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Optimal Estimator for Linear Stochastic Systems 
Described by Functional Differential Equations* 

A. J. golvo  

School of Electrical Engineering, Purdue University, Lafayette, Indiana 47907 

The optimal state estimator for linear systems described by functional 
differential equations is constructed. The problem is solved by deriving equa- 
tions for the unbiased estimation error as well as for its covariance. A functional 
of the estimation error at the terminal time is minimized by an optimal choice 
of the gain matrices of the estimator. It is accomplished by the application of 
the matrix maximum principle. The applicability of the optimal estimator is 
illustrated by an example. 

INTRODUCTION 

The  optimal estimation of linear dynamical systems, the behavior of which 
is described by ordinary differential equations, is well known. The  problem 
has also been investigated recently in systems which are governed by partial 
differential equations (Balakrishnan and Lions (1967)) and by differential 
equations with delayed arguments (Kwakernaak (1967)). The  solution to the 
estimation problem in the former case is obtained by means of a least-squares 
fit procedure in an infinite-dimensional space. The  solution to the filtering 
problem in the framework of differential-difference equations presented by 
Kwakernaak (1967) represents the best linear estimator. 

The  purpose here is to present the optimal solution to the estimation 
problem for dynamical systems described by functional differential equations. 
The  problem is solved by assuming the mathematical description for the 
estimator. Equations for the unbiased estimation error are obtained. Then  
the equations for the covariance of the estimation error are derived. The  
use of the first- and second-order moments results in a deterministic 
optimization problem whereby a functional of the estimation error at the 
terminal time is minimized. The  equations for determining the optimal 

* This work was supported in part by NSF under Grant No. 18225 and AFOSR 
under Grant No. 69-1776. 
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gains of the estimator are derived. The  optimal solution furnishes an estimator 
which is best for the estimators of the assumed structure. An example is 
presented to illustrate the operation of the optimal estimator. 

PROBLEM STATEMENT 

The state transition in stochastic linear systems with time delay is governed 
by 

[ j0 
1 dx(t) = LAo(t)x(t) -1- Al(t)x(t -- ~) + A2(t , a)x(t + a) dcrj dt 

+ D(t) d~(t) (1) 

where the n-vector xt = x(t + a), cr 6 [--% 0], signifies the state of the system 
in the Banach space ~ of continuous functions over the interval [t o - -  ~-, T]; 
Ao(t), A~(t), and D(t) are matrices of appropriate dimensions with continuous 
bounded elements; Az(t, a) is a Kernel which is continuous in t and a. Each 
component in the m-dimensional noise term d~ 1 signifies an independent 
Brownian motion process whose statistical behavior is specified by 

E{(~li(t2) --  ~l~(tl))(~l~(t2) - -  ~li(tl))} --  ] t 2 --  t 1 IQ1 ~, i = 1,..., m. (2) 

The  observations are performed according to the following equation: 

(3) 

where Ho(t ) and Hl(t ) are matrices of appropriate dimensions with bounded 
continuous elements; the Kernel H2(t, or) is bounded and continuous with 
respect to both arguments. Each component in the r-dimensional term 
d~7~(t) represents a Brownian motion process which is statistically independent 
upon the other components of d~l as well as upon the dS~-process for all time; 
its statistical behavior is given by 

E{(~(t2) --  ~hi(tl))(~hi(t2) - -  ~hi(ta))} = l t2 - -  t~ ]RI~ , i = 1, 2 ..... r. (4) 

It  may be mentioned that the integral terms in Eqs. (1) and (3) may be 
encountered, for example, in equations describing the behavior of some 
electrical or hydraulic networks. 
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The  problem is to determine the optimal estimate xt = &(t -t- a) of the 
state x t = x(t -}- ~), a E [--7, 0], given the measurements z(t) up to time t so 
as to minimize a quadratic functional of the estimation error at the terminal 

time T, i.e., 

y = Ix(T) --  &(T)] + f~ ,  [x(T + a) - -  ¢~(T @ a)] da 2, (5) 

where T >/ t o and Ill x Ill ~ = E{x'x}. 
The problem is first reformulated as a distributed parameter system. 

