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generically, NC effects increase the critical temperature of the holographic superconductor.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

In recent years AdS/CFT correspondence, proposed by Maldacena [1], has captured the attention of both High Energy and Condensed 
Matter theorists, since it can address issues in strongly interacting systems in the latter one (that are otherwise intractable in conventional 
Condensed Matter framework), by exploiting results obtained in weakly coupled systems in the former. In particular, there exists explicit 
mapping between relevant operators and parameters of a field theory in the bulk AdS spacetime to those of a Conformal Field Theory 
living in the (one dimension lowered) boundary. It was shown by Gubser [2] that a simple theory of Abelian Higgs model in AdS space 
can lead to a spontaneous symmetry breaking thereby inducing scalar hair near the black hole horizon. The AdS–CFT correspondence and 
its associated dictionary can lead to interesting analogies with thin-film superconductors. A still simpler variant that captures the essential 
physics of holographic superconductors was considered by Hartnoll, Herzog and Horowitz [3], who took the so-called probe limit where 
the Maxwell field and the scalar field do not generate back reactions on the metric. Operationally, this means that one can consider the 
effect of Schwarzschild-AdS metric on scalar and Maxwell fields, instead of taking the background metric to be Reissner–Nordstrom in 
AdS. In fact, afterwards the latter framework was studied in [4] (for detailed review see [5]).

In this perspective, our aim is to study the effects of Non-Commutative (NC) geometry on AdS–CFT correspondence and subsequently 
on the properties of holographic superconductors. In the present work, we focus on the probe limit and will pursue the full theory 
including back reactions in a later publication.

Noncommutativity in spacetime was introduced long ago by Snyder [6] in the hope of removing short distance singularities in quantum 
field theory, but it was not successful. Later on, NC field theory was resurrected by Seiberg and Witten [7], who demonstrated that in the 
low energy limit open strings, attached to D-branes, induced noncommutativity in the D-branes. In [7] rules were provided for extending 
QFTs to NC QFTs, where normal products between local fields were replaced by ∗-products so that NC QFTs could be studied perturbatively 
for small NC parameter θ . Furthermore, NC gauge theories had to be treated in a special way by incorporating the Seiberg–Witten map 
[7] (for a review see [8]). Recently Nicolini, Smailagic and Spalucci [9,10] have given a new NC extension of Schwarzschild metric by 
directly solving the Einstein’s equation with a smeared matter source, which has the form of a Gaussian distribution that incorporate the 
NC effect as a minimum width θ . The black hole singularity was successfully removed in this scenario. In a sense, the original motivation 
of Snyder [6] was partly fulfilled albeit in a classical context. NC effects on salient features of black hole, such as Hawking radiation, have 
been studied using this θ -corrected metric [11]. In these analyses θ is the NC parameter. Hawking–Page crossover with such NC black 
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hole metric in AdS has been studied in [12]. Recently, effects of noncommutativity on thermalization processes for the NC black hole 
backgrounds have been studied in [13].

In the present paper, we aim to study the bulk NC effect on holographic superconductors in the probe limit approximation. It is 
perhaps acceptable that (at least to the lowest non-trivial order of θ ) NC effect does not change the asymptotic behaviors of bulk fields 
qualitatively. This means that the functional forms remain unchanged whereas the numerical parameters undergo the NC corrections. This 
allows us to use the same (canonical) AdS–CFT dictionary in order to compute the θ -corrected relation between the critical temperature 
and the charge density of the holographic superconductor and thereafter the condensate-temperature relation. As we have mentioned our 
results are valid in the probe limit domain.

The paper is organized as follows: In Section 2, we introduce the NC-AdS black hole metric and define the action for an Abelian gauge 
field (coupled with a scalar) in this NC spacetime background. In Section 3, we study the asymptotic behavior of the gauge and scalar 
fields. Depending on these we proceed to analyze the relation between the critical temperature and the charge density in Section 4. 
Afterward, in Section 5 we compute the critical exponents and condensation values. Finally we conclude with a discussion of our findings 
in Section 6.

