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Consider a random graph K(n,p) with n labeled vertices in which the edges are chosen in- 
dependently and with a probability p. Let Tn(p) be the order of the largest induced tree in 
K(n, p). Among other results it is shown, using an algorithmic approach, that if p = (c log n)/n, 
where c_>e is a constant, then for any fixed e>0 

logn / logn 

almost surely. 

I.  Introduct ion 

Let  12 be the fami ly  o f  all  spann ing  subgraphs  o f  a comple te  g raph  Kn. Denote  

by  f f  the  power  set o f  I2 and  def ine  a p robab i l i t y  measure  on  the discrete  space 

(f2, ~ )  as fol lows:  for  every g raph  G ~ 2  

P r o b  (G) = p t (1 -- p)(~ ) - t 

where  t denotes  the  number  o f  edges o f  the g raph  G and 0 _ p <  1. A n  e lement  f rom 

f2 is deno ted  by  K(n, p) and cal led a random graph. We say tha t  K(n, p) has a cer ta in  

p r o p e r t y  n almost surely (a .s . )  if  

P rob(K(n ,  p )  has p r o p e r t y  n) ~ 1 as n-+ co. 

Let  Tn= T,(p)  be the o rde r  o f  the  largest  induced  tree in a r a n d o m  graph  

K(n, p). It was shown in [2] tha t  if  the edge p robab i l i t y  p is f ixed (i.e. p does  not  

depend  on  n) then  the sequence { T n } o f  r a n d o m  var iables  satisfies 

7-. 2 
, as n ~ c o  

log n log 1/q 

in p robab i l i t y .  A t  the  same t ime it was p roved  (see [6]) tha t  (1.1) ho lds  with p r o b a b i -  

l i ty  one.  (For  a genera l i za t ion  o f  this result  to  a wider  class o f  induced  subgraphs  

see [8].) On  the o ther  hand ,  if  p = p ( n ) =  1/n, then  (see [3]) 

n 2/3 
- -  <-- Tn(p)<_n2/3~(n) a.s.  
og(n) 
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where ~(n)  is a sequence tending to infinity (arbitrarily slowly) as n ~ oo. In [2] the 
following open problem was set. Find such a value of the edge probabili ty p for 
which the random variable T n (p) has the maximum value. It was conjectured there 
that i fp=p(n)=c/n, where c >  1 is a constant, then there exists q~(c)>0, indepen- 
dent of  n, such that Tn>_q~(c)n a.s. Although we are not able to prove the above 
conjecture yet, we will look at this problem f rom an algorithmic point of  view. An 
algorithmic approach was already used by a great many authors when investigating 
the independence number,  chromatic number or tree number  of  a random graph 
(see e.g. [1], [4]-[7], [10]). 

In this paper we describe a very simple greedy algorithm which for some specific 
values of  the edge probabili ty p constructs pretty large induced trees of  K(n, p). 
Among other results, we show that if p = ( e l o g  n)/n, then for any fixed e > 0  

Tn(P)>(~ - e )  l°g l°g n n l o g  n a.s. 

This is the best lower bound of  Tn(p) obtained until this time. 
As usual, for any real x, LxJ and rx-] denote the greatest integer not greater than 

x and the least integer not less than x, respectively. The symbols o and O are used 
with respect to n ~ oo. Also, logarithms are to base e. 

2. Algorithm 

We begin with the description of  a simple, but sometimes an impressive greedy 
algorithm for finding an induced tree in a given graph. Let G be any simple graph 
with vertex set {1, 2 . . . . .  n}. The algorithm TREE runs through the vertices in the 
order {l, 2 . . . .  } and selects a new vertex whenever it can be selected, i.e. whenever 
it is joined with exactly one vertex f rom the vertices selected so far. Note that vertex 
1 always belongs to the constructed subgraph. 

Algorithm TREE 
begin 

F : = { 1 }  
f o r i = 2 t o n  do 

if FU {i} is an induced tree 
then F:=FU{i} 

end 

Let us apply the algorithm TREE to a random graph K(n, p). In order to make 
a precise probabilistic analysis of  this algorithm we shall change slightly the model 
of  our random graph. (We use the same approach as in e.g. [4], [5] or [7]). 