REFORMULATION OF THE ESTIMATION PROBLEM 

It  can formally be shown by the method of characteristics for partial 
differential equations that an alternative (formal) description for system (1) is 

&(t, O) 
dt --  ~ A~x(t, - -~)  + D(t)~(t), (6) 

/=0 

~x(t, O) ax(t, 0). 
at  - ao  ' - ~  ~ < ° < ° '  (7)  

where x(t, O) is written for x(t @ 0); 7 o = 0, ~'1 = % ~'2 = ('); Ao = Ao(t), 
o A 1 = Al(t), A~x(t, ") = f_~A~(t, a)x(t, a)da; and x(t, O) is defined over 

[to, T]x[--'r, 0]. The  m-dimensional term ~:(t) represents a white Gaussian 

zero-mean noise process with 

E{~(tl)~'(t2) } = Q ~(t 1 --  t~), 9 > 0 for all t. (7) 

The  observation Eq. (3) is rewritten formally as 

2 

z(t) = ~ Hix(t, --Ti) ~- ~)(t), (8) 
i=0 

where H o = Ho(t ), H1 = Hi(t) and H2x(t, ") = fo  H2(t ' a)x(t, a) da. The 
measurement z(t) is specified by z( t )dt  = dzl(t); and the r-dimensional 
term ~(t) signifies a white Gaussian zero-mean process with 

E[v(ta)v'(t2) ] = R(t) 3(tl - -  t2), R > 0 for all t. (9) 
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The  problem now is to determine the optimal estimate N(t, a) of the state 
vector x(t, a) for t ~ [to, T] and a E [--~, 0] so as to minimize 

] = Tr  [P(T, O, O) 47 f°  [P(T, O, c~) 47 P(T, ~, 0)] da 
7 

0 0 

(lO) 

where P(T, ~, a) --- E{[x(T, a) -- ¢~(T, a)][x(T, ~) -- ~(T, a)]'} for --~- ~< a, 
a ~< 0; Tr[.] signifies the trace of the matrix [-]; and the measurements z(t) 
are given over the range t o ~ t ~< T. 

The  problem is solved by assuming the mathematical form of the estimator. 
I t  will be specified so that the estimates are unbiased, and that the minimum 
of the functional of the estimation error is attained. 

FORM OF THE UNBIASED ESTIMATOR 

Since the systems (1) and (3) are linear, it is assumed that (i) the state 
transitions in the estimator are linear; (ii) the measurement z(t) provides a 
linear action in the estimation procedure. Now let ~(t, 0) = ~(t + 0) represent 
an estimate of x(t, O) = x(t -~ O) based on the measurement  z(t) up to time t. 
Conditions (i) and (ii) are then satisfied by an estimator of the form 

2 
a~(t, o) _ ~ z~(t ,  - .~)  + a(t, O)z(t), (11) 

dt /=0 

a~(t, 0) - -F~ a~(t, 0) ° 
at a---O-- + ~ Fk~(t, --rk-4) ÷ G(t, O)z(t), (12) 

k=4 

where the n-vector N(t, 0) is defined over [to, T]x[--T, 0]; F2~(t , " )=  
f°~F2(t, ~)~(t, a) d~; F6~(t , ") = .[°~F6(t, ~)~(t, a) da;F~, i = 0, 1 and F3, 
j = 2, 3, 4, 5, 6, are bounded continuous matrices of appropriate dimensions 
on the domain of definition, the gain matrix G(t, O) defined over 
[to, T]x[--r, 0] operates on the observations. I t  is noted that Eq. (12) 
provides smoothed estimates. 

The  terms chosen for Eqs. (11) and (12) are sufficient for the construction 
of an estimator which generates unbiased estimates. Indeed, the plant 
matrices F , ,  i = 0,..., 6 will now be determined so that the estimator of the 
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assumed structure generates unbiased estimates. The gain matrix G(t, O) 
will be specified such that the minimum value of the functional given by 
Eq. (10) is attained. 