2. Noncommutative black hole in AdS4 and equation of motions

We start with the gravitational action in noncommutative AdS background, where gravity is coupled to a U (1) gauged charged scalar 
field ψ , given by

S =
∫

d4x
√−gL =

∫
d4x

√−g

[
1

16πG

(
R + 6

L2

)
− 1

4
Fμν F μν − |∂μψ − iq Aμψ |2 − m2|ψ |2

]
. (1)

In the above gμν is the metric tensor, L is the AdS radius, Fμν is the Maxwell field and ψ is the scaler field of Higgs. Throughout 
this paper, we work in the system of natural units with c = h̄ = kB = 1. As we have already discussed previously, the noncommutativity 
emerges here from both the matter and electromagnetic source terms, are smeared ones with Gaussian features as considered in [9,10,14]. 
The solution of the above action is given by a NC charged AdS4 black hole metric [9,10,14],

ds2 = − f1(r)dt2 + dr2

f1(r)
+ r2dΩ2;

f1(r) = K − 4MG

r
√

π
γ

(
3/2, r2/4θ

) + G Q 2

πr2

[
γ 2(1/2, r2/4θ

) − r√
2θ

γ
(
1/2, r2/2θ

) +
√

2

θ
rγ

(
3/2, r2/4θ

)] + r2

L2
, (2)

where γ (s, x) = ∫ x
0 ts−1e−tdt is the lower incomplete Gamma function and Q is the total charge of the black hole. In (2), K represents the 

curvature which take the values K = 0, +1, −1 corresponding to planar, spherical and hyperbolic spacetime respectively. For θ → 0 the 
above metric reduces to the usual Reissner–Nordstrom AdS4 form. Since we are interested on asymptotic behavior of AdS, and as stipulated 
earlier we restrict ourselves to the probe limit, the Q 2-dependent back reaction terms are not taken into account in f1(r). Therefore the 
metric (in probe limit) reduces to

ds2 = − f1(r)dt2 + dr2

f1(r)
+ r2dΩ2,

f1(r) = K − 4MG

r
√

π
γ

(
3/2, r2/4θ

) + r2

L2
. (3)

The outer horizon radius r+ for this black hole is obtained by solving

K − 4MG

r+
√

π
γ

(
3/2, r2+/4θ

) + r2+
L2

= 0. (4)

In this work, we intend to study the large black holes, i.e. where r2+
4θ

� 1, and hence the lower incomplete gamma function in (4) can be 
approximated by the exponential form [9]. Moreover, as our goal in this paper is to study the properties of a holographic superconductor 
through AdS–CFT correspondence, at the AdS boundary (where r is large and hence r2

4θ
� 1, since θ is small), the exterior metric (3)

becomes

ds2 = − f1(r)dt2 + dr2

f1(r)
+ r2(dx2 + dy2),

f1(r) = K − 2MG

r
+ r2

L2
+ 2MG√

πθ
e− r2

4θ . (5)

We consider gauge field Aμ to have only temporal component as it is customary [2,5], i.e. Aμ = (φ(r), 0, 0, 0) and ψ = ψ(r). With these 
assumptions, the action (1) simplifies to

S =
∫

d4x
√−g

[
1

16πG

(
R + 6

L2

)
− 1

2
grr gtt(∂rφ)2 − grr(∂rψ)

(
∂rψ

∗) − gttφ2|ψ |2 − m2|ψ |2
]
. (6)

We now derive the equations of motion for the scaler fields ψ and the gauge potential φ from the action (6). The equation of motion for 
scalar field ψ is given by
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ψ ′′ +
(

f ′
1(r)

f1(r)
+ 2

r

)
ψ ′ − m2

f1(r)
ψ + φ2

f 2
1 (r)

ψ = 0, (7)

and the equation of motion for the gauge potential φ is given by

φ′′ + 2

r
φ′ − 2|ψ |2

f1(r)
φ = 0. (8)

Eqs. (7) and (8) are the governing equations of our noncommutative model.

