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A Combinatorial Analysis of Topological Dissections 
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From a topological space remove certain subspaces (cuts), leaving connected 
components (regions). We develop an enumerative theory for the regions in 
terms of the cuts, with the aid of a theorem on the Mijbius algebra of a subset 
of a distributive lattice. Armed with this theory we study dissections into 
cellular faces and dissections in the d-sphere. For example, we generalize 
known enumerations for arrangements of hyperplanes to convex sets and 
topological arrangements, enumerations for simple arrangements and the 
Dehn-Sommerville equations for simple polytopes to dissections with general 
intersection, and enumerations for arrangements of lines and curves and for plane 
convex sets to dissections by curves of the 2-sphere and planar domains. 

Contents. Introduction. 1. The fundamental relations for dissections and covers. 
2. Algebraic combinatorics: Valuations and MGbius algebras. 3. Dissections into cells and 
properly cellular faces. 4. General position. 5. Counting low-dimensional faces. 6. Spheres 
and their subspaces. 7. Dissections by curves. 

INTRODUCTION 

A problem which arises from time to time in combinatorial geometry is to 
determine the number of pieces into which a certain geometric set is divided by 
given subsets. Think for instance of a plane cut by prescribed curves, as in a map 
of a land area crisscrossed by roads and hedgerows, or of a finite set of hyper- 
planes slicing up a convex domain in a Euclidean space. 

Such problems we call “topological dissections.” They have a very general 
definition. Let X be a topological space, HI , . . . , H, a finite set of subspaces, which 
we remove, and R, ,..., R, the connected components of the remainder of the 
space. This construction we call a topological dissection of X by the cut spaces 
H 1 ,..., H, into the regions RI ,..., R, . The fundamental enumerative problem for 
topological dissections is to count the regions by means of properties of the cuts. 

Suppose the cuts cover the whole space. Since the number of regions is 0, a 
solution to the fundamental problem becomes a condition on the cuts. This situa- 
tion is illustrated by the partition of a topological space into open topological 
cells of various dimensions. The condition turns out to be just the Euler relation. 
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A second enumerative problem concerns the faces of a dissection. The cut 
spaces induce a partition of X: two points are equivalent when every cut that 
contains one contains both. The faces of the dissection are the connected com- 
ponents of the blocks of this partition. The second problem is to count the faces 
of each dimension. 

There is a large literature on these questions for particular kinds of dissections, 
going back at least to Steiner in 1826. Indeed much of the study of arrangements 
of hyperplanes has been concerned with counting faces and bounded faces. But 
most solutions have been only for straight cuts in two dimensions or in general 
position-such as the well-known enumerations for arrangements of lines in the 
projective plane, or the often-rediscovered maximum number of faces determined 
by n hyperplanes in Euclidean or projective space. There have been exceptions to 
the general run, notably Steiner’s interest in circular and spherical cuts, Roberts’ 
intricate investigation of bounded regions in three dimensions, and Winder’s and 
our work on arbitrary arrangements of hyperplanes. Yet the only general method 
available has been that of algebraic topology, which, as we explain in Section 6, 
does not lend itself to finding useful enumerations. In this paper we develop a 
unified theory based on combinatorial ideas that applies to any topologically 
nice dissection and in a variety of important cases gives exact answers. 

Our method is twofold. The general part is a fundamental relation involving 
the partially ordered set of intersections of cuts and the combinatorial Euler 
numbers of the regions and the cut intersections. The proof is essentially com- 
binatorial: it is a corollary of a theorem concerning the Mobius algebra of a 
subset of a distributive lattice. Topology becomes involved in the applications, 
where known properties of a dissection may permit an explicit solution. 

We consider in detail two types of dissection. If all the faces are open cells, 
we obtain a generating polynomial for the numbers of K-dimensional faces in 
terms of the cut intersections. This polynomial generalizes the enumerations in 
[25] of the faces of arrangements of hyperplanes to, for instance, convex open 
sets and arrangements of topological hyperplanes. For dissections with general 
intersection we find a common generalization of formulas of Steiner, Schlafli, 
and many others about simple (that is, generally positioned) arrangements of 
hyperplanes and of the Dehn-Sommerville equations for simple polytopes. 

Second, we consider dissections of a subspace of a d-sphere. By incorporating 
the lower Betti numbers of the complement of the regions into the enumerating 
expression we can avoid any assumptions about the regions, except that they 
are open sets. We make no assumptions either about the cuts. (It might, however, 
be fruitful to examine specifically dissections by embedded or immersed (d - I)- 
spheres.) 

