
Journal of Computational and Applied Mathematics 236 (2012) 2685–2695

Contents lists available at SciVerse ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

A parametric approach for solving a class of generalized
quadratic-transformable rank-two nonconvex programs
Riccardo Cambini ∗, Claudio Sodini
Department of Statistics and Applied Mathematics, Faculty of Economics, University of Pisa, Via Cosimo Ridolfi 10, 56124 Pisa, Italy

a r t i c l e i n f o

Article history:
Received 27 October 2009
Received in revised form 3 June 2011

MSC:
90C20
90C26
90C31

Keywords:
Generalized quadratic programming
Low rank structures
Optimal level solutions
Global optimization

a b s t r a c t

The aim of this paper is to propose a solution algorithm for a particular class of rank-two
nonconvex programs having a polyhedral feasible region. The algorithm is based on the
so-called ‘‘optimal level solutions’’ method. Various global optimality conditions are
discussed and implemented in order to improve the efficiency of the algorithm.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The aim of this paper is to study, from a theoretical, an algorithmic, and a computational point of view, the following
class of rank-two nonconvex programs:

P :

inf f (x) = φ


1
2
xTQx + qT x, dT x


x ∈ X = {x ∈ ℜ

n
: Ax≤b},

(1)

where A ∈ ℜ
m×n, b ∈ ℜ

m, q, d ∈ ℜ
n, Q ∈ ℜ

n×n is positive definite, and X ≠ ∅. The scalar function φ( y1, y2) is assumed to
be continuous and strictly increasing with respect to variable y1, and is defined for all values inΩ , where

Ω =


( y1, y2) ∈ ℜ

2
: y1 =

1
2
xTQx + qT x, y2 = dT x, x ∈ X


.

The considered class of objective functions f (x) is extremely wide, and it covers multiplicative, fractional, and d.c.
quadratic functions (as it is known, a d.c. function is a function expressed by the difference of two convex functions).
Just as an example, given any strictly increasing real function g1, any positive function g2, and any real function g3,
then the following function f (x) verifies the assumptions of problem P by using φ( y1, y2) = g1( y1)g2( y2) + g3( y2)
(see also [1]):

f (x) = g1


1
2
xTQx + qT x


g2


dT x


+ g3


dT x


. (2)

∗ Corresponding author. Tel.: +39 0502216249; fax: +39 0502216375.
E-mail addresses: cambric@ec.unipi.it (R. Cambini), csodini@ec.unipi.it (C. Sodini).

0377-0427/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2012.01.004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82464051?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.cam.2012.01.004
http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
mailto:cambric@ec.unipi.it
mailto:csodini@ec.unipi.it
http://dx.doi.org/10.1016/j.cam.2012.01.004


2686 R. Cambini, C. Sodini / Journal of Computational and Applied Mathematics 236 (2012) 2685–2695

Various particular problems belonging to this class have been studied in the literature ofmathematical programming and
global optimization, fromboth a theoretic and an applicative point of view [2–8]. For these particular problems the proposed
solution algorithms are often based on branch and bound, branch and cut, or branch and reducemethods. It is worth noticing
that this class covers several multiplicative, fractional, and d.c. quadratic problems (see [9–11,1,12–15]) which are used in
applications such as locationmodels, tax programmingmodels, portfolio theory, risk theory, and data envelopment analysis
(see [16,17,13,18,14,19]).

Unfortunately, the current literature does not provide any algorithm which can determine the global solution of all the
problems P belonging to the class described in (1).

The aim of this paper is to propose a solution algorithmwhich is able to solve in an unifying approach all of the problems
considered in (1) by means of the so-called ‘‘optimal level solutions’’ method (see [20,9,21,10,11,1,12,22,23,15,24]). It is
known that this is a parametric method, which finds the optimum of the problem by determining the minima of particular
subproblems. In particular, the optimal solutions of these subproblems are obtained bymeans of a sensitivity analysis aimed
at maintaining the Karush–Kuhn–Tucker optimality conditions. Applying the optimal level solutions method to problem
P , we obtain some strictly convex quadratic subproblems which are independent of function φ( y1, y2). In other words,
different problems share the same set of optimal level solutions, and this allows us to propose a unifying method to solve
all of them.

In Section 2, we describe how the optimal level solutions method can be applied to problem P; in Section 3, a solution
algorithm is proposed and fully described; in Section 4 some results are proposed in order to improve the performance of
themethod; finally, in Section 5 the results of a deep computational test are provided and discussed, while in Section 6 some
real applications are described.

