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ABSTRACT 

It is shown that the solution to every matrix Riccati equation can be generated by 
the resolvent of a certain Fredholm integral operator and, conversely, this resolvent can 
be determined from the corresponding Riccati solution. This  result leads to a com- 
putational scheme, based on initial-value methods, for solving a large class of Fredholm 
integral equations. A connection between this theory and the factorization of integral 
operators is also described. 

I. INTRODUCTION 

In an important paper on Filtering Theory, Kalman and Bucy [1] showed that 
there was a basic equivalence between a certain matrix Riccati equation and the 
Wiener-Hopf integral equation for optimum filtering. Other examples of this rela- 
tionship are found in the theory of stochastic processes [2] and radiative transfer [3]. 

In this paper we prove, without recourse to any underlying physical model, that 
the solution to every matrix Riccati equation can be generated by the resolvent of 
a certain Fredholm integral operator and, in turn, this resolvent can be determined 
from the solution of the corresponding Riccati equation. Besides completing the 
picture of equivalence, this result leads to a computational scheme, based on initial- 
value methods, for solving a large class of Fredholm integral equations. 

The ideas presented here are rooted in the theory of "embedding" of integral 
operators as developed by Bellman, Kalaba, and Krein (cf. [4]-[7]). 

In Section 2, the main theorem is stated, the proof being given in Section 5. 
Section 3 contains some examples to show the applicability of the method. A connection 
between this theory and the factorization of integral operators is described in 
Section 4. 

* This  work was supported in part by the National Science Foundation under  research 
grant NSF-GP  7529. 
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2. MAIN THEOREM 

By a matrix Riccati equation we mean the initial-value problem: 

l d R = A(x) B(x) R + RC(x) -F RD(x) R, 
(I) dx 

R(a) F, 

where A, B, C, D are n x m, n • n, m x m, m x n matrices, respectively, whose 
elements are complex-valued continuous functions of a real variable x on the interval 
[a, oo) and where F is an arbitrary n X m matrix of complex numbers. Since the 
function A + BR -t R C  + RDR is locally Lipschitz, the solution to (I) is unique 
wherever it exists. Let m~ denote the maximal interval of existence, i.e., 

mi = [a, b); b = sup {s : (I) has a solution on [a, s]}. 

We now construct the associated integral operator. The matrices A, B, C, D, and 
F will be the same as in (I). 

A continuous n x m matrix kernel k(t, s), t, s ~ a, will be called fundamental 
for the matrices A(t), B(t), C(t), and F, if k is continuously differentiable on each of 
the sets t :> s, t < s and t = s, and satisfies the system of equations 

k(t, s) := B(t) k(t, s), t >~ s, 
(a) aT/ 

e k(t, s) =- k(t, s) C(s), t ~ s, (b) ~s 
(2.1) 

d k(t, t) -:- A(t) + B(t) k(t, t) + k(t, t) C(t), t ~ a, (c) ~/ 

(d) k(a, a) = F. 

The above equations specify the function k(t, s) uniquely. The  precise form of 
this function is not important. However, the construction is given below for com- 
pleteness: 

Let q~(t, ~:) and T(s e, s) be the n x n and m x m matrix solutions to the equations 

~ O(t, ~:) =: B(t) cb(t, s~), O(s e, s ~) = I . x . ,  

a 
e~ W($, s) == T(~, s) C(s), T(~, ~) = Imxr., 

where I is the identity matrix. Then the function 

k(t, s) = O(t, a)FTJ(a, s) + ;rain.,8) ~b(t, s e) A(~:) W($, s) ds ~, t, s ~ a, 
~ a  

has the desired properties. 
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Now suppose D(t) is factored in the form 

D(t) = G(t) H(t), 

where G and H are continuous matrix functions on [a, oo) of orders m • p , p  • n. 
(One such factorization is always possible, i.e., p = n, G = D, H ---- I.) Define the 
operator T x on the space C~[a, x] of p-vectors, whose components are complex-valued 
continuous functions on [a, x], by 

F ( r j ) ( t )  = H( t )  h(t, s) C ( s ) f ( s )  as, t e [a, x]. 
a 

T= is an integral operator on Cv[a, x] with kernel 

T(t, s) :- H(t) h(t, s) G(s). (2.2) 

(The kernel in the Wiener-Hopf  equation for optimum filtering is of this form [1].) 
Let mu denote the maximal interval of existence of the inverse of (I  --  7"=); more 

precisely 

mi, == [~, ~), 
c = sup{y : ( I  - -  T=) has an inverse in the algebra 

of bounded linear operators on C~[a, x], for each x e [a, y]}. 

