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Consider a random graph K(n, p) with n labeled vertices in which the edges are chosen in-
dependently and with a probability p. Let T,(p) be the order of the largest induced tree in
K{(n, p). Among other results it is shown, using an algorithmic approach, that if p=(clog n)/n,
where c>e is a constant, then for any fixed ¢>0

1 logl
<——£> i 0gnn< Tn(p)<<%+e> ___loglognn
c logn c logn

almost surely.

1. Introduction

Let € be the family of all spanning subgraphs of a complete graph X,,. Denote
by # the power set of £ and define a probability measure on the discrete space
(2, #) as follows: for every graph Ge Q2

Prob(G)=p'(1 - p)&)

where ¢ denotes the number of edges of the graph G and 0<p=<1. An element from
Q is denoted by K(n, p) and called a random graph. We say that K(n, p) has a certain
property n almost surely (a.s.) if

Prob(K(n, p) has property n)—1 as n—oo.

Let T,=T,(p) be the order of the largest induced tree in a random graph
K(n, p). It was shown in [2] that if the edge probability p is fixed (i.e. p does not
depend on n) then the sequence {T,} of random variables satisfies

L - 2
logn logl/qg

S n— oo

in probability. At the same time it was proved (see [6]) that (1.1) holds with probabi-
lity one. (For a generalization of this result to a wider class of induced subgraphs
see [8].) On the other hand, if p=p(n)=1/n, then (see [3])

2/3

=T,(p= nY3w(n) as.
w(n)
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where w(n) is a sequence tending to infinity (arbitrarily slowly) as n— oo. In [2] the
following open problem was set. Find such a value of the edge probability p for
which the random variable 7,,(p) has the maximum value. It was conjectured there
that if p=p(n)=c/n, where ¢>1 is a constant, then there exists ¢(c)>0, indepen-
dent of n, such that 7,=¢(c)n a.s. Although we are not able to prove the above
conjecture yet, we will look at this problem from an algorithmic point of view. An
algorithmic approach was already used by a great many authors when investigating
the independence number, chromatic number or tree number of a random graph
(see e.g. [1],[4]-[7], [10]).

In this paper we describe a very simple greedy algorithm which for some specific
values of the edge probability p constructs pretty large induced trees of K(n, p).
Among other results, we show that if p=(elogn)/n, then for any fixed ¢>0

T,,(p)><l—a> loglognn
€ logn

This is the best lower bound of 7, (p) obtained until this time.

As usual, for any real x, | x| and [ x| denote the greatest integer not greater than
x and the least integer not less than x, respectively. The symbols o and O are used
with respect to n— . Also, logarithms are to base e.

2. Algorithm

We begin with the description of a simple, but sometimes an impressive greedy
algorithm for finding an induced tree in a given graph. Let G be any simple graph
with vertex set {1,2,...,n}. The algorithm TREE runs through the vertices in the
order {1,2,...} and selects a new vertex whenever it can be selected, i.e. whenever
it is joined with exactly one vertex from the vertices selected so far. Note that vertex
1 always belongs to the constructed subgraph.

Algorithm TREE
begin
F:={1}
for i=2 to n do
if FU{i} is an induced tree
then F:=FU{i}
end

Let us apply the algorithm TREE to a random graph K(#n, p). In order to make
a precise probabilistic analysis of this algorithm we shall change slightly the model
of our random graph. (We use the same approach as in e.g. [4], [5] or [7]).

Let 2* be the family of all spanning subgraphs of an infinite complete graph on
vertex set N={1,2,3,...}. If He 2* and IC N, we write H(I) for the subgraph of
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H induced by the vertices I. For each finite subset /€N and each graph G with
vertex set I, let

[G:IN={HeQ*: H() is G}.

That is, {G: ] is the subset of 2* consisting of all members of 2* which have G
as their subgraph induced by I. The set of finite-dimensional cylinders of Q* is the
set of all such [G:7] as G ranges over all graphs on finite subsets 7 on N. Let .«
be the smallest g-algebra of subsets of £2* which contains the finite-dimensional
cylinders of Q2*. We define a probability measure on (2% .«/) by specifying its value
on each finite-dimensional cylinder as follows:

Prob[G: I1)=p' (1 - p)®

where s and ¢ are the number of vertices and edges in the finite graph G, respectively.
If I={1,2,...,n} then we write K*(n, p) for such defined random graph. It is clear
that K*(n, p) has the same probabilistic structure as K(n, p). For this reason the
results which will be proved for K*(n, p) will certainly hold for K(n, p).