2. A parametric approach

In this section, we show how problem P can be solved by means of the so-called optimal level solutions approach
(see [10,11,1,23]). With this aim, let ξ ∈ ℜ be a real parameter, and let us define the corresponding parametrical subset
of X:

Xξ = {x ∈ ℜ
n

: Ax≤b, dT x = ξ}.

In the same way, the following further subset of X can be defined:

X[ξ1,ξ2] = {x ∈ ℜ
n

: Ax≤b, ξ1 ≤ dT x ≤ ξ2}.

The following parametric subproblem can then be obtained just by adding to problem P the constraint dT x = ξ :

Pξ :

minφ

1
2
xTQx + qT x, ξ


x ∈ Xξ = {x ∈ ℜ

n
: Ax≤b, dT x = ξ}.

The parameter ξ is said to be a feasible level if the set Xξ is nonempty. An optimal solution of problem Pξ is called an optimal
level solution. Since φ( y1, y2) is strictly increasing with respect to variable y1, for any feasible level ξ the optimal solution of
problem Pξ coincides with the optimal solution of the following strictly convex quadratic problem Pξ :

Pξ :


min

1
2
xTQx + qT x

x ∈ Xξ = {x ∈ ℜ
n

: Ax≤b, dT x = ξ}.

Obviously, an optimal solution of problem P is also an optimal level solution and, in particular, it is the optimal level solution
with the smallest value; the idea of this approach is then to scan all the feasible levels, studying the corresponding optimal
level solutions, until the minimizer of the problem is reached. Starting from an incumbent optimal level solution, this can
be done by means of a sensitivity analysis on the parameter ξ , which allows us to move in the various steps through several
optimal level solutions until the optimal solution is found (see [1]).

Remark 2.1. Notice that problem Pξ admits one and only one minimum point, since its objective function is quadratic and
positive definite and the feasible region Xξ is closed. Since function φ( y1, y2) is strictly increasing with respect to variable
y1 and is defined for all the values in Ω , problem Pξ admits one and only one minimum point too, the same as Pξ . As a
consequence, the following logical implication holds:

ξ ∈ ℜ is a feasible level ⇒ argmin
x∈Xξ

f (x) ≠ ∅.

2.1. Sensitivity analysis

Let x′ be the optimal solution of problem Pξ ′ , where dT x′
= ξ ′, and let us consider the following Karush–Kuhn–Tucker

conditions for Pξ ′ :
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Qx′
+ q = ATµ+ dλ

dT x′
= ξ ′

Ax′
≤b feasibility

µ≤0 optimality

µT (Ax′
− b) = 0 complementarity

µ ∈ ℜ
m, λ ∈ ℜ.

(3)

Since Pξ ′ is a quadratic strictly convex problem, the previous system has at least one solution (µ′, λ′). By means of a sort of
sensitivity analysis, we now aim to study the optimal level solutions of problems Pξ ′+θ , θ ∈ (0, ϵ), with ϵ > 0 small enough.
This can be done by maintaining the consistence of the Karush–Kuhn–Tucker systems corresponding to these problems.
Since the Karush–Kuhn–Tucker systems are linear whenever the complementarity conditions are implicitly handled, the
solution of the optimality conditions regarding Pξ ′+θ , θ ∈ (0, ϵ), with ϵ > 0 small enough, is of the form

x′(θ) = x′
+ θ∆x, µ′(θ) = µ′

+ θ∆µ, λ′(θ) = λ′
+ θ∆λ. (4)

It is worth pointing out that the strict convexity of problem Pξ ′+θ guarantees for any θ ∈ [0, ϵ) the uniqueness of the optimal
level solution x′(θ) = x′

+ θ∆x; this implies also the following important property:

vector ∆x is unique and different from 0.

Clearly, the Karush–Kuhn–Tucker conditions are verified for values of θ ≥ 0 such that the following hold

Feasibility conditions: Ax′
+ θA∆x≤b

Optimality conditions: µ′
+ θ∆µ≤0.

Our aim is to determine the values of x′, ∆x, µ′, ∆µ, λ′, and ∆λ. By means of these parameters, the value θm = min {F ,O}

can also be computed, where

F = sup{θ ≥ 0 : Ax′
+ θA∆x≤b}

O = sup{θ ≥ 0 : µ′
+ θ∆µ≤0}.

Observe that in [1] it has been proved that F and O are positive values whenever ξ ′ < ξmax, so θm results in being positive
too.

Notice that for θ ∈ [0, θm] both the optimality and the feasibility of x′(θ) are guaranteed, so x′(θ) represents a segment
of optimal level solutions. Starting from x′(θm), we can iterate the process determining a new segment of optimal level
solutions. As a consequence, this yields that the set of the optimal level solutions is nothing but a connected set given by the
union of segments.