Specializing to the 2-sphere, we obtain generalizations of classical formulas for 
arrangements of straight lines in the Euclidean and projective planes. Indeed we 
can count the faces of a plane, a sphere, or a domain in the Euclidean plane, 
dissected by open and closed curves with self-intersections allowed. 
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We hope the detailed arguments and many examples presented below 
illuminate the techniques of dissection theory for geometers with similar dissec- 
tion problems. 

I. THE FUNDAMENTAL RELATIONS FCR DISSECTIONS AND COVERS 

All the results of our dissection theory are relations between the regions of a 
dissection and intersection sets determined by the cuts. 

If .Z is a finite set of subspaces of X, let 

&, = the set consisting of X and all intersections HI n 1.. n H,of members of %‘; 

YOc = the set consisting of X and all connected components of intersections 
HI n ... n Hk (k > 1); 

and let 9 be YO (and 3c be YOc) but excluding the null set. We may write 
Y(Z), etc., for clarity. 

The intersection sets we use are 3 (or occasionally 3J and its “meet refine- 
ments,” of which Yc is one. A class 2 of subspaces of X is a meet refinement of 
9 if it has the three properties: 

(I ) JZ is finite. 

(2) 2 refines 9: 9 contains X but not a, and any member of 3 is a 
union of members of .Y. 

(3) P’ has meet support: any nonvoid intersection of members of .5? is also 
a union of members of 2. 

(The definition of a meet refinement 6p0 of 3O is similar, except that 0 is not 
excluded.) 

A fourth property is fundamental. Let 9 be the lattice of sets generated by 
2 u (RI ,..., R,} through unions and intersections. Call F, a real-valued func- 
tion on -9, a valuation of 2 if, for all S, T E 9: 

ds) + v(T) = 4s ” T) + dS n T). 

For dissection theory the important valuation is the combinatorial Euler number 
K, which may be defined as 

K(X) = *(;P) - 1, (1.1) 

where x(X) is the Euler characteristic of the one-point compactification of XT 
(If X is itself compact, K(X) = x(X).) Let us call a meet refinement of J 
Euhian if it satisfies: 

(4) K is a valuation on JZ. 

It is the Eulerian meet refinements to which our theorems apply. 

607/25/3-6 
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The crucial nature of K, already apparent in Buck’s paper [4] on dissections of 
Euclidean space by hyperplanes, is due to the well-known Euler relation: if X is 
representable as a disjoint union of no points, n, open l-cells, n2 open 2-cells,..., 
and nd open d-cells, then 

K(X)=nO-n,+n,--*.*nd. (1.2) 

Based on (1.2) we can present a criterion for 3’ to be Eulerian. It will help to 
have an alternative definition of the faces of S. On any subspace Y there is an 
induced dissection whose cuts are 

X1={NnY:HESand@ #HnY#Y). 

The faces of A? are the regions of the cut intersections T E 9 as dissected by the 
induced dissections Hr. . Now, any 9 which is a meet refinement of $ can be 
regarded as the set of cut spaces of a new dissection of X, so one can speak of the 
faces of 9. The unions of faces of 9 form a ring of sets which contains the lattice 
9 generated by R1 ,..., A, and the components of all members of 9. That, with 
Euler’s relation, proves: 

LEMMA 1.1. If every face of a dissection 3’ is a Jinite, disjoint union of open 
topological cells, then K is a valuation on any meet refinement of 9 which is refked 
by yC. For any meet rejinement 2? of 9, if every f&k of 2?’ is Q $nite, disjoiint 
union of open topological cells, then K is a valuetion on dp. 1 

We now state the fundamental theorem of dissection theory. 

THEOREM 1.2. Let X be Q topological space dissected by a set SF = {HI ,.., 
H,} (possibly empty) of cut spaces into regions R, ,..., R, (m > 0). Assume every 
Hi is a proper subspace of X. Let J? be a meet rejhement of x(s), such as f or 9”. 
If dp is Eulerian, 

f @j) = r$pO’~ Xl 4Th 
j=l 

(1.3) 

where pp is the h46bius function of 2. 

We still have to define the combinatorial Mobius function. The theory of this 
essential tool is mainly due to Rota [18]. Let P be a finite partially ordered set. 
Its Miibius function TV. is defined on pairs of elements of P by p( y, x) = 0 if 
y’ .$ x, and by either of the equivalent recursions 
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where Szy = 1 if x = y, a,, = 0 if x # y. Evidently p is determined by the 
partial order structure of P. Some useful expressions for TV are given in Section 5. 

