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Abstract

The classical Helmholtz theory of accommodation has, over the years, not gone unchallenged and most recently has been
opposed by Schachar at al. (1993) (Annals of Ophthalmology, 25 (1) 5–9) who suggest that increasing the zonular tension
increases rather than decreases the power of the lens. This view is supported by a numerical analysis of the lens based on a
linearised form of the governing equations. We propose in this paper an alternative numerical model in which the geometric
non-linear behaviour of the lens is explicitly included. Our results differ from those of Schachar et al. (1993) and are consistent
with the classical Helmholtz mechanism. © 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

According to the classical Helmholtz theory
(Helmholtz 1909; Fincham 1937; Fisher, 1977) in the
unaccommodated state the lens of the human eye is
flattened by passive tension in the zonular fibres that
run radially from its equator to the ciliary body on the
wall of the globe. Accommodation is achieved by con-
traction of the annular ciliary muscle. This reduces the
tension in the zonular fibres and causes the curvature of
the lens surfaces to increase with a consequential in-
crease in optical power. This view has recently been
challenged by Schachar, Huang and Huang (1993) and
Schachar, Cudmore, Torti, Black and Huang (1994),
who suggest that a contraction of the ciliary muscle
increases zonular tension and tends to increase (rather
than decrease) the lens power. This proposal is sup-
ported by a simple physical model consisting of a
gelatine-filled balloon (Schachar et al., 1994) and also
by numerical studies of the accommodation process
(Schachar et al., 1993). It is not immediately clear why
this numerical model gives results that are so pro-

foundly counter-intuitive; this is the question that we
seek to address in this paper.

Schachar et al. (1993) modelled the lens as an
axisymmetric elastic membrane (the capsule) enclosing
an incompressible fluid (the matrix). The shape of the
capsule was derived from measured data (Brown, 1973)
from the unaccommodated lens of a 29-year old. An
energy method was used to compute the capsule dis-
placements when a zonular tension was applied, subject
to the constraint that the enclosed volume was con-
served. This analysis is subject to several important
assumptions. The lens matrix was assumed to be in-
compressible, which is the usual assumption although
published measurements of Poisson’s ratio do not ap-
pear to be available. The potential role of the vitreous
in influencing the mechanical behaviour of the lens was
ignored. The analysis was based on linear theory and
therefore neglected the important geometric non-linear
terms that govern the behaviour of membranes as
displacements become large. This third feature of the
Schachar et al. (1993) analysis is discussed below.

1.1. Geometric non-linear beha6iour of membranes

Geometric non-linear behaviour of membranes is
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well-understood by, for example, engineers working on
the design of fabric roof structures (e.g. Barnes, 1994)
and is demonstrated by the following simple example.
Consider a spherical elastic membrane of initial radius
Ro which is inflated to radius R by internal pressure p
as shown in Fig. 1a. The membrane has thickness t, a
Young’s modulus E and (for simplicity) zero Poisson’s
ratio. Hooke’s Law combined with the requirements of
radial equilibrium gives:

dp
dR

=
2t(E−s)

R2 (1)

where the hoop and meridional stresses are both equal
to s.

In conventional small displacement structural analy-
sis, Eq. (1) would be linearised to give:

dp
du

=
2Et
Ro

2 (2)

where u is radial displacement of the membrane. Eq. (2)
is adequate provided that the radial displacement re-
mains small compared with Ro. If changes of radius
become large, however, then Eq. (2) becomes unsatisfac-
tory. In this case, the response of the membrane is
obtained by integration of Eq. (1) to give:

p=
2Et
R

ln
�R

Ro

�
(3)

Eqs. (2) and (3) are plotted in Fig. 1b. The solutions
differ significantly for large values of R/Ro. In particular,
Eq. (3) indicates that pressure reduces with radius after
the membrane reaches a certain size and this explains
why a balloon becomes easier to inflate as it becomes
bigger.

Membranes support an applied pressure by the com-
bined action of geometric curvature and in-plane
stresses. In conventional linear theory, the geometry of
the membrane is not modified by the displacements. This
assumption becomes increasingly unacceptable when
displacements become large, as illustrated by the above
example. There is no general rule about how large is too
large; this will depend on the system being modelled.