In [1], various results are given for determining the values of the feasibility and optimality parameters. In this paper, we
aim to propose a simplified approach for determining them from a computational point of view, taking into account that
the starting optimal level solution x′

= x′(0) is known.
Let x′ be the optimal level solution corresponding to level ξ ′, and let x′(δ) = x′

+ δ∆x be the optimal level solution
corresponding to level ξ ′

+ δ, with δ > 0 small enough to guarantee that x′ and x′(δ) belong to the same segment of optimal
level solutions. Hence,

∆x =
x′(δ)− x′

δ
.

Once ∆x is computed, the set of binding constraints for θ ∈ [0, δ] can be easily determined, so the complementarity
conditions in the Karush–Kuhn–Tucker system can be implicitly handled.

With this aim, let AB be the largest submatrix of A (made by rows of A) such that AB(x′
+ θ∆x) = bB for all θ ∈ [0, δ],

where bB is the subvector of b corresponding to AB. Notice that the positivity of δ implies that such a condition is equivalent
to the following one:

ABx′
= bB and AB∆x = 0.

By implicitly handling the complementarity conditions, the Karush–Kuhn–Tucker system for θ ∈ [0, δ] becomes the
following one:−AT

BµB −dλ +Qx = −q
ABx = bB
dT x = ξ ′

+ θ,

which can be expressed in matrix form as

S


µB
λ
x


=


−q
bB

ξ ′
+ θ


, where S =


−MT Q
0 M


, M =


AB

dT


. (5)
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Procedure Parameters(inputs: x′; outputs:∆x, µ′,∆µ, λ′,∆λ, F , O, θm)
let δ > 0 be the step parameter; set ξ ′

:= dT x′;
let x′

δ := argmin{Pξ ′+δ} and set∆x :=
x′δ−x′

δ
;

let AB be the submatrix of A such that ABx′
= bB and AB∆x = 0;

if rank


AB
dT


< rows


AB
dT


then delete the redundant rows of AB;

set M :=


AB
dT


, S :=


−MT Q
0 M


and compute S−1;

set


µ′

B
λ′

x′


:= S−1


−q
bB
ξ ′


and


∆µB
∆λ
∆x


:= S−1

 0
0
1


;

set F := sup{θ ≥ 0 : Ax′
+ θA∆x≤b};

set O := sup{θ ≥ 0 : µ′

B + θ∆µB≤0} and θm := min {F ,O};
end proc.

Assuming the rows of matrix M to be linearly independent (which can be obtained by eventually deleting some redundant
rows of AB), we have that matrix S is nonsingular (for the positive definiteness of Q ). As a consequence, the solution of (5)
is unique, and it is given byµ′

B(θ)
λ′(θ)
x′(θ)

 =

µ′

B
λ′

x′

 + θ


∆µB
∆λ
∆x


= S−1


−q
bB
ξ ′


+ θS−1

0
0
1


.

Clearly, the parametersµi and∆µi corresponding to the nonbasic rows of A are equal to zero. Notice also that the valueO can
be computed by using the parameters µ′

B and∆µB only. The described approach is summarized in the following procedure
‘‘Parameters()’’.

In the solution algorithm, there will be the need to evaluate the objective function f (x) = φ( 12x
TQx+ qT x, dT x) along the

obtained segment of optimal level solutions x′(θ), θ ∈ [0, θm]. With this aim, it is worth defining the following restriction
function:

z(θ) = f

x′

+ θ∆x


= φ


1
2
θ2∆λ + θλ′

+
1
2
x′TQx′

+ qT x′, ξ ′
+ θ


,

wherewe have taken into account (see for example [1]) that from the Karush–Kuhn–Tucker conditions dT∆x = 1,∆T
xQ∆x =

∆λ,∆T
xA

T∆µ = 0, and∆T
x (Qx

′
+ q) = λ′.

2.2. Underestimation function

A key role in the study of problem P will be played by the use of a proper underestimation function, that is, a function
ψ(ξ)which verifies the following property for all the feasible levels ξ :

min
x∈Xξ

f (x) ≥ ψ(ξ).

In order to determine such an underestimation function, the following notation can be introduced:

γ = 1/dTQ−1d, ξu = −dTQ−1q,

where γ is positive due to the positive definiteness of Q .

Lemma 2.1. The following strictly convex quadratic parametric problem
min

1
2
xTQx + qT x

dT x = ξ

attains the minimum at x̂(ξ) = γ (ξ − ξu)Q−1d − Q−1q with minimum value ĝ(ξ) =
1
2γ (ξ − ξu)

2
−

1
2q

TQ−1q.