To define the Mobius function of 2 or any other class of subsets of X, we 
order the class by inclusion. 

Proof of the fundamental theorem. First note that the case m = 0 is basic. 
For we can replace Z’ by .P’ = ~8 LJ {R, ,..., R,). Then .P’ = LP LJ (R, ,..., 
12,) is a meet refinement of 9(P) an is d E 1 u erian because 2 is. Using the fact 

that py,( T, X) = p&T, X) f  or T E _Lp, and calculating pY(Rj , X) = -1, 
Eq. (1.3) for 5? follows from (1.3) for 2’. 

Second, note that, because ~(0) = 0, (I .3) for 9 follows from (1.3) for Y0 . 
Now let us devote our attention to (1.3) with m = 0, summed over s0 . It 

brings out the essentials of the proof to rewrite the equation for an arbitrary 
valuation v  instead of K, whose special properties are no longer needed. We 
obtain: 

TL wo(T~ W F(T) = 0. (1.4) 
0 

In Section 2 we use the general theory of valuations to prove a result, Corollary 
2.2, whose conclusion looks just like (1.4). Moreover, by Theorem 2.3, F and 
Y0 satisfy the hypotheses of the corollary: for we assumed s0 to be a meet 

refinement of Y0 and v  to be a valuation on it. Therefore Eq. (I .4) fohows, com- 
pleting the proof. 1 

This proof of (1.4) requires elaborate machinery, yet the formula itself is 
relatively elementary. Is there a more elementary proof? I have found it possible 
to avoid valuation theory by applying instead a theorem on Galois connections 
[ 18, p. 347, Theorem 11, but only for refinements of 9 which are coarser than $c. 
That is not sufficient for dissection theory. Evidently there is work to be done. 

2. ALGEBJU.IC COMBINATORICS: VALUATIONS AND MOBIUS ALGEBRAS 

The abstract properties that underlie the fundamental relations are those of 
valuations on distributive lattices. We prove (1.4) in that setting. 

First we require the valuation ring of a distributive lattice D, devised by Rota 
[19, Sect. 31. Let R be a unitary ring; e.g., the integers. In the free R-module 
M(D, R) whose basis is the elements of D, define multiplication by xy = x A y  on 
basis elements, extended by linearity to the whole space. This makes M into an 
algebra. In M the set N(D, R) of all linear combinations of elements of the form 

xvy+xAy--x--Y 

is an ideal. 
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A linear functional 9) on M which obeys the law 

P(XVY) +P(x AY) = d4 +dY) for x,yED 

is a valuation of D. A functional v  is a valuation if and only if it is zero on N. 
Thus we call M/N the valuation ring of D over R. We can study valuations, which 
are what matter for the fundamental relations, by looking at M/N. 

Second, we need the M6bius algebra M(P, R) of a finite partially ordered set P 
over the unitary ring R. This ingenious construction is due to Solomon [21]. 
(See [S] for a slick treatment.) M(P, R) is the free R-module whose basis is the 
elements of P, with a product defined by 

xy = C e,(P) for x,y E P, 
t:t<x,t<7J 

and extended to M(P, R) by linearity, where we define 

et(P) = 1 ~~(5 9s for t E P. 
SEP 

In case x andy have a greatest lower bound in P, it equals their product. Thus for 
a distributive lattice the two definitions of M(D, R) agree. 

By Mobius inversion [IS, Sect. 31, 

x = 1 e,(P) for .x E P. 
teP;t<z 

Therefore the e,(P) generate M(P, R). But more: they are orthogonal idem- 

potents: ez2 = e, and eze, = 0 if x # y; hence they are a basis. 

The main theorem of this section states a relationship between the valuation 
ring of D and the canonical idempotents e,(P) of a subset of D. 

THEOREM 2.1. Let D be a finite distributive lattice and let P be a subset of D 
that contains 0, and every join irreducible element of D. If t E P is not OD or a join 
irreducible, then in M(D, R), 

e,(P) :: 0 mod N. 

Proof, First some more theory. An injection of partially ordered sets, i: 
Q -+ S, induces two homomorphisms of the Mobius algebras. One is i, extended 
to M(Q, R) by linearity. The other is a reverse map, i*: M(S, R) + M(Q, R), 
which on the canonical basis has the values 

i*MS)) = et(Q) if tEQ, 
E 0 if t$Q. (2.1) 

Both derived maps are functorial, so composition is preserved. (The definition 
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and properties of i* are from Geissinger [6, Proposition 131.) By (2.1), i* 0 i = 
id, and i 0 i* = ids mod ker i*. Therefore i and i* are inverse isomorphisms 
M(Q, R) g M(S, R)/ker i*. 