Now we are ready to make a probabilistic analysis of the algorithm TREE. Let
T;'= T;X(p) be the order of an induced tree in K*(n, p) constructed by the algorithm.
Define a function g, : 2*—{0,1,2,...} as follows: 0,=0 and for k=1

g, =min{s: after the sth iteration the algorithm has constructed an
induced tree of order k}.

Then 6,=04,1—0r (k=0,1,2,...) defines a sequence of independent random
variables with dg=1 and the J; (k=1) distributed geometrically, namely

Prob(6;=/)=(1-p)Y 'pr ~ (=1,2,3,...)

where p, =kp(1 - p)* 1. Furthermore

j-1
0= Y . 2.1
K=o

Notice also that the geometric random variable J, (k= 1) has the mean p; ' and

variance (1 - p,)p; 2, Consequently, by (2.1) and the independence of J,’s we have
i-1
E@)=1+ ¥ i’ 2.2)
and
j~1
Var@)= ¥ (1-pope’. 2.3)
Now, using the Chebyshev’s inequality we obtain

Prob(g,;>n) <Prob(|o;~ E(e;)| =n— E(g;))

Var(e;)
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if E(o;)<n and analogously

ar(o;)
Pl‘Ob(Qij’l)< (—mi (2.5)

if E(g;)>n. These two inequalities together with the following obvious relation
Prob(T;</)=Prob(g;>n) (2.6)

are the principal tools in proving our main results which are presented in the next
section.

3. Results

We will give a probabilistic analysis of the algorithm TREE with respect to dif-
ferent values of the edge probability p=p(n). As we mentioned in the introduction
for some specific values of p the algorithm constructs very large induced trees. On
the other hand, it is interesting that sometimes our algorithm can not construct even
an induced tree of a small order although it is known that a random graph does con-
tain a large tree (compare Theorem 3.1(a) below with (1.2)). The following result
shows that the algorithm TREE is very uneffective for all edge probabilities p such
that d/n=<p<(clogn)/n, where d>0 and 0<c<1 are constants.

Theorem 3.1. (a) If p=d/n, where d>0 is a constant, then for any £ >0 there exists
a constant a =a(e) such that

Prob(TX(p)z a(&)) <e.

(b) If p=w(n)/n, where w(n)— oo in such a way that w(n)<clogn and 0<c<1
is a constant, then for arbitrarily small €>0

Prob(T,(p) = expl(1+ &)y (m]) = o(1).

Proof. Since the method of the proof is the same in both cases we will show here
only the second part of the theorem. Using the left-hand side of the inequality (see

[9, p. 18])

N+1 N1 N
gN—i+2 k= NZ,+zk gN—i+1 @-1)

where i=N—m and m=0 is a natural number, we obtain by (2.2)

|
E(Q,)>-m g p
> (1+log(j/2)
w(n)
>——logj

w(n)
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On the other hand, by (2.3) and the relation
@ 1 2
E = % (3.2)

we have

Var(g;) < (1-p)y % E k~?

()2

_ n? 2j w(n)
_O<w(n)2 exp( n ))

Consequently, if j=[exp[(1+¢)w(n)]], then E(e;)>(1+¢)n and by (2.5)

Prob(e;<n)=0 <y/(n)-2 exp [ Zi”f’—) el “’“’WD =o(1)

provided 0<e<(1/c)— 1. Thus taking the complementary events in (2.6) we get our
results. []

A radical change of the effectiveness of the algorithm TREE takes place when the
edge probability p reaches the value of (log n)/n. For the sake of simplicity let us put

loglogn
logn

fm= (3.3)

The following result is true.

Theorem 3.2. If p=(log n)/n, then for any fixed €¢>0
Prob(T¥(p)= (2 - &)n f(n)*) = 1 — O((log log n)~2).

Proof. Let j=| (2—&)nf(n)* | and i=| j/loglog n]. Applying (2.2) and the right-
hand side of the inequality (3.1) we have

3 n (1 p)-k+l Jj-1 p)—k+l
E(Q")—lJrlogn{E k kzr:+l k }

<1+ [exp [(2—s)f(n)+o<13—g—l9g—”>](l +log i)
logn n

2 2
+exp [(2 —£) (loglog ) +0 <(log log m) )]log log log n}
logn n

—nexp [(2 —&)f(n) = 2f(n)+ O <l°g log log ”)] +o(n)

—n {1 —£f(n)+0<log log log n>}

logn
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Furthermore, similarly as in the proof of Theorem 3.1, we obtain

. (oglognP 1\ _ o (_n”
Var(Qj)-0<(logn)zeXp[ log 1 D—O<(logn)2>'

Consequently, by (2.4) and (2.6) we have

Prob(T} <) = O((log log n)™%)

which completes the proof. [

The best result for 7,7(p) we are able to show is in the case when p=(clog n)/n,
c¢>1. We have
Theorem 3.3. Let p=(clog n)/n, ¢>1 a constant and let f(n) be defined by (3.3).