The previous lemma (which follows directly by applying the Lagrange conditions) shows that it is possible to explicitly
determine the line of unconstrained minima corresponding to problem P , which from now on will be denoted as follows:

UP =

x ∈ ℜ

n
: x = x̂(ξ), ξ ∈ ℜ


.

The positiveness of γ implies that function ĝ(ξ) is a convex parabola with minimum value ĝ(ξu) = −
1
2q

TQ−1q. The
following result suggests a first possible underestimation function for problem P .
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Theorem 2.1. Consider problem P. Then, for any feasible level ξ ,

min
x∈Xξ

f (x) ≥ φ(ĝ(ξ), ξ).

Proof. Since the scalar function φ( y1, y2) is strictly increasing with respect to variable y1, and by means of Lemma 2.1,

min
x∈X, dT x=ξ

f (x) ≥ min
x∈ℜn, dT x=ξ

f (x)

= min
x∈ℜn, dT x=ξ

φ


1
2
xTQx + qT x, ξ


= φ


min

x∈ℜn, dT x=ξ


1
2
xTQx + qT x


, ξ


= φ(ĝ(ξ), ξ). �

When the line of unconstrained minima UP does not intersect the feasible region X , the underestimation function can be
further improved.

With this aim, assume that UP ∩ X = ∅, and let xs ∈ X and vs ∈ (Q−1d)⊥ be such that {x ∈ ℜ
n

: vTs x = vTs xs} is a support
hyperplane for X separating region X itself and the unconstrained minima line UP , with vTs x ≤ vTs xs for all x ∈ X . Notice that

(Q−1d)⊥ =

v ∈ ℜ

n
: v = Mw,w ∈ ℜ

n ,
where

M = I −
Q−1ddTQ−1

dTQ−1Q−1d

is a symmetric singular positive semidefinite matrix such thatM2
= M , with one eigenvalue equal to 0 (and corresponding

eigenvector Q−1d) and n − 1 eigenvalues equal to 1 (and corresponding eigenvectors in (Q−1d)⊥).
SinceMQ−1d = 0,Mx̂(ξ) = −MQ−1q for all ξ ∈ ℜ, so, given a point x ∈ X ,

v = M(x̂(ξ)− x) = M(−Q−1q − x).

Such a vector v is nothing but the vector starting from point x ∈ X and reaching the unconstrained minima line in an
orthogonal way. To determine the separating hyperplane we are then left to determine the point xs ∈ X which is as close
as possible to the unconstrained minima line, that is, the one providing the smallest vectorM(−Q−1q − x). In other words,
we have to minimize the quadratic form (M(−Q−1q − x))T (M(−Q−1q − x)), and this can be done by solving the following
equivalent convex quadratic problem (recall thatM2

= M):

xs = argmin
x∈X


1
2
xTMx + qTQ−1Mx


.

From now on we can then assume that

vs = M(−Q−1q − xs).

Notice that, sinceM2
= M andMx̂(ξ) = −MQ−1q,

vTs x̂(ξ) = −vTs Q
−1q and vTs (x̂(ξ)− xs) = vTs vs.

Clearly, vs ≠ 0 if and only if the unconstrained minima line UP does not intersect the feasible region X . To determine a
tighter underestimation function let us define, when X ∩ UP = ∅, the following:

ν =
vTs vs

vTs Q−1vs
> 0.

Lemma 2.2. The following strictly convex quadratic parametric problem
min

1
2
xTQx + qT x

dT x = ξ

vTs x ≤ vTs xs

attains the minimum at ẍ(ξ) = x̂(ξ)− ν(Q−1vs) with minimum value g̈(ξ) = ĝ(ξ)+
1
2ν(v

T
s vs).
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Proof. The minimum point of the problem verifies the following necessary and sufficient optimality condition:
Qx + q = λd + αvs
dT x = ξ, vTs x ≤ vTs xs
α(vTs x − vTs xs) = 0
α ≤ 0, λ ∈ ℜ.

Since Q is positive definite it is also nonsingular; hence, ẍ(ξ) = λQ−1d− Q−1q+ αQ−1vs. By means of simple calculations,
since ξ = dT ẍ(ξ) and vs ∈ (Q−1d)⊥, we have λ = γ (ξ − ξu), so ẍ(ξ) = x̂(ξ)+ αQ−1vs. From the feasibility conditions, we
have also

vTs xs ≥ vTs ẍ(ξ) = vTs x̂(ξ)+ α
vTs vs

ν

and hence, since vTs (x̂(ξ)− xs) = vTs vs,

α ≤
vTs (xs − x̂(ξ))

vTs vs
ν = −ν < 0.