Let ~ *  be the family of  all spanning subgraphs of  an infinite complete graph on 
vertex set IN -- { l, 2, 3 . . . .  }. I f  H e  ~2" and Ic_ IN, we write H(I) for the subgraph of 
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H induced by the vertices I. For each finite subset Ic__ N and each graph G with 
vertex set I, let 

[ G : I ]  = { H e D * :  H(I) is G}. 

That  is, [G : I] is the subset of  D* consisting of all members of  D* which have G 
as their subgraph induced by I. The set of finite-dimensional cylinders of  D* is the 
set of  all such [G : I] as G ranges over all graphs on finite subsets I on N. Let ,~/ 
be the smallest a-algebra of  subsets of  D* which contains the finite-dimensional 
cylinders of  £2*. We define a probability measure on (D*,,#) by specifying its value 
on each finite-dimensional cylinder as follows: 

P r ob [G: I ] )  =pt(1  -p)(~) t 

where s and t are the number of  vertices and edges in the finite graph G, respectively. 
If I =  {1,2 . . . . .  n} then we write K*(n,p) for such defined random graph. It is clear 
that K*(n, p) has the same probabilistic structure as K(n,p). For this reason the 
results which will be proved for K*(n, p) will certainly hold for K(n, p). 

Now we are ready to make a probabilistic analysis of  the algorithm TREE. Let 
T*~= T*~(p) be the order of an induced tree in K*(n, p) constructed by the algorithm. 
Define a function Ok : D*--* {0, 1,2 . . . .  } as follows: 60=0  and for k_> 1 

Ok = min{s: after the sth iteration the algorithm has constructed an 
induced tree of  order k}. 

Then 6k=Ok+l--Ok (k=0 ,1 ,2  . . . .  ) defines a sequence of  independent random 
variables with 6o = 1 and the 6k (k> 1) distributed geometrically, namely 

Prob(6k = j )  = (1 --pk) j -  lpk (j  = 1, 2, 3 .. . .  ) 

where Pk = kp(1 _p )k -  1. Furthermore 

j - I  

Q j= ~ 6k. (2.1) 
k=0  

Notice also that the geometric random variable 6k (k>_ 1) has the mean p~-i and 
variance (1 --pk)p~ 2. Consequently, by (2.1) and the independence of  6k'S we have 

j - 1  

E(Oj) = 1 + ~ p ; l  (2.2) 
k = l  

j - I  

Var(oj)= ~ (1--pk)Pk 2. (2.3) 
k = l  

Now, using the Chebyshev's inequality we obtain 

Prob(oj > n) _< P rob(loj - E(Oj)[ >- n - E(Oj)) 

< Var(0j) (2.4) 
- (n - E(Oj))2 

and 
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if E(~j)  < n and analogously 

Prob(pj___ n ) _  Var(~./) (2.5) 
(E(~j) - n) 2 

if E(Qj)> n. These two inequalities together with the following obvious relation 

P rob (T*< j )  = Prob(~oj > n) (2.6) 

are the principal tools in proving our main results which are presented in the next 
section. 

3. Results 

We will give a probabilistic analysis of  the algorithm TREE with respect to dif- 
ferent values of the edge probability p =p(n) .  As we mentioned in the introduction 
for some specific values of p the algorithm constructs very large induced trees. On 
the other hand, it is interesting that sometimes our algorithm can not construct even 
an induced tree of  a small order although it is known that a random graph does con- 
tain a large tree (compare Theorem 3.1(a) below with (1.2)). The following result 
shows that the algorithm TREE is very uneffective for all edge probabilities p such 
that d i n  -<p-< (c log n) /n ,  where d > 0 and 0 < c < 1 are constants. 

Theorem 3.1. (a) I f  p = d/n ,  where d > 0 is a constant, then f o r  any e > 0 there exists 

a constant  a = a(e) such that 

Prob(T*(p) _> a(~))_< e. 