2. Numerical model of accommodation

We have carried out a numerical study of the lens
capsule using the finite element package ABAQUS
(ABAQUS–Hibbitt, Karlsson and Sorensen, UK, Ltd.)
which is widely used in civil and mechanical engineer-
ing. These calculations were based on the assumption
(also adopted by Schachar et al., 1993) that the lens
matrix is incompressible. Two sets of analyses were
carried out with the same initial lens geometry that was
used by Schachar et al. (1993). One set of analyses was
based on a linearised form of the equations that gov-

erns the mechanical behaviour of the lens capsule. The
other set was based on an analysis procedure in which
geometric non-linear terms were included in the govern-
ing equations and the mesh geometry was updated
during the calculation process. The capsule was mod-
elled with a single layer of 55 8-node elastic isoparamet-
ric quadrilateral elements as shown in Fig. 2. The
elements were assigned a geometric thickness, t, of 15
mm; values of Young’s modulus, E, were adopted such
that the product Et matched closely the variation as-
sumed by Schachar et al. (1993). Poisson’s ratio for
each element was set to 0.47, which was the value
adopted by Schachar et al. (1993). Computations were
carried out by applying a zonular tension, F, to the lens
equator and using a numerical scheme to adjust the
pressure within the capsule to ensure that the enclosed
volume was conserved, as it must be for an incompress-
ible matrix.

The computed displacements from the linear analysis
agree well, both quantitatively and qualitatively, with
those given by Schachar et al. (1993). A deformed mesh
(with unfactored displacements) for an equatorial strain
of 6.25%, is shown in Fig. 3a. Equatorial strain, for a
linear analysis, is defined:

o=
u

Ro

(4)

where Ro is the initial equatorial radius of the lens and
u is the radial displacement at the lens equator. In this
analysis Ro=4.3 mm and the displacements shown in
Fig. 3a correspond to a radial displacement, u, of 0.27
mm. In a linearised analysis such as this, the geometry
of the lens capsule cannot change and equilibrium may
only be achieved by the development of appropriate
membrane stresses. These stresses are developed as a

Fig. 1. (a) Expansion of elastic spherical membrane of initial radius
Ro, subjected to internal pressure p resulting in an increased radius R.
(b) Non-dimensional plot of pRo/Et, (where Et is the product of
Young’s modulus and membrane thickness) as a function of frac-
tional radial expansion, R/Ro. Eq. (2) refers to a linear analysis; Eq.
(3) refers to an analysis in which geometric non-linearities are in-
cluded. Note the significant difference between the two results for
R/Ro greater than about 1.5.
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Fig. 2. Axisymmetric finite element mesh of eight-noded quadrilateral elements used to model the lens capsule. Detail A shows the connection
between the zonules and the capsule; detail B shows the detail on the lens axis. Young’s modulus, E, was varied with position to ensure that the
product Et (where t is the membrane thickness) followed closely that adopted by Schachar et al. (1993). Ro is the initial equatorial radius (equal
to 4.3 mm) and F is the zonular force that was applied during the finite element analysis. On the lens axis, the capsule is constrained to move
only in an axial direction; the zonular force is applied at right-angles to the lens axis.

result of strains within the membrane and result in the
prediction of displacements that follow the curious
undulating pattern shown in Fig. 3a. The computed
curvature of the lens surfaces is clearly subject to a large
variability. On the lens axis the curvature of both the
posterior and anterior surface are both seen to increase.
This confirms the main result of Schachar’s analysis, and
leads to the suggestion that the optical power of the lens
is increased by the application of zonular tension.

The analysis was repeated using the geometric non-lin-
ear formulation available in ABAQUS. A difficulty
exists, however, because in a non-linear analysis the lens
behaviour will depend on the stresses in the capsule at
the start of the analysis (i.e. when the zonular tension is
zero). For simplicity, however, we assumed that the
initial stresses were all zero. A deformed mesh, for an
equatorial strain of 6.25%, is shown in Fig. 3b. Note that
for a geometric non-linear analysis the equatorial strain
is defined as:

o=
R−Ro

Ro

(5)

where R is the current equatorial radius. Fig. 3b shows

a mode of behaviour that differs fundamentally from that
obtained from the linear analysis. For a non-linear
analysis, the application of a zonular tension is seen to
decrease the anterior curvature on the lens axis leading
to a reduction in optical power. Moreover, changes in the
position and curvature of the posterior surface are
negligible; this is consistent with the classical view of the
accommodation process.