3. Asymptotic behavior of ψ and φ

Let us study the asymptotic behavior of ψ and φ, as these are relevant in the AdS–CFT correspondence. In this context, we take the 
metric (5) to be asymptotic one and following [10,11] we expand the subsequent terms throughout this work to O ( 2GM√

πθ
e− r2

4θ ). Note that, 
though 1/

√
θ is large (since θ is a non-zero small quantity and has an established upper bound [15]), in the asymptotic limit (for large r)

the exponential damping term e− r2
4θ dominates over 1/

√
θ and makes the overall quantity ( 2GM√

πθ
e− r2

4θ ) small enough, so that the above 
expansion remains valid. With this argument we expand the governing equations for ψ (7) and φ (8) to the first order of O ( 2MG√

πθ
e− r2

4θ ).
First, notice that with this expansion, the second term of (7) can be expanded like(

f ′
1(r)

f1(r)
+ 2

r

)
ψ =

(
f ′(r)
f (r)

+ 2

r

)
ψ −

(
f ′(r)
f 2(r)

+ r

2θ f (r)

)
2MG√

πθ
e− r2

4θ ψ,

where f (r) = K − 2MG
r + r2

L2 . Performing similar kinds of expansion for rest of the terms in (7) and (8) the governing equation for ψ and 
φ becomes

ψ ′′ +
(

f ′(r)
f (r)

+ 2

r

)
ψ ′ − m2

f (r)
ψ + φ2

f 2(r)
ψ −

((
f ′(r)
f 2(r)

+ r

2θ f (r)

)
ψ ′ − m2

f 2(r)
ψ + 2φ2

f 3(r)
ψ

)
2MG√

πθ
e− r2

4θ = 0 (9)

and

φ′′ + 2

r
φ′ − 2|ψ |2

f (r)
φ + 2|ψ |2

f 2(r)
× 2MG√

πθ
e− r2

4θ φ = 0. (10)

As we are interested on studying the asymptotic behavior of the fields, we can consider a further approximation 1
f (r) ≈ L2

r2 (considering 
terms up to 1

r2 only), so that no higher order terms than O (θ/r2) appear in the final equations; asymptotically r2/4θ � 1 is equivalent to 
the limit where θ/r2 is very small. With this approximation, the above equation for ψ can be written (keeping terms only up to 1

r2 ) as

ψ ′′ + 4

r
ψ ′ + 2

r2
ψ −

(
L2

2θr
ψ ′

)
2MG√

πθ
e− r2

4θ = 0, (11)

where we have used the relation m2 L2 = −2 [2]. It is known that ψ = C
r + D

r2 is a solution of the equation ψ ′′ + 4
r ψ ′ + 2

r2 ψ = 0. Therefore 

we assume that the solution of (11) to be of the form ψ = C
r + D

r2 + 2MG√
πθ

e− r2
4θ ψ1. Substituting this into (11) we see that the differential 

equation for ψ1 becomes

ψ ′′
1 +

(
4

r
− r

θ

)
ψ ′

1 +
(

r2

4θ2
− 5

2θ
+ 2

r2

)
ψ1 = L2

2θr
ψ ′

0 = − L2

2θr

(
C

r2
+ D

r3

)
≈ 0, (12)

where again we have considered terms up to O ( 1
r2 ). The solution of (12) is given by ψ1 = ( E

r + F
r2 )e

r2
4θ . Therefore the asymptotic behavior 

of ψ can be expressed as

ψ = C

r
+ D

r2
+ 2MG√

πθ
e− r2

4θ ψ1 = C

r
+ D

r2
+ 2MG√

πθ

(
E

r
+ F

r2

)
= ψ−

r
+ ψ+

r2
, (13)

where ψ− = C + 2MG√
πθ

E and ψ+ = D + 2MG√
πθ

F . For later analysis we set ψ+ = 0 and ψ− � 〈 J 〉 [16]. It is interesting to see from (13) that 
the θ -dependent part has the same structure as the usual one where θ = 0.