Finally, for x e mu and a ~ t, s ~ x, let K(t, s, x) denote the Fredholm resolvent 
of T~, that is, the kernel of the operator (I  - -  T~) -x - -  I. 

Our main result is the following. 

THEOREM 1. (a) Let R(x) satisfy the Riccati equation (I) on ml : 

I d R = A(x) -F B(x) R -F Re(x) + RD(x) R, 
(I) 

R(a) = F. 

For each fixed t, s e mi , define the functions U(t, x) and V(s, x) as the (unique) solutions 
to the initial-value problems: 

(II) I~ v(t, x) = v(t, x)(c(x) + D(x) R(=)}, t ~ x, 

V(t,  t) = H( t )  R(t); 

l ~  V(,, x) = (B(~) + R(=) D(x)} V(s, x), s ~< =, 
( I I I )  

V(s, s) R(s) Cds). 
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Then the Fredholm resolvent K(t,  s, x) of Tx exists for each x ~ ml and is given by 

(IV) l ~--~ K(t,  s, x) --- U(t, x) D(x) V(s, x), 

K(t ,  x, x) = U(t, x) G(x), 

K(x,  s, x) = H(x) V(s, x). 

a ~ t , s ~ x ,  

(b) For x ~ mlt , let K(t, s, x) be the Fredholm resolvent of Tx . Set 

f 
ag 

U(t, x) = H(t)  k(t, x) + K(t,  s, x) H(s) k(s, x) ds, 
c* 

a < ~ t ~ x ;  

equivalently, U(t, x) is the (unique) solution to 

f" u(t, x) = n(t)  h(t, x) + T(t, s) U(s, x) as, 

Then the function 

R(x) = k(x, x) + k(~, s) C(s) ~(s, x) as 

a.~< t ~< x. (2.3) 

is a continuously differentiable solution to (I) on ran. 

COROLLARY 1. The operator ( I -  Tz) has a bounded inverse for all x ~ [a, b] 
if and only i f  the Riccati equation (I) has a solution on [a, b]. Hence m I = mix. 

Any condition which keeps the number 1 out of the spectrum of T~, for all x ~> a, 
will force global existence for the solution to (I). This  will be the case, in particular, 
if for all x >~ a, either ti T~ I1 < ! or Tx is equivalent to a negative-semidefinite operator. 
An example of the latter is given by 

COROLLARY 2. Let A,  B, C, D and F be n • n matrices such that 

(i) C(t) = adjoint of B(t), 

(ii) A(t)  and (--D(t))  are nonnegative-definite for all t >1 a, 

(iii) F is nonnegative-definite. 

Then the Riccati equation (I) has a solution for all t >~ a. 

The Riccati equations occuring in the theory of optimal filtering and regulation 
(cf. [I]) satisfy the hypotheses of Corollary 2. 

Theorem 1 and its corollaries are proved in Section 5. 
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Remarks. (i) Equations (I)-(IV) are related to the Riccati systems considered by 
Redheffer and Reid [8]. 

(ii) The  algorithm contained in part (a) is as follows: To  compute the value 
of K(to, So, b), where b ~ mi and t o <: so, say, integrate (I) from x -- a to x : to, 
at which point the initial condition for (II) is known. Adjoin (II) and integrate both (I) 
and (II) from x = t o to x : so, at which point the initial conditions for (III)  and 
(IV) are known. Adjoin (III)  and (IV) and integrate the entire system from x : s o 
t o x  = b .  

(iii) In terms of the resolvent kernel K(t, s, x), the (unique) solution to the 
equation 

f ( t ,  x) = g(t) + T(t, s) f (s ,  x) ds, x e mn,  (2.4) 

may be expressed by 

f ( t ,  x) = g(t) + f~ K(t, s, x)g(s) ds. 