Now we prove the theorem. Let I = the set consisting of OD and the join 
irreducibles of D. The commutative diagram of injections 

i0 < 

D\p/ 

I 

% 

is transformed by the functor * into 

M(D9RJb M(;R) lMCIyR) , 
Let f E P - I. By (2.11, e,(P) = &*(e,(D)) and i,,*(e,(D)) = 0, whence e,(P) = 
iz(et(P)) E ker iO*. Davis [5](see [6, Theorem 21) proved in effect that 

i,, : M(I, R) g M(D, R)/N(D, R). 

Hence ker i,,* = IV, which proves the theorem. 
An elementary proof is possible, in two steps. One first proves the theorem for 

P closed under meets, then does an induction on card(Q - P’) for P C P’ C 0 = 
the set of all meets of members of P. We omit the details. 4 

COROLLARY 2.2. Let F be a valuation of the$nite distributive lattice D, and let 
P be a subset of D containing OD and every join irreducible. Then for any t E P 
which is not 0, or a join irreducible of D, 

There is another way of stating the condition on P of Theorem 2.1 and 
Corollary 2.2. We say that P has meet support if the meet of any nonempty subset 
of P is the join of elements of P. (Meet and join are performed in D.) 

THEOREM 2.3. If P is a subset of a distributive lattice D, then P contains OD 
and every join irreducible if and only if it has meet support and generates D through 
meets and joins. 1 

Since the “meet refinements” defined in Section 1 have meet support, the proof 
of Eq. (1.4) from Corollary 2.2 is justified. 
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3. DISSECTIONS INTO CELLS AND PROPERLY CELLULAR FACES 

Let us suppose that X, a d-dimensional space, is dissected by Z? into regions, 
every one an open d-cell. The number of regions is then 

The range of summation may be any Eulerian meet refinement 2 of the set J 
defined in Section 1; TV is the Mobius function of 2’. 

With a further assumption we can find fk , the number of k-faces of 2. 
Say .# has properly cellular faces when, for every T E .Yc, every region of %r is 
an open dim T-cell. Lemma 1.1 guarantees that 9” is Eulerian. Using (3.1) we 
can substitute for m(2r) in 

fk = 1 {m(&r): T E 4” and dim T = k}, 

sum xa-“fk , and collect terms, noting that 

P(XT) = {UEP : UC T). 

THEOREM 3.1. Let X be a d-dimensional space, dissected by %’ into properly 
cellular faces. Then the numbers of k-faces are given by the generating polynomial 

k$o xd-tfk = (-l)d u;&K(u) L’c;xaI*(u, T)(-X)d-dimT. 1 

The most interesting dissections into properly cellular faces have a property 
which we term geometric intersection: if T E 9~ and HE 2, 

HnT=@ or H3T or dimHnT=dimT-I. 

Then one can show every interval of 9~ is an inverted geometric lattice. 

THEOREM 3.2. Let &+ dissect the d-space X into properly cellular faces. Assume 
S? has geometric intersection. 

(A) If  every T E Ye - {X} is an open cell, 

$,, X”-yk = sTzc 1 /.@J, T)j xd-dimT + (-l)“K(X) - 1. 

(B) If  every T E 9~ - (X} has the same Euler number, q, , 

& x”-‘yk = (-1)d (K. cc p(U, T)(-x)d-dimT + K(X) - K*) . 
U.TE.P 
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Let 2 = nie, .fo = 9 u {Z), and i = dim Z. Put f-l = 1 ;f Z = 0, 

fel =OifZ# 0. 

(C) If  evmy T E 9c - {X> is a topological projective space, 

jyo x”-tfk = c 1 I p(U, T)I xd-dimT + (-l)d(K(S) - &[l + (-l)d]). 
U.TGP 

dim Ueven 

If every nonvoid cut intersection is a topologicalprojective space, 

(D) If  every T E 9c - {X} is a topological sphere or a point, 

go x”-z = 2 c c I P(U, T)l aedim7 ” Te9c 
dimbereny2 

+ c 1 / p( u, T)/ xd-dimT + (-l>“(@> - [l + (-1YI). 
U,TEP 
dimU=o 

I f  every nomoid cut intersection is a topological sphere, 

,% x”-Yk = ,c,; I PL(U, VI xd-dimT. ’ 0 
Proof. In Theorem 3.1 substitute the appropriate Euler numbers. For (C) 

and (D), the second recursion for the Mobius function in Section 1 must be used 

to get sums over 9. ; and the cases Z = % and Z E $ must be distinguished. 
The absolute values arise from a theorem of Rota, [18, Sect. 7, Theorem 41, 

which implies that in a geometric lattice, ( -l)dimr-dim up( U, T) > 0 if U < T. 
Observe that in (C) and (D) 90 is an inverted geometric lattice. 1 