The lens geometry adopted by Schachar et al. (1993)
(and used as the initial geometry in the calculations
described above) is based on measured curvatures of an
unaccommodated eye whereas the accommodated geome-
try is thought to be more appropriate initial state. To
improve the model, further non-linear calculations were
carried out in which the initial geometry was based on
measured lens curvatures (Brown, 1973) for a 29-year old
subjected to an accommodation demand of 10 Dioptres;
this was thought to represent a fully accommodated state.
These new analyses were based on a mesh consisting of
245 8-node isoparametric quadrilateral elements. The
results of these analyses were used to obtain the variation
of lens power with equatorial strain shown in
Fig. 4. To calculate these lens power data from the
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Fig. 3. (a) Deformed mesh obtained from a linear analysis for an equatorial strain, u/Ro, of 6.25%, where u is radial displacement of the lens
equator and Ro is the initial lens equatorial radius. Note the undulating shape of the deformed capsule and the increased curvature on the lens
axis. (b) Deformed mesh obtained from a geometric non-linear analysis for an equatorial strain, (R−Ro)/Ro, of 6.25% where R is radius of the
lens equator after application of the zonular force. Note that the zonular force causes the curvature of the anterior surface to decrease on the lens
axis. The scale bar shown applies to both horizontal and vertical axes

finite element results, a least-squares procedure was used
to fit spherical surfaces to the portion of the computed
capsule geometry within a radial distance of 0.8 mm of
the lens axis for both the anterior and posterior surfaces.
The curvatures of these spheres, and the thickness of the
lens, were then used to determine the optical power of

the lens on its axis using the conventional thick lens
formula, with refractive indices of 1.336 for the aqueous
and vitreous, and 1.42 for the matrix (these are the same
as the values adopted by Schachar et al., 1993). Fig. 4
indicates conventional Helmholtz behaviour with optical
power reducing with increasing equatorial strain. The
data show that a strain increase of 10% from the initial
state causes a power reduction of about 10 Dioptres,
giving an average power reduction rate of approximately
1 Dioptre per percent strain. Moreover, for all the strain
values examined, the power reduced with strain, which
is contrary to the Schachar result.

2.1. Comparison with physiological measurements

In vitro measurements (Glasser & Campbell, 1998;
Glasser, 1998) of lens equatorial diameter and lens power
show that in young (11–20 year old) eyes the optical
power of the lens reduced at a rate of between 0.69 and
1.25 Dioptres per percent equatorial strain. In vivo
measurements (Storey & Rabie, 1985) on young subjects
indicated a rate of optical power reduction of 1.2
Dioptres per percent equatorial strain. These results
compare favourably with our numerical data.

3. Conclusion

It is not claimed that these numerical results capture
all of the complex physiological aspects of the accom-

Fig. 4. Variation of lens power with equatorial strain for a non-linear
analysis taking the accommodated geometry (Brown, 1973) as the
initial state. Equatorial strain is defined as (R−Ro)/Ro, where Ro is
the equatorial radius for zero zonular force (and zero capsular
tension). This plot is consistent with the Helmholtz mechanism
(power reducing with equatorial strain). For strains less than 2%, the
power falls more rapidly than for larger strains.
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modation process. It is suggested, however, that a
correct mathematical treatment of the lens capsule is
needed to carry out meaningful analyses of this prob-
lem. Our results show that for eyes that are relatively
young (i.e. not presbyopic) the Helmholtzian mecha-
nism of accommodation remains the most likely. It
must of course be remembered that our model (and
Schachars) neglects age-related changes in the mechan-
ical and optical properties of the lens matrix. It is
generally accepted that these processes will modify the
behaviour of the lens and more complex analyses will
be needed to investigate this.
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