Alternatively, following the same procedure as in Theorem 1, one may compute 
the solution of (2.4) from the initial-value problem 

I f--~f(t, x) : U(t,x) G(x) f (x ,  x), t ~ x, x e mu ,  

f (t, t) : g(t) + tI(t) W(t), 

d 
~-/ W = {B(t) R(t) D(t)} W + R(t) G(t)g(t), 

W(a)  = o. 

(iv) The  kernel T(t, s) in Theorem 1 is not as special as it may initially appear. 
In fact, any continuous kernel may be approximated uniformly on compacta by such 
a function. This is seen, for example, by approximating each component of the kernel 
by an exponential series. The matrix k(t, s) can then be chosen as a diagonal matrix 
of elements of the form exp(zt --  ws). The matrices H and G are then determined 
by the weights in the relevant series. Using the method of "differential approximation," 
it is also possible to base the approximation on the coefficient matrices and initial 
conditions of (2.1) and (2.2), rather than on special solutions (cf. [9]). 

Further, Theorem 1 itself may be extended to the class of continuous kernels by 
passing to infinite-dimensional differential equations. The  rigorous treatment is 
basically an exercise in the style of Dieudonn6 ([I0], Chapter 10). 
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3. EXAMPLES 

In this section we give some examples for scalar kernels. 
Firs t  consider a kernel of the form 

T(t, s) = ~ h.(t)g.(s) exp(--~, .  ] t - -  s I), (3.1) 
n=lt 

where {h.} and {g.} are continuous functions and {~,.} are constants. In  matrix notation, 

T(t, s) = H(t) k(t, s) G(s), 

where H(t) = (hi(t),..., hv(t)), G(s) is the transpose of 

(gl(s),..., gr(s)) and k(t, s) = Diag[exp( - -y l  I t - -  s 1),-.., exp(- -e~  I t - -  s I)]- 

The  function k(t, s) is a fundamental  kernel for the matrices A, B, C, F where 

- � 8 9  = B = C = D i a g ( - - y l  ..... --7v) 

and F ---- I .  The  relevant Riccati equation here is 

l d_d_ R = --2B + BR + RB -4- RG(x) H(x) R, 
dx 

R (a) = x. 

With  suitable convergence of the series (3.1), the case p = r can be handled in 
the same manner as Theorem 1. Similar kernels are treated in [11] and [12]. 

More generally, one can treat  kernels of the form 

T(t, s) -- S~h+(t, a) g:e(s, fl) e -~t-~ dW:~(a, fi), 

where the (q-) representation holds for t >~ s, the ( - - )  representation holds for t < s, 
and where W• fl) are functions of two complex variables (cf. [6]). 

The  efficacy of this method lies in the choice of the representation so as to make 
the underlying differential equations numerically stable. 

4. SPECIAL FACTORIZATIONS 

Following Gohberg and Krein  [13], a continuous matrix kernel T(t, s) defined on 
[a, b] • [a, b] is said to admit  a specialfactorization if there exist continuous Vol ter ra  

571/21x-6 
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kernels V+(t, s), vanishing on t > s and t < s, respectively, which have the property 
that the Fredholm resolvent K(t, s) of T(t, s) is representable in the form 

b 

K(t,s) == V+(t,s) + V_(t,s) + f V+(t,y) V (y,s)dy, a <~ t,s <~ b. (4.1) 
r 

In  operator notation this is equivalent to the equation 

(I  - -  T)  -1 = (I  + V+)(I + V_). 

In [13] it is proved that T(t, s) has a special factorization if and only if the operator 
Tx on C~[a, x] defined by 

(Txf)( t)  =- T(t, s)f(s)ds, a <~ t <~ x 
r 

has a bounded inverse for each x in [a, b]. For the kernels considered in Section 2, 
this result, in combination with Theorem l, leads to another characterization of 
special factorizations. 

THEOREM 2. Let k(t, s) be a fundamental kernel for the matrices A(t), B(t), C(t), 
and F and let T(t, s) == H(t) k(t, s) G(s), a <~ t, s <~ b, where D(t) =- G(t) H(t). Then 
T(t, s) admits a special factorization if  and only if the Riccati equation 

l d__ R = A(x) + B(x) R + RC(x) + RD(x) R, 
dx 

R(a) F, 

has a solution on [a, b]. In this case the Volterra kernels V= are given by 

V+(t, s) = U(t, s) G(s), t <<_ s, 

--~ O, t > s, 

V (t, s) = H(t) V(t, s), t > s, 

= 0 ,  t <~ s, 

where U and V are defined by Eq. (II)  and ( I I I )  of Theorem 1. 