EXAMPLES. (A, C) generalize the enumerations in [25, Theorems A, B] of 
the faces of an arrangement of hyperplanes. An arrangement is the dissection of 
a Euclidean or projective space due to a finite set of hyperplanes. Any reasonable 
topological generalization would also fall under Theorem 3.2 since it should 
have properly cellular faces and geometric intersection. (The model is the 
arrangements of pseudolines studied by Levi [14], Ringel [16], and Griinbaum 
[lo, Sect. 18.3; 121.) 

(A) includes as well the dissection of an open convex set K _C Ed by 

hyperplanes. Note that 9 consists only of the hyperplane intersections that meet 
K, and that K(K) = (-I)“. For an application see [27]. 
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(B) includes dissections in which every T E Yc is a closed cell (KU = 1); in 
particular, a convex polytope P dissected by hyperplanes among which are 
numbered the supporting hyperplanes of facets of P. 

In particular when P is dissected by its facets, 9 is the lattice of faces of the 
polytope. By [ 19, Theorem 41, if F C F’ are faces of P, p(F, F’) = (- l)dim F’-dim F. 

This case of Theorem 3.2(B) generalizes the Dehn-Sommerville equations 
(see Sect. 4), to cubical polytopes, for instance (see [lo, Sect. 9.41 for a statement 
and another proof). 

Also under (B) comes the enumeration of the bounded faces of a Euclidean 
arrangement of hyperplanes, 8. Let X = the union of all bounded faces and 
JJ? = {h n X: h E 81. The faces of %’ are precisely the bounded faces of 6. 
If it is shown that K(X) = 1 when X is not void, the bounded faces can be 
counted by means of (B). Unfortunately no direct proof that avoids technical 
problems with topology has yet been formulated. The known proof that 
K(X) = 1 depends on counting the faces first, then deducing (B) and setting 
x = -1. See [25, Sects. 2C, 3C, 4C, 5A] for further discussion and details. 

4. GENERAL POSITION 

Often when there is some restriction on a dissection the largest possible number 
of regions occurs when the cuts have relative general position in X: the inter- 
section of any K cuts, K > 1, is either void or (d - K)-dimensional; or even 
absolute general position : every K cuts, 1 < Fz < d + 1, have (d - K)-dimen- 
sional intersection. For instance a maximal dissection of Euclidean space by n 
hyperplanes has absolute general position. Relative general position is illustrated 
by the maximal dissections of a simplex introduced by Alexanderson and Wetzel 

[L 2l.l 

THEOREM 4.1. Suppose X is a d-dimensional space, dissected into properly 
cellular faces by cuts having relative general position. Let a, = the number of 
k-dimensional T E xc, akj = the Kronecker delta. 

(A) I f  every T E fc - (X} is an open cell, 

&d-kfk = i (x + l)d-‘aj $ ( -l)dK(X) - 1, 

j=O 

and 

fti = i. (“, I’,, aj + &I[(--~)~K(X) - 11. 

1 I am grateful to John Wet.4 for stimulating and clarifying many of the ideas in this 
section. 
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(B) If  ecery T E XC - {X} has the same Euler number, K” , 

io xdehfk = Kg i (-l)‘(.x + l)d-‘aj + (-l)“[~(x) - KJ, 
j=O 

(C) If every T E YC - {X} is a topologicalprojectice space, 

fk = 2 (z 1 {) aj + %d-l)d(K(X) - ii? + (-1Yl). 
even 

(D) If  every T E 9C - (X} is a topological sphere or a point, 

toxd-hfk = 2 2 (x + I)“-jaj + (X + I)Q, + (-l)d(~(X) - [l + (-1)&l), 
j=2 
even 

a0 + L--~Y(K(X) - [l + (-ljdl). 

even 

Proof. As general position entails geometric intersection, Theorem 3.2 can be 
applied. It also follows from general position that every interval of 9c is a 
Boolean algebra, so the Mobius function is p( U, T) = (- l)dimT--dim (I. The rest 

of the proof is simple manipulations. 1 

A principal example of Theorem 4.1(A) is an open convex subset K C Ed 
dissected by hyperplanes which have general intersection in K. Since K(K) = 
(-l)d, the extra terms on the right of (A) sum to zero and one obtains the sim- 
plified formula 