Using the same approximation 1
f (r) ≈ L2

r2 and substituting (13) in (10), while considering terms up to 1
r2 , we finally get the equation 

for φ in the form

φ′′ + 2

r
φ′ = 0, (14)

with the solution given by

φ = μ − ρ

r
. (15)

The constants μ and ρ are interpreted respectively as chemical potential and charged density. From (15), it is observed that μ and ρ are 
not affected by noncommutativity.
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4. Relation between critical temperature and charge density

If we change the radial coordinate from r to z by the transformation z = r+
r , then the above governing equations for ψ (9) and φ (10)

becomes:

ψ ′′ + f ′(z)

f (z)
ψ ′ − m2r2+

z4 f (z)
ψ + r2+φ2

z4 f 2(z)
ψ +

((
− f ′(z)

f 2(z)
+ r+

2θ z3 f (z)

)
ψ ′ + m2r2+

z4 f 2(z)
ψ − 2r2+φ2

z4 f 3(z)
ψ

)
× 2MG√

πθ
e
− r2+

4θ z2 = 0 (16)

φ′′ − 2r2+|ψ |2
z4 f (z)

φ + 2r2+|ψ |2
z4 f 2(z)

2MG√
πθ

e
− r+2

4θ z2 φ = 0, (17)

where the dashes represents the derivative with respect to z. In order to obtain the relation between the critical temperature Tc and 
charge density ρ , we follow the technique exploited in [16]. At the critical temperature T = Tc , the scalar field ψ vanishes, i.e. ψ = 0, for 
which Eq. (17) becomes

φ′′ = 0 �⇒ φ = a + bz. (18)

By the transformation z = r+
r the solution region changes from r+ ≤ r < ∞ to 1 ≥ z > 0. Since the horizon f1(r) = 0 is at r = r+ , by this 

transformation the horizon becomes at z = 1 and asymptotic boundary becomes at z = 0. At T = Tc , from the asymptotic solution of φ
(15) we get the following relation: φ′(z) = − ρ

r+c
(r+c is the radius of the horizon at T = Tc). Comparing (18) with this expression we 

have b = − ρ
r+c

. Applying the horizon boundary condition φ(z = 1) = 0 in (18) we have a = −b = ρ
r+c

. Thus, the expression for the scalar 
potential φ at the critical temperature T = Tc can be written as

φ = ρ

r+c
(1 − z) ≈ λr+c(1 − z), λ = ρ

r2+c

. (19)

We are now going to investigate the boundary behavior of the scalar field ψ as T → Tc . Substituting the above form of the scaler potential 
φ (19) into (16) we have,

ψ ′′ +
[

f ′(z)

f (z)
+

(
− f ′(z)

f (z)2
+ r2+

2θ z3 f (z)

)
2MG√

πθ
e
− r2+

4θ z2

]
ψ ′ − r2+m2

z4 f (z)

[
1 − 1

f (z)

2MG√
πθ

e
− r2+

4θ z2

]
ψ

= −λ2.
r4+

z4 f (z)2
(1 − z)2

[
1 − 2

f (z)

2MG√
πθ

e
− r2+

4θ z2

]
ψ, (20)

where f (z) = K − 2MG
r+ z + r2+

L2 z2 . In order to study the behavior of ψ near the asymptotic boundary (z → 0) we can define (as T → Tc) [16],

ψ(z) = 〈 J 〉√
2r+

zF (z), (21)

where F (z) satisfies the boundary condition F (0) = 1 and F ′(0) = 0. Substituting (21) in the above equation (20) we have

F ′′(z) +
[

2

z
+ f ′(z)

f (z)
+

(
− f ′(z)

f (z)2
+ r2+

2θ z3 f (z)

)
2MG√

πθ
e
− r2+

4θ z2

]
F ′(z)

+
[

f ′(z)

zf (z)
− r2+m2

z4 f (z)
+

(
− f ′(z)

zf (z)2
+ r2+m2

z4 f (z)2
+ r2+

2θ z4 f (z)

