On a Conjecture of I. N. Herstein

M. CHACRON

Department of Mathematics, Carleton University, Ottawa, Ontario, Canada

Communicated by I. N. Herstein

Received March 20, 1984

If \(R \) is any prime ring with center \(Z \) and Jacobson radical \(J \neq 0 \), \(A \) is any subring of \(R \) such that \(x^{-1}Ax \subseteq A \) for every unit \(x \) of \(R \), \(A \neq Z \), does it follow that \(A \supseteq I \) for some non-zero ideal \(I \) of \(R \)? In this note \(I \) will answer the question in the negative for a special class of right valuation rings \(R \), which are orders in division rings \(D \neq R \). In [1], I. N. Herstein conjectured that the answer to the question would be indeed in the negative if \(R \) is without divisors of zero. Since the considered rings \(R \) are evidently without divisors of zero they will thus verify Herstein's conjecture.

Let me first recall the definition of a valued division ring \((D; \omega) \) (in the sense of O. F. G. Schilling). If \(D \) is any division ring, \(0 \neq G \), is any ordered abelian group with addition, \(G^* = G \cup \{ \infty \} \), is the ordered group \(G \) with infinitely adjoined (positive infinity) then the mapping \(\omega: D \to G^* \) is a valuation of \(D \) with value group \(G \), if \(\omega \) is onto, \(\omega \) maps the group \(D^* \) of non-zero elements in \(D \) onto the group \(G \),

\[
\omega(\sigma \tau) = \omega(\sigma) + \omega(\tau),
\]

for every pair \(\sigma, \tau \in D \), and

\[
\omega(\sigma + \tau) \geq \text{Min}(\omega(\sigma), \omega(\tau)),
\]

for every pair \(\sigma, \tau \) in \(D \). The system \((D; \omega) \) is then called a valued division ring.

As is formal, if \(R = R(D; \omega) \) is the set of elements \(\sigma \) such that

\[
\omega(\sigma) \geq 0 \quad \text{(in } G),
\]

then \(R \) is a subring of \(D \), which is a right valuation ring with center \(Z = Z_D \cap R \), where \(Z_D \) is the center of \(D \), and with Jacobson radical

\[
J = J(D; \omega) = \{ \sigma \in R | \omega(\sigma) > 0 \}.
\]
Since the value group G of ω is not the zero group it follows that $R \neq D$; equivalently $J \neq 0$. An added feature of R is that every one-sided ideal of R is two-sided as this follows from the fact that

$$[\sigma, \tau]$$ is a unit of R, \hspace{1cm} (5)

where $\sigma, \tau \in D^x$, and

$$[\sigma, \tau] - \sigma^{-1} \tau^{-1} \sigma \tau.$$ \hspace{1cm} (6)

As a special case of valued division ring sufficient for the considered right valuation ring R, I will require throughout the value group G to be the ordered additive group of integers \mathbb{Z}. To avoid confusion, I will denote the first positive integer in G by 0^+. If $\mu \in D$ is such that $\omega(\mu) = 0^+$, it is clear that μ is a principal generator of the ideal J:

$$J = \mu R.$$ \hspace{1cm} (7)

For general ideal I or R, if $n = n(I)$ is the first positive integer in the set

$$\omega(I) = \{ \omega(\tau) | \tau \in I \},$$ \hspace{1cm} (8)

then μ^n is a principal generator of the ideal I:

$$I = \mu^n R \quad (I \neq 0, R).$$ \hspace{1cm} (9)

Theorem 1. Let D be any division ring, let ω_1 and ω_2 be any pair of valuations of D with same value group $G = \mathbb{Z}$. If R_i is the valuation ring corresponding to ω_i, J_i is the Jacobson radical of R_i ($i = 1, 2$), $R_1 \neq R_2$, then R_i contains no non-zero ideal of R_j for $i \neq j$.

Proof. Deny the conclusion of the theorem. If, say, R_1 contains some non-zero ideal I of R_2 it follows that R_1 contains J_2. This is evidently true if $I = R_2$. If not, then $I = \mu^n R_2$, where $\omega_2(\mu) = 0^+$. Then $J_2 = (\mu R_2)^n = I \subset R_1$. If $\sigma \in J_2$ then $\sigma^n \in J_2 \subset R_1$ or $\omega_1(\sigma^n) \geq 0$. Equivalently, $\omega_1(\sigma) \geq 0$. Thus $J_2 \subseteq R_1$. I proceed to show next that $J_1 \subset R_2$. For if the latter inclusion fails then there is $\sigma \in J_1$, $\sigma \notin R_2$. Since $\sigma \notin R_2$ it follows that $\sigma^{-1} \in J_2 \subseteq R_1$. From $\sigma \in J_1$ and $\sigma^{-1} \in R_1$ would follow $1 = \sigma^{-1} \sigma \in J_1$, which is nonsense.