(4.1) 

For some applications see [13; 26, Sect. 51, and the end of this section. 
Similarly (B) may be applied to the bounded faces of a dissection of Ed by 

hyperplanes which have relatively general position (that is, no multiple inter- 
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sections) and whose smallest-dimensional nonvoid intersection is a point (which 
rules out “degenerate” exceptions). Let X be the bounded part (the union of all 
the bounded faces) of the dissection, as described in Section 3. From [25, 
Corollary 5.21 it is known that IC(X) = 1; also K(T) = ~a = I since every T 
is the bounded part of an induced dissection. This gives us formulas for b, , 
the number of bounded R-faces of an arrangement of hyperplanes with relatively 
general position: 

b, = i (-1~ (“, 1;) ai, 
i=O 

(4.2) 

The method of “sweep hyperplanes,” an elegant idea of several authors that 
shows geometrically why (4.1) and (4.2) hold true, is described in articies by 
Alexanderson, Kerr, and Wetzel [3, 131 and Greene and Zaslavsky [9]. 

There are two special cases of particular interest. Suppose there are n cut 

hyperplanes, which have absolutely general position in K; then ai = (&) in 
(4.1) and (4.2). Letting K = Ed, we have well-known formulas for the numbers of 
faces of a simple arrangement of hyperplanes-which have been periodically 
rediscovered since Steiner found them for d < 3 in 1826 and Schlafli obtained 
them for all dimensions a quarter century later. (For lists of references see 
Griinbaum, [lo, Chap. 18; 111.) 

A less restricted situation was also considered by Steiner (for d = 2 and 3, as 

usual). In a Euclidean arrangement with relatively general position the hyper- 
planes fall into parallel pencils of n1 , na ,..., n, cuts. Suppose a set consisting of 

one cut from each pencil has absolutely general position. Then aj = IJ~-~ , 
the (d - j)th symmetric polynomial in n, ,..., np . The numbers of faces and 
bounded faces are again given by (4.1) and (4.2). These numbers are the maxima 
for Euclidean arrangements composed of p pencils with n, ,..., n, cuts. 

Steiner went on to discuss maximal dissections of the plane by circles and 

straight lines, of the sphere by circles, and of space by spheres and planes. One 
could generalize his results by means of (4.1) and (4.2), but there are geometrical 
problems, concerning the existence of intersections and the topology of faces, 
which it would be out of place to try to deal with here. 

Theorem 4.1 (B) may be considered a generalization to dissections of the Dehn- 
Sommerville equations for simple polytopes (cf. [lo, Sect. 9.21). A polytope is 
called “simple” when each vertex lies in exactly d facets. The Dehn-Sommerville 

equations state that, if P is simple and hasf, K-faces, 

Since the dissection of P whose cuts are the closed facets has for cut intersections 
the closed faces of P, uB = fk . Also K(P) = K,, = 1. With these substitutions 
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(B) becomes precisely (4.3). And from the generating function in 4.1(B) we 
obtain the generating-function form of the Dehn-Sommerville equations (cf. 
[15, p. loll). 

5. COUNTING LOW-DIMENSIONAL FACES 

When one wants to solve a dissection problem it is convenient to have the 
Mobius function worked out beforehand in terms of the incidences of the cut 
intersections. Thus we give here two expansions of p (not requiring geometric 
intersection) which are especially useful in low dimensions and lead to previously 
published enumerations. 

The first expansion is a theorem of P. Hall’s 118, Sect. 3, Proposition 61, which 
relates p(S, 7’) to the number of ordered chains between S and T. Let c,(S, T) = 
the number of such chains of length i (including S and T) in 9’. Then 

,u(S, T) = c (-I )i-lci(S, T). 
i>l 

The enumerations that result are written out in full for arrangements of lines 
and planes in [25, Sect. 5C]. 

The second expression is tractable only for small d. One expands the recursive 
definition of p. Let S, , Tk: , U, denote k-dimensional members of 9. Let 
uj(U, , T,J = the number of Sj which lie between U, and Tk . Assume that 
U $ T implies dim U < dim T. Then, for U, C T, , 

P(T~ , Tk) = 1, 

dur-1, Tt) = -1, 

~cL(uk--2 , T,) = ax-l(u,-, , Tk) - 1 t (5.1) 

4 u,-, > TJ = ~--l(Um , T/J - 1 - c k+,(S,-, , TJJ - 11. 
Uk-&%-&Tk 

From (5.1) one can computef, ,...,fa f or a dissection if the Euler numbers are 
known. An instance is a hyperplanar dissection of a convex open subset of the 
Euclidean plane or 3-space: one substitutes (5.1) in Theorem 3.2(A). Letting 
k = d = 2 and 3, one obtains the formulas of Brousseau and Alexanderson, 
Kerr, and Wetzel for the number of regions 13, 131. 