5. PROOF OF THEOREM [ 

Throughout  this proof, we make constant use of two well-known facts about 
Fredholm integral equations. 
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(i) Uniqueness: For each x ~ mli and g ~ C~[a, x], the equation 

a~ 

f ( t )  = g(t) + f T(t, s ) f (s)  ds, a ~ t ~ x, (5.1) 
a 

has a unique solution in C~[a, x]. 

(ii) Superposition: I f f i  is the solution to (5.1) with g = g i ,  i = 1, 2 and ~/x, Aa 
are constant matrices, then A x f  x + Azfz is the solution to (5. I) wi thg = Axg x + Azg2 �9 

We first prove Part (b). For x ~ m11, let K(t, s, x) be the resolvent kernel of T(t, s). 
The  resolvent equation gives 

l K(t,  s, x) := T(t, s) + T(t, r) K(r, s, x) dr, a <~ t, s <~ x. (5.2) 
a 

For s > x, s ~ ran,  we also let K(t, s, x) denote the unique solution to (5.2). Similarly, 
for y ~ m n ,  

f" K(t,  s, y)  = T(t, s) + r( t ,  r) K(r, s , y )  dr, a <~ t <~ y,  s e ran. (5.3) 
a 

Subtracting (5.2) from (5.3) gives, for a <~ t <~ x <~ y, 

f" (K(t, s, y)  -- K(t,  s, x)} = r(t ,  r) K(r, s, y)  dr 
X 

i + T(t, r){K(r, s, y) -- K(r, s, x)} dr. (5.4) 
a 

I t  is easily checked that K(t, s, x) is continuous in the variables t, s, x simultaneously. 
By superposition and uniqueness, it follows that (5.4), considered as an integral 
equation in t with s, x, y fixed, has the solution 

(v K(t, r, x) K(r, s, y) dr. (5.5 / {K(t, s, y)  -- K(t,  s, x)} = , x 

This,  in turn, implies that K(t, s, x) is continuously differentiable in x and 

7-- K(t,  s, x) = K(t,  x, x) K(x, s, x). (5.6) 
OX 

(This is the variational formula for Fredholm resolvents due independently to 
Bellman [4] and Krein [7].) 

Now let U(t, x) be defined by 

f~ U(t, x) = H(t) k(t, x) + K(t,  s, x) H(s) k(s, x), a <~ t <~ x. (5.7) 

Therefore U(t, x) is continuous in t and x and since k(t, x) is continuously differentiable 
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in x for t ~< x, the same is true for U(t, x). Differentiating (5.7) and using (2.1) and 
(5.6) gives 

8 
O-x U(t, x) = H(t) k(t, x) C(x) + K(t, x, x) H(x) k(x, x) 

i + K(t, x, x) K(x, s, x) H(s) k(s, x) ds 
(* 

+ K(t, s, x) H(s) k(s, x) ds C(x). (5.8) 
a 

Since T(t, s) ~- H(t) k(t, s) G(s), we see, on comparing (5.7) and (5.2), that K(t, x, x) = 
U(t, x) G(x). Using this in (5.8) then gives 

e u(t, x) = v(t ,  ~)(C(x) + G(x) U(~, x)), t <~ x. (5.9) 
8x 

Now set 

f 
~ 

R(x) = k(x, x) + k(x, s) G(s) ~(~, x) ~,  (5.I0) 
tZ 

so that U(x, x) = H(x) R(x). Equation (5.10) shows that R is continuously differentiable 
on m n ;  further, on using (2.1) and (5.9), we have 

a__ R = A(x) + B(x) k(x, x) + k(x, x) C(x) k(x, x) C(x) U(x, x) 
dx -:- 

+ B(x) f~ k(x, s)G(s)U(s, x)ds 

f~ k(x, ~) C(x) v(~, x) ~ {C(x) + C(x) U(x, x)~ + 

= A(x) + B(x) R + Re(x) + RG(x) H(x) R. 