The use of the estimator specified by Eqs. (10) and (11) to estimate the 
states of system (6) and (7) results in an estimation error 

~(t, o) = x(t, o) - ~(t, o); - ~  ~< o ~< o. (13) 

Equations which determine the evolution of the estimation error e(t, O) in 
time t and 0 can be obtained by subtracting Eqs. (11) and (12) from Eqs. (6) 
and (7), respectively, and substituting Eq. (8) for z(t). It can then be observed 
by performing the expectation operation that unbiased estimates are achieved 
if and only i f F i  and F~ satisfy the following relations almost everywhere on 
t ~ [ t  o - %  T] and 0 ~ [--% 0]: 

F,(t) = A,( t )  - -  G(t, O)H,(t); i = O, 1, (14) 

F2(t , ~) = A2(t , ~) - -  G(t, O)H~(t, ~), (15) 

F~(t, O) = I (identity matrix), (16) 

Fj(t, O) = --G(t ,  O)H~_a(t); j ~- 4, 5, (17) 

Fo(t, ~) = - a ( t ,  . )H~(t ,  ~). (18) 

Equations (11) and (12) for the estimator can now be written as follows: 

dt --  ~ A ~ ( t ,  ---r~) + G(t, O) z(t)  - -  ~ Hk~(t , ---rk) , (19) 
i = 0  k = 0  

e~(t, 0) e~(t, 0) [ ~ ] 
e ~  - -  ~0 + G(t, O) z(t)  - -  ~ Hk~(t, - -%)  

k = 0  

for - . ~ < 0 < 0 .  (20) 

Equations (19) and (20) establish the realization of unbiased filtering and 
smoothing estimates, respectively, based on the measurements z(t)  up to 
time t. The gain matrices G(t, 0) and G(t, O) for • ~ 0 < 0 will now be 
determined so that the functional of the estimation error given by expression 
(10) is minimized. 
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To  determine the evolution of the variance of the estimation error, 
the dynamical equations for the estimation error e(t, O) defined over 
[to, T]x[--r, 0] are written by means of Eqs. (11)-(20): 

de(t, O) 
dt -- 2 Ale(t, --Ti) + D(t)~(t) 

i ~ O  

2 
--  G(t, O) ~ Hke(t, --%) --  G(t, 0)~(t), (21) 

k ~ O  

Oe(t, O) ~e(t, O) 2 
-- G(t, O) E Hke(t, --r~) - -  G(t, O)~(t), (22) 

~t ~0 k=0 

where Eq. (22) specifies the smoothing error when the measurements are 
available up to time t. Equations (21) and (22) are then used in 
deriving the evolution of the covariance P(t, a, a) of the estimation error over 
[t o - -  ~-, T]x[--.r, 0] 2. 

The  equations for the covariance are obtained by forming tiP(t, O, O)/dt, 
~P(t, 01, O)/~t, and ~P(t, 01,02)/~t. For example, 

dP(t, O, O)/dt = lim E[e(t + A, O) e'(t + A, O) - -  e(t, O) --  e(t, 0)]/d 

where 

de(t, o) ~ + o(~); 
e(t + 4, O) = e(t, O) + dt 

dP(t, O, O) 1 
dt --  ~ {[Ai(t) --  G(t, O)Hi(t)]P(t, --r~, O) 

i=0 

+ P(t, O, --7i)[-di'(t ) --  Hi'(t)G'(t, 0)]} 

o 

+ f {[Ao(t, a) - -  G(t, O)H2(t , a)]P(t, a, O) 
--T 

+ P(t, O, a)[A2'(t, a) - -  H2'(t, a)G'(t, 0)]} da 

-}- D(t)Q(t)D'(t) -]- G(t, O)Ra'(t, 0). (23) 
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In a similar manner, the following equations are obtained: 

8P(t, 01 , O) 
8t 

8P(t, 01, O) 1 
801 + ~ P(t, 01, --~i)[Ai'(t) - -  Hi'(t)G'(t, 0)] 

0 

-}- f P(t, 01, a)[-//2'(t, a) -- H2'(t , a)G'(t, 0)] dc~ 

1 

- -  ~ G(t, 01)H,(t)P(t, --% , O) 
i = O  

_ fo G(t, 01)H2(t, cOP(t, a, O) de -~ G(t, 01)R(t)G'(t, 0); 
- - - r  

(24) 