6. SPHERES AND THEIR SUBSPACES 

The regions of a dissected d-sphere or a subspace can be counted without 
requiring them to be cells. The price is an added complexity in the enumeration. 
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The formula involves two kinds of properties: the incidences of the cuts, as 
reflected in the Mobius function and the Euler numbers of an Eulerian meet 
refinement of 9; and the intricacy with which they intertwine, indicated by the 
Betti numbers /I,(A) which measure the connectivity of the complement A of the 
regions. 

THEOREM 6.1. Let a subspace X of Sd, d > 2, be dissected by a finite set 8 of 
subspaces such that R = X - u 2 is nonempty and open in Sd, and let A = Sd - R. 
Assume A is a topological polyhedron (i.e., triangulable). Then the number of regions 
into which s dissects X is 

m = (- l)d (g P( U, X> K( U> - 1 + A,(A) - MA) -I ‘.. i PI--P(~) , 

where the summation and Mobius function may be taken over any L?ulerian meet 
refinement of 9(s). 

We assume A is a polyhedron in order to avoid topological complications. By 
assuming also that Sd - X and the faces of the dissection are each a disjoint 
union of finitely many open topological cells, we can assure that 9, XC, and any 
meet refinement of 4 which is coarser than Yc are Eulerian (Lemma 1.1). In 
practice it should be clear when these conditions are met. For instance they 
are satisfied by a dissection of Sd by spheres and ellipsoids, or of Ed or a 
convex open subset by hyperplanes and spheres, and so on. 

The proof, like the formula, has a combinatorial and a homological part. 
First we note by Theorem 1.2 that 

c /.L(U, X) /c(U) = K(R) = I@~) - K(A) = 1 + (-l)d - x(A). 
cl 

Since m = the number of components of R, which is /3,,(R), Theorem 6.1 is 
equivalent to the assertion 

&,(R) - 1 = (--l)d-1[~(4 - r%(A) + ..* rk &-s(A)]. 

Since A is a proper subspace of P, the Betti numbers /& and higher are all 
zero. Thus the right-hand side reduces to &(A). When d 3 2, Alexander 
duality and the triangulability of A give isomorphisms of augmented rational 
homology (cf. [7; 22, 6.2.17 and 6.1.111): 

H,#(R) s H,(Sd, R) g He-l(A) cz ZZd-l(A) E &--1(A). 

From this we conclude that /3,(R) - 1 = j3eWI(A), proving the theorem. 1 
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There are homology isomorphisms for other dimensions as well. In fact 
H,+(R) s H&(A) for 0 < i < d - 1; consequently 

PO@) = Pd-I(4 4 19 

Bid4 = A--l--k@) for 1 ,( k < d - 2. 
(6.1) 

From (6.1) we can draw conclusions about the Betti numbers in Theorem 6.1 
if we know something about the connectivities of the regions. If, in particular, 
the regions are known to be d-cells-as we assumed in Section 3-all the Betti 
numbers on the right sides of Eq. (6.1) are 0 and Theorem 6.1 reduces to the 
formula (3.1). (Nevertheless (3.1) is not a corollary, as we did not there assume 
x c Sd.) 

Theorem 6.1 indicates why algebraic topology alone is not suitable for counting 
regions. It tells us that their number equals the rank of HdF1(A), the (d - 1)st 
homology group of the union of the cuts (plus the complement of the dissected 
subspace of Sd), but not how to compute the group. And that is precisely where 
the greatest difficulty lies; for as the preceding paragraph suggests, one can be 
sure the group HdJA) is complicated, no matter what other simplifications may 
be possible. What is needed, and is provided by our combinatorial analysis, is a 
way of evaluating the rank of Hd-i(A). 0 ne might ask whether the group itself 
is computable in a similar way. It appears to be so, but we do not pursue the 
matter here. 

7. DISSECTIONS BY CURVES 

Turning now to the two-dimensional case, we consider a Euclidean or projec- 
tive plane, a sphere, or a domain, dissected by curves. Our results generalize 
classical enumerations for arrangements of lines and results of Steiner [23, 
Sects. 11, 121 on the’maximum number of regions of a dissection of E2 or S2 
by straight lines and circles. 

