Hermite-Hadamard inequality (11).
Remark 9. If $y=b$ and under the same conditions of Theorem 8 we get that the first inequality in (11) is stronger than the second inequality in the non-weighted Hermite-Hadamard inequalities, i.e. we have the following inequality

$$
\begin{equation*}
\frac{1}{b-a} \int_{a}^{b} f(t) \mathrm{d} t-\frac{1}{2 h\left(\frac{1}{2}\right)} f\left(\frac{a+b}{2}\right) \leq(f(a)+f(b)) \int_{0}^{1} h(t) \mathrm{d} t-\frac{1}{b-a} \int_{a}^{b} f(t) \mathrm{d} t . \tag{15}
\end{equation*}
$$

Similar result for convex functions is given in [2, p. 140].
Next theorem gives us some results on errors in trapezoidal and mid-point formulae. Let us define

$$
T_{n}(f ; a, b)=\frac{\delta}{2}\left(\sum_{k=0}^{n-1} f(a+k \delta)+\sum_{j=1}^{n} f(a+j \delta)\right)
$$

and

$$
M_{n}(f ; a, b)=\delta \sum_{k=0}^{n-1} f\left(a+\left(k+\frac{1}{2}\right) \delta\right)
$$

where $\delta=\frac{b-a}{n}$.
The Hermite-Hadamard inequalities (11) can be written as

$$
\begin{equation*}
\frac{1}{2 h\left(\frac{1}{2}\right)} M_{1}(f ; a, b) \leq \int_{a}^{b} f(t) \mathrm{d} t \leq 2 T_{1}(f ; a, b) \int_{0}^{1} h(t) \mathrm{d} t \tag{16}
\end{equation*}
$$

Next theorem extends (15) and (16).
Theorem 10. Let $f:[a, b] \rightarrow \mathbb{R}^{+}$be an h-convex function, $h\left(\frac{1}{2}\right)>0$. Then

$$
\begin{equation*}
\frac{1}{2 h\left(\frac{1}{2}\right)} M_{n}(f ; a, b) \leq \int_{a}^{b} f(t) \mathrm{d} t \leq 2 T_{n}(f ; a, b) \cdot \int_{0}^{1} h(t) \mathrm{d} t \tag{17}
\end{equation*}
$$

and if $\frac{1}{4 h\left(\frac{1}{2}\right)} \geq \int_{0}^{1} h(t) \mathrm{d} t$, then

$$
\begin{equation*}
0 \leq \int_{a}^{b} f(t) \mathrm{d} t-\frac{1}{2 h\left(\frac{1}{2}\right)} M_{n}(f ; a, b) \leq 2 T_{n}(f ; a, b) \int_{0}^{1} h(t) \mathrm{d} t-\int_{a}^{b} f(t) \mathrm{d} t \tag{18}
\end{equation*}
$$

Proof. Applying (11) to the segment $[a+k \delta, a+(k+1) \delta], \delta=\frac{b-a}{n}$, we obtain:

$$
\begin{aligned}
\frac{\delta}{2 h\left(\frac{1}{2}\right)} \cdot f\left(\frac{a+(k+1) \delta+a+k \delta}{2}\right) & \leq \int_{a+k \delta}^{a+(k+1) \delta} f(t) \mathrm{d} t \\
& \leq 2 \delta \cdot \frac{f(a+k \delta)+f(a+(k+1) \delta)}{2} \cdot \int_{0}^{1} h(t) \mathrm{d} t
\end{aligned}
$$

and summing up for $k=0$ to $k=n-1$

$$
\begin{aligned}
\frac{\delta}{2 h\left(\frac{1}{2}\right)} \cdot \sum_{k=0}^{n-1} f\left(a+\left(k+\frac{1}{2}\right) \delta\right) & \leq \int_{a}^{b} f(t) \mathrm{d} t \\
& \leq 2 \delta \cdot \int_{0}^{1} h(t) \mathrm{d} t \cdot \sum_{k=0}^{n-1} \frac{f(a+k \delta)+f(a+(k+1) \delta)}{2}
\end{aligned}
$$