)
2MG√

πθ
e
− r2+

4θ z2

]
F (z)

+ λ2 × r4+(1 − z)2

z4 f (z)2

[
1 − 2

f (z)

2MG√
πθ

e
− r2+

4θ z2

]
F (z) = 0. (22)

Now it is straightforward to cast (22) into a Sturm–Liouville eigenvalue problem of the generic form [16]

T (z)F ′(z) − Q (z)F (z) + λ2 P (z)F (z) = 0 (23)

where

T (z) = r+L2z2 f (z) × e
1

f (z) × 2MG√
πθ

e
− r2+

4θ z2

,

Q (z) = −r+L2
(

zf ′(z) − m2r2+
z2

+
(

− zf ′(z)

f (z)
+ m2r2+

z2 f (z)
+ r2+

2θ z2

)
2MG√

πθ
e
− r2+

4θ z2

)
× e

1
f (z) × 2MG√

πθ
e
− r2+

4θ z2

,

P (z) = r5+L2

z2 f (z)
(1 − z)2

(
1 − 2

f (z)
× 2MG√

πθ
e
− r2+

4θ z2

)
e

1
f (z) × 2MG√

πθ
e
− r2+

4θ z2

(24)

where f (z) = K − 2MG
r+ z + r2+

L2 z2 . For a given choice of F (z), the explicit form of λ2 that can be obtained from the above expression (23) is 
given by
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λ2 =
∫ 1

0 (T (z){F ′(z)}2 + Q (z){F (z)}2)dz∫ 1
0 P (z){F (z)}2dz

. (25)

The structure of F (z) can be chosen to be F (z) = 1 − cz2 [3,5] which satisfies the boundary conditions F (0) = 1 and F ′(0) = 0. Here, c
is the minimization parameter. In order to study the properties of the superconductivity we have to minimize the above expression of λ
(25) with respect to c and obtain λmin.

We would like to mention a crucial point here: for the usual planar (K = 0) AdS scenario without noncommutativity (i.e. for θ = 0), we 
have f (r) = − 2MG

r + r2

L2 . The horizon radius r+ can be calculated from f (r+) = 0, which gives r3+ = 2MG (by considering the conventional 
choice L = 1 for AdS–CFT correspondence). Thus one can obtain the expression of λ2 using (23) (in probe limit) as

λ2 =
∫ 1

0 [(1 − z3)(−2cz)2 + z(1 − c z2)2]dz∫ 1
0

(1−z)
1+z+z2 (1 − c z2)2dz

. (26)

Note that M is canceled out from the numerator and the denominator of (26) and r+ does not appear explicitly. Thus the expression (26)
is independent of the choice of M , and as well as of r+ since r3+ = 2MG . However, in this NC AdS scenario, the temporal component of 
metric tensor gtt is given by (5), using which the horizon radius is calculated from the relation f1(r+) = 0 (for K = 0, L = 1) as follows:

r3+ = 2MG

(
1 − r+√

πθ
e− r2+

4θ

)
. (27)

It is clear from the r.h.s. of (27), that r+ depends on M as well as on θ . Using the form f (z) = − 2MG
r+ z + r2+

z2 and the relations (24), (25)
the expression for the eigenvalue λ turns out to be

λ2 =
∫ 1

0

[(
1 − z3 − r+√

πθ
e− r2+

4θ + z2 r+√
πθ

e
− r2+

4θ z2
)
(−2cz)2 + z

(
1 − r3+

2θ z3
1√
πθ

e
− r2+

4θ z2
)
(1 − c z2)2

]
dz

∫ 1
0

1
1+z+z2

[
1 − z + 2z3−1

1+z+z2
r+√
πθ

e− r2+
4θ − z2

1+z+z2
r+√
πθ

e
− r2+

4θ z2
]
(1 − c z2)2dz

. (28)

Clearly in this case, the eigenvalue λ not only depends on M and r+ , but also on θ . Subsequent results, such as ζ (the coefficient of √ρ in 
the relation between the critical temperature Tc and the charge density ρ) then becomes M-dependent as well as θ -dependent. This is a 
highly non-trivial feature of the NC AdS model considered here. We speculate that it hints at a generalized form of AdS–CFT duality where 
the holographic superconductor may have other parameters, besides the charge density and chemical potential, as generally associated 
with it.