(b) I f  p =  ~u(n)/n, where co(n)--,oo in such a way that co(n)_<clog n and  0 < c <  1 
is a constant, then f o r  arbitrarily small  e > 0 

Prob(T*(p) _> exp[(1 + e)~,(n)]) = o(1). 

Proof .  Since the method of the proof  is the same in both cases we will show here 
only the second part of  the theorem. Using the left-hand side of  the inequality (see 
[9, p. 181) 

N +  1 U 1 N 
og - - -  _< L ---<log ~ - T +  (3.1) 

p v - i + 2  k=N-i+2]¢ 1 

where i = N - m  and m_>0 is a natural number, we obtain by (2.2) 

n J - 1  1 

n 
- co(n) (1 + log(j/2)) 

n 

> co(n) logj.  
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On the other hand, by (2.3) and the relation 

1 ~2 
~ k2-- k=l 6 

we have 

(3.2) 

j-I 
Var(pj)-< n2 ( l - p )  -2j ~ k -2 

09 (n)2 k = 1 

= O ( ~ e x p ( 2 j ~ - - ( n ) ~ .  
\~o(n) \ n / /  

Consequently, if j = Fexp[(1 + e)og(n)]-], then E(Oj) > (1 + e)n and by (2.5) 

Prob(Qj <_ n) = O ( q/(n)- 2 exp I 2Og(n) e( l + E)~'(n)] ) = o( t ) 

provided 0 < e < ( 1 / c ) -  1. Thus taking the complementary events in (2.6) we get our 
results. [] 

A radical change of  the effectiveness of  the algorithm TREE takes place when the 
edge probabil i typ reaches the value of (log n)/n. For the sake of simplicity let us put 

log log n f(n) = (3.3) 
log n 

The following result is true. 

T h e o r e m  3.2. If  p = (log n)/n, then for any fixed e > 0 
Prob(T*(p) > (2 - e)nf(n) 2) = 1 - O((log log n)-2). 

P r o o f .  Let j =  [(2-e)nf(n)ZJ and i=  [_j/log log n_]. Applying (2.2) and the right- 
hand side of  the inequality (3.1) we have 

E(Oj) = 1 + log n k= 1 k + k=i+lE (1 _ _-k+ l 

n lexp[(2-e)f(n)+o(l°gl--°ngn)](l+logi) 
_< 1 + log n 

+exp - e ) ( l ° g  l°g n)2 +o((l°gl°gn)Z)]logloglognl 
(2 l-~gn 

=nexp[(2-e)f(n)-2f(n)+o(l°gl°gl°gn)]log n +o(n)  

+ 0 ( l ° g  log log 
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Furthermore, similarly as in the proof of Theorem 3.1, we obtain 

{ ' I n  2 ( l og logn )2 ]~=O ( n 2 ,~. 
Var(oj) = 0 \ ~  exp [ ~ J /  \ ( log n ) ' /  

Consequently, by (2.4) and (2.6) we have 

Prob(T*<j)  = O((log log n) -2) 

which completes the proof. [] 

The best result for T*(p) we are able to show is in the case when p = (c log n)/n, 
c >  1. We have 

Theorem 3.3. Let p = (c log n)/n, c> 1 a constant and let f (n)  be defined by (3.3). 
(a) I f  1 <_ c <_ e, then for  any ~ > 0 

Prob ( ( l °g  c - e)n f (n)  < T*(p) < ( ~ + e)n f (n ) )  = l - O((log n)- 2cc). 

(b) I f  c >-_ e, then for  any e > 0 

i. e. 

Prob(nf(n)T*(P) cl < e )  = l - O ( ( l ° g n )  Zce) 

T*n(p) ~ 1 
- -  a s  n - *  o o  

nf (n)  c 

in probability. 

Proof .  Let c >  1 and a=min{log c, 1}. For an arbitrary small e>O let us put 

j=l(a-e)nf(n)J and i = [ j / l o g l o g n J .  