Since $\delta \sum_{k=0}^{n-1} f\left(a+\left(k+\frac{1}{2}\right) \delta\right)=M_{n}(f ; a, b)$ and $\delta \sum_{k=0}^{n-1} \frac{f(a+k \delta)+f(a+(k+1) \delta)}{2}=T_{n}(f ; a, b)$, this proves (17).
The proof of (18) is based on the identity

$$
T_{2 n}(f ; a, b)=\frac{M_{n}(f ; a, b)+T_{n}(f ; a, b)}{2}
$$

From (17) we have

$$
\begin{aligned}
& \int_{a}^{b} f(t) \mathrm{d} t \leq 2 T_{2 n}(f ; a, b) \int_{0}^{1} h(t) \mathrm{d} t=\left(M_{n}(f ; a, b)+T_{n}(f ; a, b)\right) \int_{0}^{1} h(t) \mathrm{d} t \\
& \int_{a}^{b} f(t) \mathrm{d} t-2 M_{n}(f ; a, b) \int_{0}^{1} h(t) \mathrm{d} t \leq 2 T_{n}(f ; a, b) \int_{0}^{1} h(t) \mathrm{d} t-\int_{a}^{b} f(t) \mathrm{d} t
\end{aligned}
$$

Since $\frac{1}{4 h\left(\frac{1}{2}\right)} \geq \int_{0}^{1} h(t) \mathrm{d} t$, we get the second inequality from (18).
Remark 11. The result for a convex function f is due to Allasia, Giordano and Pečarić, [6].

3. Mappings \boldsymbol{H} and F

Let us define two functions on the interval [0, 1]

$$
H(t)=\frac{1}{b-a} \int_{a}^{b} f\left(t x+(1-t) \frac{a+b}{2}\right) \mathrm{d} x
$$

and

$$
F(t)=\frac{1}{(b-a)^{2}} \int_{a}^{b} \int_{a}^{b} f(t x+(1-t) y) \mathrm{d} x \mathrm{~d} y
$$

Obviously $H(0)=f\left(\frac{a+b}{2}\right), H(1)=\frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d} x$. Some properties of these two mappings for convex functions and s-convex functions are given in $[4,7]$ respectively. Here we investigate which of these properties can be generalized for h-convex functions.

Theorem 12. Let f be h-convex on the interval $[a, b], h: J \rightarrow \mathbb{R},[0,1] \subseteq J$. Then the function H is h-convex on $[0,1]$ and for $t \in[0,1]$

$$
\begin{equation*}
H(0) \leq C_{1}(t) H(t) \tag{19}
\end{equation*}
$$

where

$$
C_{1}(t)= \begin{cases}2 h\left(\frac{1}{2}\right), & \text { in general case } \\ \min \left\{2 h\left(\frac{1}{2}\right), \frac{2 \int_{0}^{1} h\left(\frac{b-a}{2} t x\right) \mathrm{d} x}{\int_{0}^{1} \int_{0}^{1} h\left(\frac{b-a}{2} t(y-x+1)\right) \mathrm{d} y \mathrm{~d} x}\right\}, & h \text { satisfies (i) or (ii) of Theorem } 5 .\end{cases}
$$

Proof. The h-convexity of the function H is a consequence of the h-convexity of the function f. Namely, we have

$$
\begin{aligned}
H(\alpha t+\beta u) & =\frac{1}{b-a} \int_{a}^{b} f\left((\alpha t+\beta u) x+(1-\alpha t-\beta u) \frac{a+b}{2}\right) \mathrm{d} x \\
& =\frac{1}{b-a} \int_{a}^{b} f\left(\alpha\left(t x+(1-t) \frac{a+b}{2}\right)+\beta\left(u x+(1-u) \frac{a+b}{2}\right)\right) \mathrm{d} x \\
& \leq \frac{1}{b-a} \int_{a}^{b}\left[h(\alpha) f\left(t x+(1-t) \frac{a+b}{2}\right)+h(\beta) f\left(u x+(1-u) \frac{a+b}{2}\right)\right] \mathrm{d} x \\
& =h(\alpha) H(t)+h(\beta) H(u) .
\end{aligned}
$$

After changing the variable $u=t x+(1-t) \frac{a+b}{2}$ we have

$$
\begin{aligned}
C_{1}(t) H(t) & =\frac{C_{1}(t)}{b-a} \int_{a}^{b} f\left(t x+(1-t) \frac{a+b}{2}\right) \mathrm{d} x \\
& =\frac{C_{1}(t)}{b-a} \int_{u_{L}}^{u_{U}} f(u) \frac{b-a}{u_{U}-u_{L}} \mathrm{~d} u=\frac{C_{1}(t)}{u_{U}-u_{L}} \int_{u_{L}}^{u_{U}} f(u) \mathrm{d} u \\
& \geq f\left(\frac{u_{U}+u_{L}}{2}\right)=f\left(\frac{a+b}{2}\right)
\end{aligned}
$$

where $\frac{c_{1}(t)}{u_{U}-u_{L}}$ is a constant defined in Theorem 5 but with respect to the interval $\left[u_{L}, u_{U}\right]$ where $u_{L}=t a+(1-t) \frac{a+b}{2}$ and $u_{U}=t b+(1-t) \frac{a+b}{2}$.