Equation (I) follows on noting D(x) = G(x) H(x) and R(a) = k(a, a) = F. 
Now we turn to part  (a). Let  R(x) be the solution to (I) on mt and let U(t, x) be 

defined by (II). I t  is important to note that U(t, x) is uniquely defined by this initial- 
value problem and is continuously differentiable in x ~> t, x e m I . 

Now put 

S(x)  = k(x, x) + k(x, s) a(s)  u(s,  x) d~, x �9 mi . 

Thus  the function Y(x) = S(x) --  R(x) satisfies the linear equation 

d 
~x Y = B Y  + Y(C + DR), x ~ m I . 
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The initial condition Y(a) = S(a) - -  R(a) = O, then forces Y ~ O, i . e . ,  

S(x) = R(x), x e mi .  (5.11) 

Now define W(t, x) by 

W(t, x) = H(t)  k(t, x) + ( z  H(t )  k(t, s) G(s) U(s, x) ds, (5.12) 
d a  

a ~ t < ~ x .  

On differentiating (5.12), as in part (b) above, we have 

0 
0-~ W(t, x) = W(t, x){C(x) + D(x) R(x)}, a <~ t <~ x. 

Further, W(t, t) = H(t)  S(t)  = H(t )  R(t) by (5.11). Thus W(t, x) is a continuously 
differentiable solution to (II) and by the uniqueness already noted it follows that 
W(t, x) ~ U(t, x), a ~ t <~ x. In other words U(t, x) is the unique solution to (2.3) 
on m I . 

A similar argument shows that V(s, x) defined by (III) is the unique solution to 

f 
~ 

V(s, x) = k(x, s) G(s) + V(y, x) T(y, s) dy, 
a 

a ~<s ~<x, x E m l .  (5.13) 

From (2.3) and (5.13) it is readily checked that the function K(t, s, x), defined by (IV), 
satisfies the resolvent equations: 

K(t, s, x) = 
f 

~ 

T(t, s) 7- T(t, y)  K(y,  s, x) dy, 
a 

T(t, s) § K(t,  y, x) T(y, s) dy, 
fl 

a - ~ t , s ~ x .  

Thus, K(t, s, x) is the Fredholm resolvent of Tx for x 6 mi. Q.E.D. 

COROLLARY i. Part (a) implies that mt C m i I  , while Part (b) gives the opposite 
inclusion. 

COROLLARY 2. Let @(t, ~:) be the principle matrix for B(t); that is, 

O(t, ~) = B(t)  q~(t, ~), t >i ~, 
at 

�9 (~, ~) = ~ •  
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and let * denote the operation of conjugate-transpose. Then, in the terminology of 
Section 2, the kernel 

k(t, s) = ~(t, a)Fff)*(s, a) + fmin..,~ q~(t, ~) A(~) r ~) d~:, (5.14) 

is fundamental for the matrices A(t), B(t), B*(t) and F. 

Now set T(t, s) = k(t, s) D(s). I t  follows from Theorem 1 that the Riccati equation 

l d R = A(x) --[- B(x) R + RB*(x) + RD(x) R, 

R(a)  = F 

has a solution on m n . We will prove, under the hypotheses of this corollary, that 
the spectrum of T~ is contained in the negative real axis, for all x ~ a. The  Fredholm 
alternative then implies roll = [a, oo). 

By hypothesis (ii) on D we may write 

(--D(s)) = J(s) J(s), 

where J is nonnegative-definite matrix for all s >~ a. Since the spectrum of the integral 
operator with kernel k(t, s)(--D(s)) is identical to that of operator with kernel 
J(t) k(t, s) J(s), it suffices to prove that k(t, s) is the kernel of a nonnegative-definite 
operator; precisely, for e v e r y f e  C~[a, x], 

f*(t)dt  s)f(s)ds >t O. (5.15) 
a 

Using (5.14), we can write the left-hand side of (5.15) as N x + N2,  where 

and 

N, = (f: 

(5.16) 

The  number  -/~71 is nonnegative by hypothesis (iii). On interchanging the orders of 
integration in (5.16), we have 

Hypothesis (ii) on ,4 shows that N 2 is nonnegative, which then completes the proof. 
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