8P(t, 01,02) 
8t 

1 

8P(t, 01,02) 8P(t, 01,02) G(t, 01) ~ Hi(t)P(t, --%, 02) 
= 801 -~ 802 

± f0 - Pit, 01, --~-3H((t)a'(t, 02) -- a(t, 01) H2(t, ~)P(t, ~, O2) d~ 

fo P(t, 01, ~)H2'(t, ~,) d~a'(t, O2) + a(t, 01)R(t)a'(t, 02). (25) 
,y 

The task is now to determine the optimal gains G(t, 0) and G(t, 01) such 
that the minimum value of expression (10) is attained. Thus, the problem 
has been transformed to a deterministic optimization problem. It will be 
solved here by applying the matrix maximum principle (Athans, 1967). 

The covariance matrices of the estimation error play now the role of the 
state. The Hamiltonian function for systems (10), (23), (24), and (25) is 
written by introducing an adjoint matrix A(t, 01,02) of dimension n × n 
defined on [to, T] X [--~-, 0]2: 

g(P,  A, G, t) = Tr  lA(t, O, O) 
dP(t, O, O) 

dt 

f 
o 8P(t, 01 , O) 

+ A(t ,  01, O) 8t dOl 
- - - r  

f 
o 8P(t, O, 02) 

@ A(t, O, 02) 8t dO2 
- - - r  

o o 8P( , 02) I + J do1 f do2A(t, 01, o2) (26) 
-7 8t " 
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Equations (23), (24), and (25) are then substituted for the derivatives. The 
application of the matrix maximum principle yields necessary conditions for 
the optimal solution: If G*(t, 0) and G*(t, 0), t >~ to, --~- < 0 < 0 are the 
optimal gain matrices that result in the minimum of expression (10) and in 
the trajectory P(t, ~, ~), t ~ t ,  , --.r <~ ~, a ~ 0, then there exists an adjoint 
matrix A(t, a, cO, t >7 t o , --~" ~< a, a ~< 0 such that conditions (23)-(25) and 
(27)-(35) hold: 

dt [A°' + H°'G'(t' 0)]A(t, 0, 0) --  A(t, O, 0)[A o + G(t, 0)Ho] 

-- 2A(t, 0, 0) -- f~  A(t, 0~ , O)G(t, Oj) dO1H o 

0 

- -  H o' f G'(t, 02)A(t, O, 02) dO 2 . (27) 
~ T  

~A(t, 01, O) ~A(t, 01, O) 
~t ----- ~01 [A 0' --  Ho'G'(t , 0)]A(t, 01,0) -- A(t, 01, O) 

- -  A(t, O, O)[A2(t, 01) -- a(t ,  O)Ho(t, 01) 3 
0 

- -  H o' f G'(t, 02)A(t, 01,0~) dO 2 

fo + A(t, a, O)G(t, a) da H2(t, 01). (28) 
~ T  

Equation (28) transposed is satisfied by A(t, O, 01): 

~A(t, Or, 0~) OA(t, 01,02) ~A(t, 01,0~) (29) 
~t -- ~01 -~ boo. 

- -  [Ae'(t, 02) -- H2'(t , 02)G'(t , O)]A(t, 01, O) 

--  A(t, O, 02)[A2(t, 01) -- G(t, O)H2(t, 01)1 
0 

f d~[A(t, % 02)G(t, ~)He(t, 01) + 
- - . r  

+ H~'(t, 0~)G'(t, ,)A(t, 0t ,  ~)] d~; (30) 

A(T,  O, O) = I; A(T,  01,0) = A(T,  O, 02) = I; A(T,  01,0~) = I; (31) 

A(t, --% 02) -= = A(t, O, 02)[A 1 - -  G(t, 0)H1] 

_ ( o  A ( t ,  % O . z ) G ( t ,  a) d ~ / / 1  - - r  < 02 ~< 0, (32) 
,J - - ' r  

where 0t,  02 E [--% 0). Equations (27)-(32) must be satisfied by A(t, 01,02) 
almost everywhere on [to, T] X [--% 0] × [--% 0]. 

dAq, 0, 0) 
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The optimal gain matrix is determined by differentiating Eq. (26) with 
respect to G(t, 0): 