I claim next that $R_1 \ni R_2$. For, otherwise, choose $\tau \in R_2$, $\tau \notin R_1$. Since $J_2 \subset R_1$ it follows that $\tau \notin J_2$. Thus τ is a unit of R_2. From $\tau \notin R_1$ follows $\tau^{-1} \in J_1 \cap R_2$. If $\phi \in R_1$ then $\phi \tau^{-1} \in J_1 \subset R_2$, resulting in $\phi \in R_2$; this for every $\phi \in R_1$. Thus $R_1 \subseteq R_2$. From $J_2 \subset R_1$ and

$$J_2 R_1 \subset J_2 R_2 \subset J_2$$
follows J_2 is an ideal of R_1. Since $J_2 \neq 0$, $J_2 \neq R_1$ there must be m such that

$$J_2 \subset \mu_1^m R_2.$$

From $\mu_1 \in R_1 \subseteq R_2$ and $R_1 \subseteq R_2$ follows $J_2 \subset \mu_1^m R_2$, with $\mu_1 R_2$ a right ideal of R_2. If $\mu_1^m R_2 \neq R_2$ then $J_2 = \mu_1^m R_2$ follows. Thus $\mu_1^m R_1 = J_2 = \mu_1^m R_2$, resulting in $R_1 = R_2$, which is contrary to hypothesis. This shows that $\mu_1^m R_2 = R_2$. Thus μ_1 is a unit of R_2. However, from $J_2 = \mu_1^m R_1$ follows $\mu_1^m \in J_2$, which is nonsense.

The preceding argument used the inclusions $J_2 \subset R_1$ and $J_1 \subset R_2$ to arrive at the inclusion $R_1 \supseteq R_2$. By symmetry, $R_2 \supseteq R_1$ follows giving the equality $R_1 = R_2$, which is ruled out.

Theorem 2. Let D, ω_1, and ω_2 be as in Theorem 1, and suppose that D is non-commutative. If R is any one of the R_i, and $A = R_1 \cap R_2$ (resp. $A = J_1 \cap J_2$) then:

1. R is a right valuation ring which is an order in D, R has center $Z = Z_D \cap R$, and R has Jacobson radical $J \neq 0$.
2. $\sigma^{-1} A \sigma \subseteq A$, for every unit σ in R.
3. $A \neq Z$.
4. A contains no non-zero one-sided ideal of R.

Proof:

1. For $R = R(D, \omega_i)$, for some non-trivial valuation ω_i of D.

2. Clearly R_i (resp. J_i) is preserved under conjugation (in D). Hence $R_1 \cap R_2$ (resp. $J_1 \cap J_2$) is preserved under conjugation. Since $R \subset D$ the assertion follows.

3. If A were contained in Z, then $[D^x, D^x] \subseteq Z_D$ follows. For if $A = R_1 \cap R_2$ then from $[D^x, D^x] \subseteq R_1$ follows $[D^x, D^x] \subseteq R_1 \cap R_2 = A \subseteq Z = Z_D \cap R \subseteq Z_D$. If, on the other hand, $A = J_1 \cap J_2$, choose any $\tau \notin R_1 \cup R_2$ (possible since $R_i \neq D$ is an additive subgroup of the additive group D). Then $\tau^{-1} \in J_1 \cap J_2 \subseteq Z_D$. If $\sigma \in R_1 \cap R_2$, then $\tau^{-1} \sigma \in J_1 \cap J_2 \subseteq Z_D$. From τ^{-1}, $\tau^{-1} \sigma \in Z_D$, this for every $\sigma \in R_1 \cap R_2$. Thus, again, $[D^x, X^x] \subseteq Z_D$. Since by Scott [2, Theorem 14.4.4] every normal subgroup of D^x which is solvable must be, in fact, central, it follows that $D^x \subseteq Z_D$. Equivalently, D is commutative, which contradicts the hypothesis.

4. If A contains some non-zero ideal of R, then $R_1 \cap R_2 \supseteq A$ contains some non-zero ideal of R. Since $R = R_1$ or $R = R_2$, it follows that some R_i contains some non-zero ideal of R_j with $i \neq j$, contradicting Theorem 1.