Proceeding analogously as in the proof of Theorem 3.2 we obtain 

E ( Q j ) ~  n ea_¢e(1 + o(1)) 
c 

and 

Var(oj) = O(n 2 (log n) -acE). 

Since for any c >  1, ea-CE<c, so by (2.4) and (2.6) we have 

(3.4) 
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On the other hand, if we put 

j = I ( ~ + e ) n f ( n ) ]  and i=rj /A ], 

where A =A(e )  is a constant such that 1 < A  < 1 + ce, then by (2.2) and the left-hand 
side of  (3.1) we have 

! (1 1 
E(Qj) > c log n k=i k 

n >_ - -  exp(pj /A )log A 
c log n 

_ log  A n ( log  n) 0 + c ~ ) / A  - 1 

¢ 

Furthermore,  by (2.3), 

k-2(1 _ p ) - 2 k  + E Var(Qj)_< ~ ~.k=l k=j/z+l k -2 ( l  - -p ) -2k  I . 

Thus, taking into account (3.2) and the relation 

k=N+ 1 

(see [9, p. 19]) we obtain 

.l~ 2 
Var(oj)<(cl~gn)2I(1-p)-S--~+(1-p)-2J ~ k 21 

k =j/2 + 1 

= O exp[(1 + ce)log log n] 

+ (log n)(log log n) exp[(2 + 2ce)log log n] 

= O(n2(log n)Ce-l). 

Since A < 1 + ce, we can use (2.5) and finally by (2.6) 

Prob ( T*(P) >- I ( ~ + e)n f (n) l ) = O((log n) ce + l - 20 + cE)/A ) 

= O((log n) -2C~) 

if only A <(2+2ce)/(1 + 3ce). But such a constant always exists, since for any 
0 < e < 1/3c we have 1 + ce < (2 + 2ce)/(1 + 3ce). Consequently, by (3.4) and (3.5) we 
deduce our result. [] 
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From the second part  of  the last theorem we see that the order of  the largest in- 
duced tree in a random graph K(n, p), where p = (e log n)/n satisfies 

( ~ )  log logn  
- - -  n a . s .  Tn (p) > e log n 

This is the best lower bound of  Tn(p) obtained until this time. As usual, it is in- 
teresting to know the difference between the order of  an induced tree constructed 
by the algorithm TREE and the order of  the largest induced tree which in fact exists 
in a random graph. It appears that i f p  = (c log n)/n where c >  1, then T*(p) differs 
f rom Tn(p) only by a constant.  As a matter of  fact, the following result holds. 

Theorem 3.4. Let p = (c log n)/n where c > 1 is a constant. Then for any fixed e > 0 

Prob(Tn(p)>-(~ + e)n f(n))=o(1). 

Proof .  It suffices to show that the expected value E(Xk) of the number  of  induced 
trees of  order 

tends to zero as n ~ oo. But by the Stirling's formula we have 

E(Xk ) = ( k ) k k -  2pk- l ( l -- p)(k2) -(k- O 

_ n (2~tkS) -1/2 (c logn)exp  1 c k l o g n  +O(kp2  ) 
c log n 2n 

O (  n n n)-CC/2lk) = \ l o g  k-5/2[c(l°g =o(1).  [] 

From the last two results we deduce the following 

Corollary 3.5. Let p = ( c l o g  n)/n where c>e. Then for any fixed e > 0  

( l - e ~  l°g l°g n n <  a.s. [] logn  Tn(P)<(~ +e) l°g log n n l o g  n \c / 
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Note added in proof 

The conjecture of  Erd6s and Palka [2] that for p=c/n, c >  1 is a constant, there 
exists q~(c)> 0 such that 

Tn(p)>_¢(c)n a.s. 

was confirmed independently by Frieze and Jackson ("Large induced trees in sparse 
random graphs" - submitted), Ku~era (personal communication) and De la Vega 
("Induced trees in sparse random graphs" - submitted). They applied more 
sophisticated algorithms than the algorithm TREE presented in this paper. 