Withα < 0 from the complementarity conditions, we get vTs ẍ(ξ) = vTs xs, which yieldsα = −ν and ẍ(ξ) = x̂(ξ)−ν(Q−1vs).
Finally,

g̈(ξ) =
1
2
ẍ(ξ)TQ ẍ(ξ)+ qT ẍ(ξ)

= ĝ(ξ)− ν(vTs x̂(ξ))+
1
2
ν(vTs vs)− ν(qTQ−1vs)

= ĝ(ξ)+ ν(vTs Q
−1q)+

1
2
ν(vTs vs)− ν(qTQ−1vs) = ĝ(ξ)+

1
2
ν(vTs vs). �

The proof of the following result is analogous to that of Theorem 2.1.

Theorem 2.2. Consider problem P and assume that X ∩ UP = ∅. Then, for any feasible level ξ ,

min
x∈Xξ

f (x) ≥ φ


ĝ(ξ)+

1
2
ν(vTs vs), ξ


.

As a conclusion, the following underestimation function can be defined:

ψ(ξ) = φ

ĝ(ξ)+ ĝ0, ξ


,

where

ĝ0 =


0 if X ∩ UP ≠ ∅

1
2
ν(vTs vs) if X ∩ UP = ∅.

Notice that, when X ∩ UP = ∅,

φ

ĝ(ξ)+ ĝ0, ξ


> φ


ĝ(ξ), ξ


,

since function φ( y1, y2) is strictly increasing with respect to variable y1, vs ≠ 0, and ν > 0. Notice also that the continuity
of φ( y1, y2) implies the continuity of ψ(ξ). From a theoretical point of view, the previous underestimation function ψ(ξ)
allows us to prove the following result, which generalizes the one provided in Remark 2.1.

Corollary 2.1. Consider problem P. Then, for any compact interval of feasible levels [ξ1, ξ2],

arg min
x∈X[ξ1,ξ2]

f (x) ≠ ∅ and min
x∈X[ξ1,ξ2]

f (x) ≥ min
ξ∈[ξ1,ξ2]

ψ(ξ).

Proof. Since X[ξ1,ξ2] is a closed set and f (x) is a continuous function, the image set f (X[ξ1,ξ2]) is closed too. Since ψ(ξ) is
continuous and the interval [ξ1, ξ2] is compact, minξ∈[ξ1,ξ2] ψ(ξ) exists. Hence, for Theorem 2.1,

f (x) ≥ min
ξ∈[ξ1,ξ2]

ψ(ξ) ∀x ∈ X[ξ1,ξ2].

As a consequence, the set f (X[ξ1,ξ2]) is closed and lower bounded, so the result is proved. �

From the previous corollary we see that problem P can be unbounded only along extreme rays with feasible levels ξ
going towards +∞ or −∞, while it admits a minimum in any compact set of feasible levels.
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ProcedureMain(inputs: P; outputs: Opt , OptVal)
Compute the values ξmin := infx∈X dT x and ξmax := supx∈X dT x;
Let ξbig >> 0 and set ξ1 := max{−ξbig , ξmin}; ξ2 := min{ξbig , ξmax};
Compute x′

1 := argmin{Pξ1} and x′

2 := argmin{Pξ2};
if f (x′

1) < f (x′

2) then x := x′

1 else x := x′

2 end if ;
Set UB := f (x) and let IP =


ξ ∈ ℜ : Ax̂(ξ)≤b


;

if IP = ∅ then ξF := dT xs; xF := argmin{PξF };

else if IP ∩ [ξ1, ξ2] = ∅ then ξF :=
ξ1+ξ2

2 ; xF := argmin{PξF };
else ξF := arg min

ξ∈IP∩[ξ1,ξ2]
{ψ(ξ)}; xF := x̂(ξF );

end if ;
end if ;
if f (xF ) < UB then x := xF and UB := f (xF ) end if ;
if dT x ≥ ξF then

[x,UB] := Visit(P, ξF , ξmax, x,UB);
[x,UB] := Visit(P̃,−ξF ,−ξmin, x,UB);

else
[x,UB] := Visit(P̃,−ξF ,−ξmin, x,UB);
[x,UB] := Visit(P, ξF , ξmax, x,UB);

end if ;
Opt := x and OptVal := UB;

end proc.

3. Solution algorithm

In order to find a global minimum (assuming that one exists) it would be necessary to solve problems Pξ for all feasible
levels. In this section, we will show that this can be done by means of a finite number of iterations, using the results of the
previous section.