In the present noncommutative scenario the Hawking temperature T H [17] is related to the horizon radius r+ by the relation

T H = 3r+
4π L2

(
1 + r+

3
√

πθ
e− r2+

4θ − r3+
6
√

πθ3/2
e− r2+

4θ

)
. (29)

Substituting r+c =
√

ρ
λ

from (19) in to the above expression we have the relation between the critical temperature and charged density as

Tc = 3

4π L2

√
ρ

λmin

(
1 + 1

3
√

πθ

√
ρ

λmin
e
− ρ

4θλmin − 1

6 θ3/2
√

π

(
ρ

λmin

)3/2

e
− ρ

4θλmin

)
. (30)

The above relation constitutes one of our principal results. From (30) we see that Tc not only depends on λmin and ρ , but also on 
noncommutative parameter θ . The linear order part (the part containing first order of √ρ ) of (30) is given by

Tc = 3

4π L2

√
ρ

λmin
≡ ζ

√
ρ, ζ = 3

4πλminL2
. (31)

In Fig. 1 we have plotted (the red one) the NC corrected critical temperature Tc against the charged density ρ . We have taken θ = 0.5
for the graph but we have checked that the structure of the curve remains same for any choice of θ . One can see from this plot that for 
small values of charged density ρ the red NC curve (30) has some fluctuating behavior around its linear order part (31). For ρ ≤ 0.91 the 
functional value of NC Tc is greater than its linear part, but thereafter becomes lower and remains so. In fact, its value becomes less than 
compared to the normal one (in picture this is dashed one for which Tc = 0.225

√
ρ ) in the range 1.98 ≤ ρ ≤ 5.63. Thereafter its value 

continuously increases with ρ and comes closer to its linear part (
√

ρ). However, since our intention is to study the superconductivity, 
so we are interested only in the increasing behavior of the critical temperature above normal case. Therefore, for the sake of brevity of 
calculations, here we concentrate on (31). From (28), one can now determine numerical value of λmin and analyze (31), as studied in 
[3,16]. In Tables 1, 2, 3 and 4 we have given some numerical estimate of ζ corresponding to the different values of λmin, which further 
depends on the horizon radius r+ and NC parameter θ .

5. Critical exponent and condensation value

In this section, we are going to construct the condensation value of the condensation operator J near the critical temperature T = Tc . 
In order to do that, we substitute (21) in (17) which gives
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Fig. 1. Here the dashed curve represents the usual relation between the critical temparature Tc and charged density ρ as Tc = 0.225
√

ρ . The red and the blue curves 
correspond to the NC relation (30) and its linear order contribution (31) respectively. In this NC scenario we got the minimum value of λ as λmin ≈ 0.83. From this we get 
ζ = 0.25. The blue and red curves are plotted by using these values of λmin and ζ for θ = 0.5. (For interpretation of the references to color in this figure, the reader is 
referred to the web version of this article.)

Table 1
Here we have considered G = 1. From the above table one can see that for a large mass black holes, the relation between the critical temperature and charged density 
(Tc = ζ

√
ρ ) remains unchanged for different values of θ .

θ M r+ c λ2 ζ γ

0.5 103
√

θ/G 11.22462 0.238901 1.26832 0.225 8.07
0.1 103

√
θ/G 3.984220 0.238901 1.26832 0.225 8.07

0.01 103
√

θ/G 5.848036 0.238901 1.26832 0.225 8.074

Table 2
Here we have considered G = 1. From the above table one can see that for a fixed value of θ = 0.5, as M decreases the critical temperature first rises (as Tc = ζ

√
ρ ) above 

the normal value 0.225 and reaches to maximum value (0.25
√

ρ ) and then decreases.