Remark 13. If f is a convex function, then we get $H(t) \geq H(0)$. It is known result for a convex function. If f is an s-convex function in the second sense, then $C_{1}(t)=\frac{s+2}{2^{s+1}-1}$ and we have the following refinement of the result from [4]:

$$
H(t) \geq \frac{2^{s+1}-1}{s+2} H(0) \geq 2^{s-1} H(0)
$$

Theorem 14. Let f be an h-convex function on the interval $[a, b], h: J \rightarrow \mathbb{R},[0,1] \subseteq J$. Then the function F is symmetric with respect to $\frac{1}{2}$ and h-convex on $[0,1]$. Also, the following inequalities hold

$$
2 h\left(\frac{1}{2}\right) F(t) \geq F\left(\frac{1}{2}\right), \quad C_{1}(t) F(t) \geq H(1-t)
$$

where C_{1} is defined as in the previous theorem.
Proof. Let us prove the first inequality. From

$$
\frac{x+y}{2}=\frac{1}{2}(t x+(1-t) y)+\frac{1}{2}((1-t) x+t y), \quad x, y \in[a, b], t \in[0,1]
$$

we obtain

$$
f\left(\frac{x+y}{2}\right) \leq h\left(\frac{1}{2}\right) f(t x+(1-t) y)+h\left(\frac{1}{2}\right) f((1-t) x+t y)
$$

Integrating over $x \in[a, b]$ and over $y \in[a, b]$ and using the fact that

$$
\int_{a}^{b} \int_{a}^{b} f(t x+(1-t) y) \mathrm{d} x \mathrm{~d} y=\int_{a}^{b} \int_{a}^{b} f((1-t) x+t y) \mathrm{d} x \mathrm{~d} y
$$

we get

$$
\int_{a}^{b} \int_{a}^{b} f\left(\frac{x+y}{2}\right) \mathrm{d} x \mathrm{~d} y \leq 2 h\left(\frac{1}{2}\right) \int_{a}^{b} \int_{a}^{b} f(t x+(1-t) y) \mathrm{d} x \mathrm{~d} y=2 h\left(\frac{1}{2}\right) F(t)(b-a)^{2}
$$

which established the proof.
To get the second inequality we define a function

$$
H_{y}(t)=\frac{1}{b-a} \int_{a}^{b} f(t x+(1-t) y) \mathrm{d} x
$$

for fixed y. Using the substitution $u=t x+(1-t) y$, we obtain

$$
H_{y}(t)=\frac{1}{u_{U}-u_{L}} \int_{u_{L}}^{u_{U}} f(u) \mathrm{d} u
$$

Using the result from Theorem 5 for h-convex function f we get

$$
C_{1}(t) H_{y}(t) \geq f\left(\frac{u_{U}+u_{L}}{2}\right)=f\left(t \cdot \frac{a+b}{2}+(1-t) y\right) .
$$

Integrating over $y \in[a, b]$ and dividing by $(b-a)$ we get that

$$
C_{1}(t) F(t) \geq H(1-t)
$$

Remark 15. If $C_{1}(t)>0$, then we have $F(t) \geq \frac{1}{C_{1}(t)} H(1-t)$ and for variable $1-t$ we have similar: $F(1-t) \geq \frac{1}{C_{1}(1-t)} H(t)$. But F is symmetric, i.e. $F(t)=F(1-t)$, so we have $F(t) \geq \max \left\{\frac{1}{C_{1}(t)} H(1-t), \frac{1}{c_{1}(1-t)} H(t)\right\}$.