The method scans all the feasible levels, looking for the optimal solution starting from a certain feasible level ξF . With
this aim, there will be the need to visit feasible levels lower than ξF in decreasing order. This can be done by reversing the
problem itself, observing that problem P can be equivalently rewritten in the following form:

P ≡ P̃ :

inf f (x) = φ̃


1
2
xTQx + qT x, d̃T x


x ∈ X,

where φ̃( y1, y2) = φ( y1,−y2) and d̃ = −d. In this light, if the feasible levels of P decrease then the feasible levels of P̃
increase.

The following procedures ‘‘Main()’’ and ‘‘Visit()’’ can then be proposed. Procedure ‘‘Main()’’ initializes the algorithm by
determining the set of feasible levels and a ‘‘good’’ starting incumbent solution; then it uses procedure ‘‘Visit()’’ to obtain the
global optimal solution (if it exists). As will be shown in detail in the next section, a ‘‘good’’ incumbent solution is useful in
order to reduce the set of feasible levels to be explicitly scanned, thus improving the performance of the proposed method.

In particular, the optimal level solutions x′

1 and x′

2 are determined in order to have a good starting incumbent solution.
The obtained starting incumbent solution results in being extremely effective when the objective function of problem P is
unbounded along a feasible extremum ray. The starting feasible level ξF and its corresponding optimal level solution xF are
determined taking into account of the possibility of having UP ∩ X = ∅ or not.

Procedure ‘‘Visit()’’ scans the given set of feasible levels iteratively, obtaining the best solution. Notice that ‘‘Visit()’’
uses two subprocedures: the first one is procedure ‘‘Parameters()’’, which has been already described in Section 3, and the
latter one is procedure ‘‘MinRestriction()’’, which determines the minimum of the continuous single-valued function z(θ)
in the closed interval [0, θm]. Observe that procedure ‘‘MinRestriction()’’ can be implemented numerically, and eventually
improved for specific functions f (x) (see [10,11,1,23]). Notice finally that in procedure ‘‘Visit()’’ there is also one more
optional subprocedure, namely ‘‘ImplicitVisit()’’, which is aimed at improving the performance of the solution algorithm
by implicitly visiting some of the feasible levels to be scanned. This optional procedure will be discussed in the next section.

The correctness of the proposed algorithm follows since all the feasible levels are scanned, and the optimal solution, if it
exists, is also an optimal level solution.

It remains to verify the convergence (finiteness), that is to say that the procedure stops after a finite number of steps.
First note that, at every iterative step of the proposed algorithm, the set of binding constraints changes; note also that the
level is increased from ξ ′ to ξ ′

+ θm > ξ ′, so it is not possible to obtain again an already used set of binding constraints; the
convergence then follows, since we have a finite number of possible sets of binding constraints.
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Procedure Visit(inputs: P , ξF , ξmax, x, UB; outputs: Opt , OptVal)
ξ ′

:= ξF ; x′
:= xF ;

# [ξ ′, x′
] := ImplicitVisit(ξ ′, x′, ξmax, false);

while ξ ′ < ξmax
set [∆x, µ

′,∆µ, λ
′,∆λ, F ,O, θm] := Parameters(x′);

let z(θ) = φ
 1
2θ

2∆λ + θλ′
+

1
2x

′TQx′
+ qT x′, ξ ′

+ θ

;

set [θ, zinf ] := MinRestriction(z(θ), [0, θm]);
if zinf = −∞ then x := []; UB := −∞; ξ ′

:= +∞ else
if zinf < UB then

UB := zinf ;
if θ = +∞ then x := [] else x := x′

+ θ∆x end if ;
end if ;
set ξ ′

:= ξ ′
+ θm and x′

:= x′
+ θm∆x;

end if ;
# [ξ ′, x′

] := ImplicitVisit(ξ ′, x′, ξmax, true);
end while;
Opt := x; OptVal := UB;

end proc.

Remark 3.1. Let us point out that problems Pξ are independent of the function φ. This means that problems having the
same feasible region, the same Q , q, and d, but different function φ (either multiplicative or fractional or d.c.), share the
same set of optimal level solutions. As a consequence, when procedure ‘‘Main()’’ explicitly visits all the feasible levels, these
different problems are solved by means of the same iterations of the while cycle in procedure ‘‘Visit()’’.