θ M r+ c λ2 ζ γ

0.5 40
√

θ/G 3.836269 0.23811 1.26683 0.225 8.07
0.5 5

√
θ/G 1.683034 0.132345 1.04226 0.236 7.71

0.5 2.75
√

θ/G 1.290122 0.082962 0.827768 0.250 7.63
0.5 0.5

√
θ/G 0.7314238 0.245897 1.12218 0.232 8.1

0.5 0.2
√

θ/G 0.559243 0.2757998 1.265862 0.225 8.2

Table 3
Here we have considered G = 1. From the above table one can see that for a fixed value of θ = 0.1, as M decreases the critical temperature first rises (as Tc = ζ

√
ρ ) above 

the normal value 0.225 and reaches to maximum value (0.25
√

ρ ) and then decreases.

θ M r+ c λ2 ζ γ

0.1 8
√

θ/G 1.715632 0.23811 1.26683 0.225 8.07
0.1

√
θ/G 0.752676 0.0927152 0.943411 0.242 7.62

0.1 0.55
√

θ/G 0.576960 0.082962 0.827768 0.250 7.63
0.1 0.1

√
θ/G 0.327102 0.245898 1.12218 0.232 8.1

0.1 0.04
√

θ/G 0.250101 0.275800 1.265862 0.225 8.2

Table 4
Here we have considered G = 1. From the above table one can see that for a fixed value of θ = 0.01, as M decreases the critical temperature first rises (as Tc = ζ

√
ρ ) above 

the normal value 0.225 and reaches to maximum value (0.25
√

ρ ) and then decreases.

θ M r+ c λ2 ζ γ

0.01 0.8
√

θ/G 0.542530 0.23811 1.26683 0.225 8.07
0.01 0.1

√
θ/G 0.238017 0.0927151 0.94341 0.242 7.62

0.01 0.055
√

θ/G 0.182451 0.082462 0.827768 0.250 7.63
0.01 0.01

√
θ/G 0.103439 0.245897 1.12218 0.232 8.10

0.01 0.004
√

θ/G 0.079089 0.275799 1.265862 0.225 8.2

φ′′ = 〈 J 〉2

r2+
B(z)φ(z) (32)

where B(z) = r2+ F 2(z)
z2 f (z)

− r2+ F 2(z)
z2 f 2(z)

2MG√
πθ

e
− r2+

4θ z2 .

At T = Tc , we know that ψ = 0 and φ = λr+c(1 − z) is the solution of φ′′(z) = 0. Therefore, for a temperature T close to Tc we can 
consider the solution of (32) to be of the form
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φ

r+
= λ(1 − z) + 〈 J 〉2

r2+
χ(z), (33)

where 〈 J 〉2

r2+
is a small parameter and χ(z) satisfies the boundary condition χ ′(1) = χ(1) = 0. Substituting the above relation (33) in (32)

we get the differential equation for χ as,

χ ′′(z) = λr2+(1 − z)
F 2(z)

z2 f (z)

(
1 − 1

f (z)

2MG√
πθ

e
− r2+

4θ z2

)
(34)

Again, since (15) represents the asymptotic behavior of φ, thus near the asymptotic boundary we can write

μ

r+
− ρ

r2+
z = λ(1 − z) + 〈 J 〉2

r2+
χ(z) = λ(1 − z) + 〈 J 〉2

r2+

(
χ(0) + zχ ′(0) + . . .