[ ; ] A(t, O, O) G(t, O)R -- E P(t, O, --,~)Ht' -- P(t, O, e)H2'(t, e) de 
Z=O --~  

-1- Re( t ,  O) - ~ HtP(t,-~-~ , O) - H2(t, e)P(t, a, O) de A'(t, O, O) 
l=O -r 

- ~ -  f dO 1 A(t, 01, O) G(t, O1)R - -  P(t, 01, ---rt)H~' 
--7" ~=0 

_ fo 01, ew.;(t, ,,) de] 

1 

~- RG(t, 01) --  ~ H~P(t, ---rt , 01) 
/ = 0  

(33) 

In order to extract the expressions for G(t, O) and G(t, 01), one first observes 
that the terms in Eq. (30) for dA(t, 0, 0)/dt appear symmetrical. Also, since 
A(t, O, 01) satisfies an equation obtained by transposing Eq. (28), the terms in 
the equation 8[A(t, 01,0) + A(t, O, 01)]/8t appear as symmetric; and the 
same holds for Eq. (29). Because the terminal conditions (30) consist of 
symmetric matrices, it follows that A(t, 0, 0) is symmetric, A(t, 01,0) = 
A'(t, O, 01), and A(t, 01,02) = A'(t, 02,01) for all t and 0a, 02 ~ [--~-, 0]. 
Consequently, the terms multiplying A(t, 0, 0) and A'(t, 0, 0) as well as 
A(t, 0, 01) and A(t, 01,0) in Eq. (33) can be combined. The resulting 
expression implies that 

[20 ; 1 G*(t, O) = P(t, O, - -rk)gf f  -~ P(t, O, a)g2'(t, e) de R -1, (34) 
- ' t  

[20 s o ] G*(t, O) = P(t, O, --rk)H ff + P(t, O, a)H2'(t, a) &r R -1, (35) 
- - r  

on t >~ t o and --~ ~< 0 < 0 are the candidates for the optimal gain matrices. 
The covariance Eqs. (23)-(25) are rewritten for the optimal estimation by 
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substituting expressions (34) and (35) for the optimal gain matrices. The 
results are: 

dP(t, O, O) a 
dt ~ [A,P(t, --~-~, O) @ P(t, O, --%)A(] 

Z=0 

where 

and 

2 

P(t, O, --~-i)Hi'R 1HkP(t, - -%,  O) + D(t)QD'(t), (36) 
i , k=O 

0 

AaP(t, ", O) = f 

0 

HaP(t, ", O) = f 
--T 

A2(t, a)P(t, a, O) da 

Ha(t, . )P( t ,  ~, 0) d . .  

Moreover, P(t, --~-i, O) -~ P'(t, O, --~-i). Similarly, one can write Eqs. (24) 
and (25) for the case that the optimal gains are employed: 

8P(t, 01, O) 8P(t, 01, O) a 
- -  4- ~ P( t ,  01, --~,)Ai' 

8t 801 ~=o 

a 

P(t, 01 ' t ,0), (37) , --rk)H~ R -  HiP(t, ---ri 
i , k=O 

8P(t, 01, Oa) 8P(t, 01,02) 8P(t, 01, Oa) - -  + 
8t 80~ 80a 

2 

, 1 02). (38) P(t, 01, --Te)H ~ R -  HiP(t, - -7i ,  
/,k=O 

Equations (36)-(38) describe the evolution of the eovariance of the estima- 
tion error. They correspond to the usual Riccati-ecluation encountered in 
conjunction with the estimation in linear systems described by ordinary 
differential equations. Equations (36)-(38) are nonlinear partial differential 
equations. 

The optimal estimator of the structure given by Eqs. (11) and (12) is 
now completely specified by Eqs. (19) and (20), where the optimal gain 
matrices are determined by Eqs. (34) and (35). IfA2(t, a) ~ 0 and H2(t, or) ~ O, 
the estimator equations are the same as those obtained by Kwakernaak (1967) 
who derived the best linear estimator for linear systems exhibiting time delays. 
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It is emphasized that the derivation presented here is different. Moreover, 
the optimal estimator is derived for functional differential equations. 