4. Algorithm improvements

In this section, we aim to discuss how the proposed algorithm can be improved.
First of all, let us notice that in the various iterations of procedure ‘‘Visit()’’ some feasible levels could be implicitly visited

when O > F . With this aim, first note that, for all θ ∈ [0,O], the value z(θ) is a lower bound for the parametric problem
P̄ξ ′+θ ; in fact, if θ ∈ [0, θm], then x′(θ) is an optimal level solution, while, if θ ∈ (F ,O], then x′(θ) is unfeasible for P̄ξ ′+θ , but
is an optimal solution of a problem with the same objective function as P̄ξ ′+θ and a feasible region containing Xξ ′+θ . As a
consequence, if the minimum value of z(θ) in the interval (F ,O] is greater than or equal to UB, then the feasible levels (F ,O]

can be skipped.
Analogously, some more feasible levels can be implicitly visited by using the underestimation function ψ(ξ). In fact,

given ξa ∈ [ξ ′, ξmax] it can be easily proved that

ψ(ξ) ≥ UB ∀ξ ∈ [ξ ′, ξa] ⇒ min
x∈X

[ξ ′,ξmax]

f (x) = min
x∈X[ξa,ξmax]

f (x).

This property suggests that another way to improve the algorithm is by reducing the set of feasible levels to be scanned in
the various iterations of procedure ‘‘Visit()’’, that is to say, by implicitly visiting some of the feasible levels.

As a conclusion, the following procedure ‘‘ImplicitVisit()’’ can be proposed in order to improve the visit of the
feasible levels. Notice that in the procedure the lower-level sets of function ψ(ξ) have been denoted with L(ψ,UB) =

{ξ ∈ ℜ : ψ(ξ) ≤ UB}.
Finally, notice that procedure ‘‘ImplicitVisit()’’ is more effective the smaller the value UB of the incumbent solution is.

For this very reason, in order to improve the algorithm’s performance it is important to initialize the method with a ‘‘good’’
starting incumbent solution, as has been described in the previous section.

5. Computational results

In this section, the results of a computational experience are provided in order to point out both the correctness and the
performance of the proposed algorithm. All the procedures described in the previous sections have been fully implemented
with the software Matlab 7.4 R2007a on a computer having 2 Gb RAM and two Xeon dual core processors at 2.66 GHz.

The following four different objective functions have been used in the computational test:

φ( y1, y2) f (x)
P1 y1 − y22

 1
2x

TQx + qT x

−


dT x

2
P2 y1y32

 1
2x

TQx + qT x
 

dT x
3

P3 y1/y22
 1
2x

TQx + qT x

/

dT x

2
P4 y22 log( y1)


dT x

2 log  1
2x

TQx + qT x

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Procedure ImplicitVisit(inputs: ξ ′, x′, ξmax, inside; outputs: ξ ′, x′)
ξ ′

old := ξ ′;
if ξ ′ < ξmax and ψ(ξ ′) > UB then

let L := [ξ ′, ξmax] ∩ L(ψ,UB);
if L = ∅ then ξ ′

:= ξmax else ξ ′
:= min {L} end if ;

end if ;
if ξ ′ < ξmax and inside = true and O − F > ξ ′

− ξ ′

old then
[θ̃ , z̃inf ] := MinRestriction(z(θ), [F + ξ ′

− ξ ′

old,min{O, ξmax − ξ ′

old + F}]);
if z̃inf >= UB then
ξ ′

:= ξ ′

old + O − F ;
if ξ ′ < ξmax and ψ(ξ ′) > UB then

let L := [ξ ′, ξmax] ∩ L(ψ,UB);
if L = ∅ then ξ ′

:= ξmax else ξ ′
:= min {L} end if ;

end if ;
end if ;

end if ;
if ξ ′ < ξmax and ξ ′ > ξ ′

old then x′
:= argmin{Pξ ′} end if ;

end proc.

Table 1
Number of iterations.

n num Complete With implicit visit
P1 P2 P3 P4

10 1000 24.969 3.043 1.49 5.418 3.537
15 1000 39.72 4.682 1.651 7.91 4.637
20 1000 53.748 6.467 1.88 10.159 5.264
25 1000 68.409 8.008 2.16 12.616 6.284
30 1000 84.322 9.451 2.479 15.02 7.06
35 1000 100.86 10.813 3.1842 17.279 8.005
40 1000 123.75 13.746 3.852 19.924 8.658
45 1000 165.16 16.734 4.791 22.205 9.25
50 1000 181.77 20.228 6.193 24.491 9.669
60 1000 – 27.451 10.891 29.72 10.851
70 1000 – 36.736 13.533 36.288 12.352
80 800 – 44.865 14.537 42.951 13.685
90 600 – 59.85 18.245 50.535 15.132

100 500 – 86.378 21.426 60.558 16.36

where in P2 and P3 function dT x is positive over the feasible region, while in P4 function 1
2x

TQx + qT x is positive over the
feasible region.