)
, (35)

where we have expanded χ(z) about z = 0. Comparing the coefficients of z from both sides we have

− ρ

r2+
= −λ + 〈 J 〉2

r2+
χ ′(0). (36)

Now integrating (34) between 0 to 1 and using the boundary condition χ ′(1) = 0, we have the expression for χ ′(0) as

χ ′(0) = −λ

1∫
0

(1 − cz2)2

(1 + z + z2)

(
1 − r+√

πθ

z2(ze− r2+
4θ − e

− r2+
4θ z2 )

1 − z3

)
dz ≡ −λA. (37)

Substituting χ ′(0) from (37) in (36) and using the relations λ = ρ

r2+c
and Tc = 3r+c

4π (considering linear order term (31)) we finally obtain 
the expression for condensation operator J for T → Tc as

〈 J 〉 = γ Tc

√
1 − T

Tc
(38)

where γ = 4
√

2π

3
√
A . This relation (38) is crucial for further study of other properties of the noncommutative holographic superconductor. 

Numerical estimates of γ are provided below in Tables 1, 2, 3 and 4.
Note that the governing equations (9) and (10) of the scaler potential ψ and the scaler field φ are obtained by considering the first 

order terms of O( 2GM√
πθ

e− r2
4θ ). If we expand 1

f1(r) up to second order of O( 2GM√
πθ

e− r2
4θ ), then there will be some additional terms in (9) and 

(10). Though these terms do not change the asymptotic behavior of φ, ψ and Eq. (19), but affect the minimum value of λ and χ ′(0)

through (25) and (37) respectively. Thus the values of ζ and γ will be affected due to the second order contributions. Considering the 
values of θ and r+ from the tables one can obtain the maximum value of ( 2GM√

πθ
e− r2

4θ )2 ≈ O (10−2). Since the numerical values of ζ, γ are 
approximately between 0.22–0.25 and 8.2–7.6 respectively, the O(10−2) corrections will affect these numerical values very slightly, thus 
for all practical purposes are negligible.

6. Summary and discussion

In this paper, we have considered a NC charged AdS black hole and a scalar field coupled to gravity, thus introducing a hairy black 
hole. First we have studied the asymptotic behavior of the gauge and scalar field and explicitly show that there are no effects of non-
commutativity on the physical parameters like charge density and chemical potential. Then we proceed to analyze the modified relation 
between critical temperature and charge density. Moreover, we have studied modified expressions for critical exponents and condensation 
values in this noncommutative context.

We have provided some numerical estimates in Tables 1, 2, 3, 4. We consider the established upper bound of θ to be θ ≤ (10 TeV)−2

[15]. In [9] the black hole mass M is related to θ by M ≈ √
θ/G where the Newton’s constant G has been reinstated. This yields M ≈

1033 GeV, which, however is far below the mass of the astrophysical black holes. In Table 1 we have taken different values of θ to be 
lower than the above bound [15] and the corresponding black hole masses to be considerably larger than that in [9]. Expectedly for very 
large black hole and for different values of θ the relation Tc = 0.225

√
ρ [3] is recovered.

However, from Tables 2, 3 and 4 it is clear that for the same values of θ , the critical temperature rises above the normal (θ = 0) 
case for different black hole masses (being chosen nearby the mass of the black hole considered in [9]). Interestingly, from Table 2, we 
find that for θ = 0.5 and M = 2.75

√
θ/G (which is close to the mass M = 2.4

√
θ/G considered in [9]) the value of ζ turns out to be 

ζ = 0.25, which is appreciably larger than the θ = 0 result (ζ = 0.225 [3]), indicating a larger critical temperature. Furthermore, one of 
the interesting finding from Tables 2, 3, 4 is that, the critical temperature rise above the value 0.225 if the mass of the Black hole M lies 
within the interval x ∈ [0.4, 80], where x = GM

θ3/2 Length−2. Moreover, if the Black hole mass is such that x is around x = 55 then the critical 
temperature is maximum since ζ ≈ 0.25. And for larger M , i.e. if x > 80 then Table 1 shows that ζ stabilizes to 0.225.

It will be interesting to consider non-zero vector potential in the noncommutative framework to study conductivity and other properties 
of the holographic superconductors. Furthermore, in the noncommutative extension considered here, we have confined ourselves in the 
probe limit (to neglect the backreaction of charged hair into the metric) to study the properties of holographic superconductor. It will be 
highly interesting to study these properties without considering the probe limit, which is our next goal.
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