EXAMPLE 

Consider a scalar system defined by 

2(0  = --0.2x(t) - -  0.4x(t - -  .3) - -  0.2 f o  x(t  + ~) de + ~(t), (44) 
d _ _  .3  

0 

z( t)  = x(t) + x(t - .3) + | x(t + ,,) d~ + ~(t), (45) 
, 1  

where ¢(t) and ~7(t) represent statistically independent white Gaussian zero- 
mean processes with E[~:e(t)] = 0.2 and E[~72(t)] = 0.2; z(t)  represents 
the available data contaminated by noise. The  problem is to determine the 
optimal estimate N(t) that establishes the minimum of the functional (10) from 
the available data z(t); that is, the minimum of expression (5). The  unbiased 
estimator is specified by Eqs. (19) and (20): 

dt - -  ~ aid(t, - -r i )  + g(t, O) z(t)  - -  ~(t, --'ri) , (46) 
i = 0  i ~ 0  

- - ~ t  --  ~0 + g(t, O) z(t)  - -  ~(t, - -%) , (47) 
Z = 0  

where a o = --0.2, a 1 = --0.4, a2 = --0.2, % = O, T 1 = --0.3, and T z = ('); 
i.e.," ~(t, " )  : .[-.3° x(t . . . .  + a)d~.  The  optimal gain values are specified by 
Eqs. (34) and (35): 

g(t, O) = 5 P(t,  O, - -r i )  ; g(t, O) = 5 P(t ,  O, - -r l )  • (48) 

The  initial condition for Eqs. (46) and (47) is ~(to, a) = 0 for - - r  ~ ~ ~ 0. 
Equations (36)-(38), in this case, become: 

dP(t,  O, O) + + fo 0) o] dt --  -2  0) 0.4P(t, 0) 0.2 _.~ a, 

-5  [P(t, O, O ) +  P( t , -0 .3 ,  0) + __r°3. P(t,  o, 0 ) d o ] 2 +  0.2, 

(49) 
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~P(t, 0, O) ~P(t, 0, O) 
~t ~0 

O P 
= --0.2P(t,  0, 0) - -  0.4P(t, 0, --0.3) - -  0.2 | P ( t ,  0 , ,  a)  da  

,d --,3 

- 5 [P(,, o, o) + p(,, o, -o.3) + fo P(t, o, ~)~] 
--,3 

[ .o o, ] × P(t, O, O) 4- P(t, --0.3, 0) + j P(t, O) da ,  (50) 
-- ,3 

#p(t, ol, 02) ~£(t, ol, o~) oP(t, ol, o~) 
8t 801 ~02 

0 

--  5 [P(t, 01,0) -F P(t, 01, --0.3) 4- f P(t, 01, c~) de] J 

Equations (46), (47), and (49)-(51) are solved numerically by using the 
method of characteristics, along which a discretization is performed relative 
to 01 and 0 3 in steps of AO 1 = AO 2 - -  0.1. The  operation of the optimal 
estimator is illustrated in Figs. l(a) and l(b), which display the evolution of 

!1 
4.. 

3 -  

2" 

O 

( t )  

. . . .  ~ ~ o  
-----> t (sec) 

FICU~E ; (a)  
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5. b 

4. ~x(t) 3- 
2- ;,",~. ESTIMATE ~{ ( t ) 

/ '~ BASEO ON z(t~ , / \ /  
• t (sec)  

FIGURE l(b) 

the actual state x(t) and the estimated states ~(t, 0) (filtering solution) and 
~(t, --0.3) (smoothing solution) based on the measurement z(t) available up to 
time t. 

The computations of the solution to the optimal estimator problem in 
this scalar case demonstrates the complexity involved, particularly in a 
high-dimensional case. 

CONCLUSIONS 

The solution to the optimal estimation problem in systems described by 
functional differential equations is presented. The mathematical description 
of the estimator is assumed. The estimator is so specified that unbiased 
estimates are obtained. Then the gain matrix of the estimator is determined so 
that a functional of the estimation error is minimized. Partial differential 
equations which specify the evolution of the error covariance associated with 
the optimal gain are derived. The applicability of the solution is illustrated 
by an example. 

REC~IWD: September 30, 1970 
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