The problems have been randomly created; in particular, matrices and vectors Q ∈ ℜ
n×n, q, d ∈ ℜ

n, A ∈ ℜ
m×n, b ∈ ℜ

m,
m = 3n, have been generated with components in the interval [−10, 10] by using the ‘‘rand()’’ Matlab function (numbers
generated with uniform distribution). Within the procedures, the linear problems and the convex quadratic problems have
been solved with the ‘‘linprog()’’ and ‘‘quadprog()’’ Matlab functions, respectively.

For each amount ‘‘n’’ of variables a number ‘‘num’’ of problemshave been randomly generated, and each of these problems
has been solved for both the objective functions in P1, P2, P3, and P4. The average number of iterations and the CPU times
spent by the algorithm to solve the problems are given as the result of the test (see Tables 1 and 2).

In order not to waste time, the complete visits of the feasible levels have been tested for dimensions up to n = 50, while
the use of procedure ‘‘ImplicitVisit()’’ has been tested up to dimension n = 100. Clearly, when procedure ‘‘ImplicitVisit()’’
is not used (that is, all the feasible levels are explicitly scanned) we provide only the results related to problem P1, since all
the problems are solved in the same number of iterations (see Remark 3.1).

The results obtained show the effectiveness of the improvements proposed in Section 5; in particular, the performance
is strongly improved, especially for problems P2 and P4, for both the number of iterations and the spent CPU time.

Finally, it is worth reasserting that in this computational test very different objective functions have been minimized by
means of the same solution algorithm. Notice also that the literature does not provide any algorithm which can determine
the global solution of P1, P2, P3, and P4 (the knownmethods are able to approach only some of the single problems bymeans
of the use of heuristics or branch and bound techniques, thus providing in general only approximate solutions). For these
very reason, it has not been possible to make comparison tests.
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Table 2
CPU time.

n num Complete With implicit visit
P1 P2 P3 P4

10 1000 3.5214 0.88849 0.58293 1.2135 0.88011
15 1000 7.69 1.6518 0.87373 2.2635 1.471
20 1000 13.94 2.9178 1.3567 3.6156 2.0976
25 1000 23.592 4.5925 1.9904 5.63 3.0767
30 1000 38.261 6.9084 2.8597 8.4231 4.2699
35 1000 68.207 11.357 4.9839 13.73 6.7145
40 1000 105.88 17.363 6.7755 19.506 8.9015
45 1000 173.48 25.543 9.7921 26.446 11.568
50 1000 243.56 37.635 14.453 35.652 14.821
60 1000 – 71.144 31.619 60.654 23.199
70 1000 – 124.48 51.64 96.727 34.411
80 800 – 193.41 70.961 143.85 47.623
90 600 – 316.53 108.29 207.84 64.279

100 500 – 553.27 155.37 302.8 84.485

6. Some applications

In the literature, d.c. problems having an objective function of the kind f (x) = c1(x)− c2(x), where c1(x) = g1( 12x
TQx +

qT x) and c2(x) = g2

dT x


are convex functions, are generally approached by means of branch and bound methods, which

inherently provide, in general, an approximated solution. In this light, the algorithm proposed in this paper allows one to
determine in a finite number of steps the exact optimal solution of these problems.

The solution method proposed in this paper can be also efficiently used in portfolio/risk theory. These financial models
aim to minimize the risk of a certain investment for a given level of expected return. The risk is represented by a quadratic
function xTQx, where Q is the covariance matrix for the returns on the assets in the portfolio. The expected return on the
portfolio is expressed by means of a linear function of the kind dT x. By minimizing the quadratic convex risk function for
various fixed expected returns, the so-called efficient frontier of the portfolio can be numerically determined. Then, some
further criterion must be used in order to choose the ‘‘optimal’’ portfolio along the efficient frontier (risk aversion and risk
propensity criterion). See for example [25] for numerical examples of classical portfolio problems.

A more general approach is to look for a risk that is as small as possible together with an expected return that is as big as
possible. This can be done by minimizing functions such as

f (x) =
g1

 1
2x

TQx


g2

dT x

 or f (x) = g1


1
2
xTQx


− g2


dT x


,

where g1 and g2 are strictly increasing functions. These objective functions can be minimized with the algorithm proposed
in this paper.

7. Conclusions

The proposed algorithm allows one to solve a wide range of nonconvex problems. The computational test shows that
it is possible to efficiently handle problems with up to 100 variables. In particular, the improvement criteria suggested in
Section 5 resulted in being extremely effective in making the algorithm efficient.

Further improvements could be based on the study of the quasiconvexity of function ψ(ξ) which makes the condition
ψ(ξ ′) > UB a global optimality condition and a concrete stopping criterion. Improvements could also be obtained by
iteratively updating the underestimation function ψ(ξ) over the feasible subset X[ξ ′,ξmax] which remains to be visited.
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