(a) If 1=<c=<e, then for any €>0

Prob <<13f—c - e)nf(n) <Ti(p)< <% + 8>nf(n)> =1 - O((log n)~*%).

(b) If c=e, then for any €¢>0

T:(p)__l_ —1_ —2ce
Prob< nf(n) c‘<s> 1-0O((log n) =)
ie.
Li(0) BN R
nf(n) c

in probability.

Proof. Let ¢>1 and a=min{logc, 1}. For an arbitrary small ¢>0 let us put

j= L(g—g>nf(n)J and i=|j/loglogn].

c

Proceeding analogously as in the proof of Theorem 3.2 we obtain
E(g))<=e" (1 +0(1))
c

and
Var(g;) = O(n*(log n)>*).

Since for any ¢>1, e*"“<¢, so by (2.4) and (2.6) we have

Prob <T,’1"(p) < [(g - a)nf(n)J > =0((log n)~%%). (3.4
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On the other hand, if we put
, 1 . .
Jj= "(_ +s>nf(n)‘\ and i=[j/A],
C

where A = A(¢) is a constant such that 1 <A <1 + cg, then by (2.2) and the left-hand
side of (3.1) we have

n 31
E(0,)> —— —k+1
©) clog kz,k( -p)
n .
= exp(pj/A)log A
clogn
_logA4

n(log n)(l +ce)/A— 1'

Furthermore, by (2.3),

2472
>{Zk (1-p)y %+ Z k(1 - )—Zk}.

k=j/2+1

Var(g;) = <

clogn

Thus, taking into account (3.2) and the relation

o 1
e
k=lz\:/+1 N

(see [9, p. 19]) we obtain

2 2
){(1—p)‘f;+(1—p) o E k™ }

k=j/2+1

Var(g;) = <

clogn

2
= <<_n_> expl(1 + ce)log log n]
log n

n
+ 2+ 2ce)logl
(log m(log Iog ) exp[(2 + 2ce)log log n]>

‘ =0(n’(log n)*~").
Since A <1+ cg, we can use (2.5) and finally by (2.6)
Prob <T,’,"(p) > Kl + e)n f(n)—‘ ) =O((log n)¢ + 120 +ee)/ay
c
=O((log n)~**)
if only A<(2+2ce)/(1 +3ce). But such a constant always exists, since for any

0<e<1/3c we have 1 +ce<(2+ 2ce)/(1 + 3ce). Consequently, by (3.4) and (3.5) we
deduce our result. [
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From the second part of the last theorem we see that the order of the largest in-
duced tree in a random graph K(n, p), where p= (e log n)/n satisfies

1 1
Tn(p,><__£>3slo_gfzn
e logn

This is the best lower bound of T, (p) obtained until this time. As usual, it is in-
teresting to know the difference between the order of an induced tree constructed
by the algorithm TREE and the order of the largest induced tree which in fact exists
in a random graph. It appears that if p=(c log n)/n where ¢> 1, then T,/(p) differs
from T,(p) only by a constant. As a matter of fact, the following result holds.

Theorem 3.4. Let p=(clogn)/n where c>1 is a constant. Then for any fixed ¢>0
Prob <T,, (p)= (% + s)nf(n)) =0(1).

Proof. It suffices to show that the expected value £(X;) of the number of induced
trees of order

[

tends to zero as n— oo, But by the Stirling’s formula we have

£ = () Jet 20t =p) @

k
=" QnkSy 12 {(c log n)exp [ j Cklogn O(kpZ)B
clogn 2n

=o<—”— k~52[c(log n)—c€/21k> —o(l). O
logn

From the last two results we deduce the following

Corollary 3.5. Let p=(clog n)/n where c=e. Then for any fixed £¢>0

<1—8> loglogn lognn< Tn(p)<<g+£> loglogn lognn a.s. 0
c log n c logn
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Note added in proof

The conjecture of Erdds and Palka [2] that for p=c/n, ¢>1 is a constant, there
exists @(c)>0 such that

T.(p)zp(c)n a.s.

was confirmed independently by Frieze and Jackson (‘‘Large induced trees in sparse
random graphs’’ — submitted), Kuéera (personal communication) and De la Vega
(‘“‘Induced trees in sparse random graphs’’ — submitted). They applied more
sophisticated algorithms than the algorithm TREE presented in this paper.