If f is a convex function, then we get a known result $F(t) \geq \max \{H(1-t), H(t)\}$.
If h is a multiplicative function, then $C_{1}(t)=C_{1}(1-t)$ and

$$
F(t) \geq \frac{1}{C_{1}(t)} \cdot \max \{H(1-t), H(t)\}
$$

Especially, if $h(t)=t^{s}$, then we get a refinement of the Dragomir-Fitzpatrick result from [4]:

$$
F(t) \geq \frac{2^{s+1}-1}{s+2} \cdot \max \{H(1-t), H(t)\} \geq 2^{s-1} \cdot \max \{H(1-t), H(t)\}
$$

4. Applications

It is interesting to consider a situation when the function f is concave and h-convex simultaneously, or vice versa, when f is convex and h-concave. If f is a concave and h-convex function with $\int_{0}^{1} h(t) \mathrm{d} t>0$, then the classical Hermite-Hadamard inequalities, Theorems 3 and 5 give us

$$
\begin{equation*}
\frac{1}{b-a} \int_{a}^{b} f(t) \mathrm{d} t \leq f\left(\frac{a+b}{2}\right) \leq C \int_{a}^{b} f(t) \mathrm{d} t \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{(b-a) \int_{0}^{1} h(t) \mathrm{d} t} \int_{a}^{b} f(t) \mathrm{d} t \leq f(a)+f(b) \leq \frac{2}{b-a} \int_{a}^{b} f(t) \mathrm{d} t \tag{21}
\end{equation*}
$$

If f is a convex and h-concave function simultaneously, then reversed signs in inequalities (20) and (21) hold.
Putting for f and h special functions we obtain new results for inequalities between p-logarithmic mean and mean of the order p. Let us recall the definition of these means. If $p \in \mathbb{R} \backslash\{0,-1\}, p$-logarithmic mean L_{p} of two different numbers $a, b \in \mathbb{R}$ is defined as

$$
L_{p}=\left[\frac{b^{p+1}-a^{p+1}}{(p+1)(b-a)}\right]^{1 / p}
$$

and the mean of the order p is defined as $M_{p}=\left(\frac{a^{p}+b^{p}}{2}\right)^{1 / p}$. If $a=b$, then $L_{p}=M_{p}=a$.
In [1] the following result for functions f and h_{k} defined as $h_{k}(x)=x^{k}, f(x)=x^{p}, x>0, k, p \in \mathbb{R}$ is given:

- the function f is h_{k}-convex if

1. $p \in(-\infty, 0] \cup[1, \infty)$ and $k \leq 1$;
2. $p \in(0,1)$ and $k \leq p$;

- the function f is h_{k}-concave if

1. $p \in(0,1)$ and $k \geq 1$;
2. $p>1$ and $k \geq p$.

So, for $p \in(0,1)$ and $0 \leq k \leq p$ we have the following inequalities:

$$
\begin{aligned}
& \left(\frac{k+2}{2^{k+1}-1}\right)^{1 / p} L_{p} \geq M_{1} \geq L_{p}, \\
& L_{p} \geq M_{p} \geq\left(\frac{k+1}{2}\right)^{1 / p} L_{p} .
\end{aligned}
$$

If $p>1$ and $k \geq p$, then reversed signs in the previous inequalities hold.

Acknowledgements

The authors thank the referees for very constructive comments. The research was supported by the Ministry of Science, Education and Sports of the Republic of Croatia under grants 058-1170889-1050 and 037-0372785-2759.

References

[1] S. Varošanec, On h-convexity, J. Math. Anal. Appl. 326 (2007) 303-311.
[2] J.E. Pečarić, F. Proschan, Y.L. Tong, Convex Functions, Partial Orderings, and Statistical Applications, Academic Press, Inc., San Diego, 1992.
[3] S.S. Dragomir, C.E.M. Pearce, Selected topics on Hermite-Hadamard inequalities and applications, in: RGMIA Monographs, Victoria University, 2000. Online: http://www.staff.vu.edu.au/RGMIA/monographs/hermite_hadamard.html.
[4] S.S. Dragomir, S. Fitzpatrick, The Hadamard inequalities for s-convex functions in the second sense, Demonstratio Math. 32 (4) (1999) $687-696$.
[5] B. Jagers, On Hadamard-type inequality for s-convex functions, Online: http://www3.cs.utwente.nl/~jagersaa/alphaframes/Alpha.pdf.
[6] G. Allasia, C. Giordano, J. Pečarić, Hadamard-type inequalities for (2r)-convex functions with applications, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 133 (1999) 187-200.
[7] S.S. Dragomir, Two mappings in connection to Hadamard's inequalities, J. Math. Anal. Appl. 167 (1992) 49-56.

[^0]: * Corresponding author.

 E-mail addresses: bombarde@math.hr (M. Bombardelli), varosans@math.hr (S. Varošanec).