It is appropriate to observe that in case $A = R_1 \cap R_2$, $[R^x, R^x] \subseteq A$ follows, where R^x is the group of units of R. In fact, $[D^x, D^x] \subseteq R_1 \cap R_2 = A$. This contrasts sharply with the Lie product.
ON A CONJECTURE OF I. N. HERSTEIN

(R, R), which by a well-known theorem of Herstein, if contained in A would force A to contain some non-zero ideal of R. Even \((R^x, R^x)\) cannot be contained in A, for if \(\sigma, \tau \in J\), then \((\sigma, \tau) = (1 + \sigma, 1 + \tau) \in (R^x, R^x)\).

It is fairly standard to construct a triple \((D; \omega_1; \omega_2)\) as in Theorem 1. Start with the real field \(\mathbb{R}\). Let \((F; \omega)\) be the field of real Laurent series

\[
\phi = \sum_{i=0}^{\infty} a_i x^{q_0 + i} \quad (a_0 \in \mathbb{R})
\]
equipped with the valuation

\[
\omega(\phi) = \begin{cases}
\infty & \text{if } \phi = 0 \\
q_0 & \text{if } a_0 \neq 0.
\end{cases}
\]

(10)

Let \(\phi: \mathbb{Z} \to \text{Aut}(F)\) be the homomorphism from the additive group of integers \(\mathbb{Z}\) into the group of automorphisms of the field \(F\) defined by

\[
\Phi(n) = \phi \mapsto \phi^{(n)},
\]
where \(\phi^{(n)}\) is the Laurent series obtained by replacing the indeterminate \(x\) by \(2^n x\).

Let \(T_\mathbb{Z} = \{ t_r \}_{r \in \mathbb{Z}}\) be the free abelian group with generator \(t = t_1\) and product \(t_r t_{r'} = t_{r + r'}\). Let now \(D\) be the ring of series

\[
\sigma = \sum_{i=0}^{\infty} \phi_{r_i} t_{r_i} \quad (\phi_{r_i} \in F),
\]
where \((r_i)\) is an increasing sequence of integers. Addition and multiplication in \(D\) are carried out according to the following laws and their consequences:

\[
0_F \cdot t_r = 0_D; \quad (13)
\]

\[
(\phi \cdot t_g)(\psi \cdot t_h) = \phi \psi^{(g)} t_{g+h} \quad (g, h \in \mathbb{Z}; \phi, \psi \in F); \quad (14)
\]

\[
1_F \cdot t_0 = 1_D, \quad \text{the unity of} \ D. \quad (15)
\]

Theorem 3. There is a triple \((D; \omega_1; \omega_2)\) as in Theorem 1.

Proof. For \(D\) as in the preceding construction it is well known that \(D\) is a division ring; it suffices to take the trivial factor set from \(T_\mathbb{Z} \times T_\mathbb{Z}\) into \(F\) and to quote, for example, [3, pp. 23–24] for the system \((D, F, T_\mathbb{Z}, \Phi)\). That \(D\) is not commutative is clear. As a first valuation of \(D\) with value group \(\mathbb{Z}\) there is the usual valuation \(\omega_2: D \to \mathbb{Z}\) defined by

\[
\omega_2 \left(\sum_{i=0}^{\infty} \phi_{r_i} t_{r_i} \right) = r_0 \quad (\phi_{r_0} \neq 0). \quad (16)
\]
To get one other valuation ω_1 with value group \mathbb{Z} and such that $R_1 \neq R_2$, it suffices to extend the ground valuation ω of F to D by setting:

$$\omega_1 \left(\sum_{i=0}^{\infty} \phi_i t_i \right) = \omega(\phi_{r_0}) \quad (\phi_{r_0} \neq 0).$$

That ω_1 maps D onto \mathbb{Z}^* (by convention, $\omega_1(0) = \infty$) follows evidently from the fact that ω maps $F \subseteq F \cdot t_0$ onto \mathbb{Z}^*. Axiom (2) is easy to verify. Axiom (1) can be readily verified using the obvious fact that

$$\omega_1(\phi^n) = \omega_1(\phi) \quad (n \in \mathbb{Z}).$$

Finally, to show that $R_1 \neq R_2$ it suffices to find $\sigma \in D$ such that $\omega_1(\sigma)$ and $\omega_2(\sigma)$ have opposite signs. If, for instance, $\sigma = x \cdot t_1$, then

$$\omega_2(\sigma) = \omega(x) = 0^+, \quad \omega_1(\sigma) = -0^+,$$

proving thereby the theorem.

ACKNOWLEDGMENTS

I wish to express my thanks to I. N. Herstein for encouraging this work and to NSERC (Canada) for partial support (Grant A7876).

REFERENCES