A system of curves in a 2-manifold X means a set of curves which satisfy two 
regularity conditions. First, each curve must be a closed subset of X, homeo- 
morphic either to an interval (an open curve) or a circle (a closed curve) except 
that it may intersect itself at a finite number of points. Also, two curves of the 
system, if they meet at all, may do so only at finitely many points. 

Each open curve has two ends. Let us look at an end. If it has an end point 
lying in X, we call it afiee end of the curve. If it has no end point in X, we call 
it a bound end. A curve looks like a closed interval at a free end and like an open 
interval at a bound end. (The terminology becomes clearer if one thinks of X as 
embedded in a compact manifold like the sphere, so a bound end has its end 
point, as it were, stapled fast to the complement of X while a free end is “at 
liberty” in X.) 

407143-7 
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A free end of an open curve, or any point where a curve intersects itself or 
another curve in the system, is called a node. A curve which touches no other in 
the system and either is closed or has both ends free is said to be isolated. 

Let % be a system of curves. We need the following indices for V: 

I = the number of open curves, 

c,, = the number of isolated simple, closed curves, 

e = the number of connected components of u %?, 

e’ = the number that contain only curves without bound ends, 

and for j > 0, 

zlj = the number of nodes which lie in exactly j branches of curves, not 
counting branches that end at the node. 

By a domain we mean any open subset of Ea or S2, except the whole sphere. 
For a domain D we need two additional indices. First, regard D, if planar, as a 

subspace of the Riemann sphere. Call a hole any component of S2 - D. Given a 
system of curves in D, two holes are equivazent if they are connected by arcs of 
curves in the system. Define 

p = the number of holes - the number of equivalence classes. 

In the calculation we can ignore any isolated hole (which no curves touch). So p 
is well defined even if D has an infinite number of holes. 

The second index is elementary. Put 

k = the number of components of D. 

If  D is simply connected, p = 0. For the sphere, k = I, e’ = e, and I = p = 0. 
Note that an isolated curve is an edge. 

THEOREM 7.1. The number of regions into which a domain D or the sphere S2 
is dissected by a$nite system of curves is 

m=k+e’+Z+&j.--l)vj-v,,-p. 
j=2 

The number of edges is Z + c,, + z: jvi . 

Proof. First, the only domains we need to look at are the connected ones, 
where k = 1. The general case follows by summing the values of m for each 
component of D. All the indices add up correctly. 

Next, for a connected domain D, we redefine it by incorporating all isolated 
holes, so D is finitely connected. None of the indices is altered. 
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By Theorem 6.1 with X = D or Ss, 

m = C p,(P, X) - C K(C) + 4X) - 1 + A(4 
P C 

summed over points P E 9~ and curves C E %‘. Virtually by definition, 

(7.1) 

p = &(SZ - X) - [P,(A) - 4. 

Since S is connected and open, &(S3 - X) = 2 - K(X). Substituting this in 
the expression forp, and that in (7.1), yields 

El2 = c ,U(P, s) - c K(C) + 1 + d - p. 

PE.FC c 

Let us define four new indices for a node P and a curve C. First: 

(7.2) 

c(P) = the number of curves through P, including curves that end at P, 

whence c(P) - 1 = p(P, S) by (5.1) if P E Xc and = 0 by inspection if P E u ?? 
but $9”. Next: 

d(P, C) = the number of branches of C through P, not counting branches that 
end at P, 

f(C) = the number of free ends of C, 

y(C) = 0 if C is closed, 1 if it is open. 

W’e prove that 

-K(C) = Y(C) + 1 [d(R c> - 11, 
PEC 

(7.3) 

summed over all nodes on C. Regard C as the image of a circle C’ if C is a closed 
curve, of an interval C’ closed at the free ends of C if C is an open curve. If  we pull 
the nodes on C back into C’, then C’ is partitioned intofi(C’) = fi(C) edges and 
f”(C’) = xPEc d(P, C) + f(C) nodes. Now we can calculate, using Euler’s 
relation in C’, K(C) = f(C) - y(C) and 

h(C) =.fo(C’> - I = c d(P, C) + Y(C), 
PEC 

(7.4) 

from which (7.3) is evident by Euler’s relation in C. We should note that (7.4) 
is not valid when C is an isolated simple, closed curve. Then (7.3) may be verified 
by inspection. 

Let us substitute for p(P, X) and K(C) in (7.2). We obtain 

m = c W’) - 11 + 2 + cc [d(P, C) - 11 + 1 + e’ -p, (7.5) 
P PEC 
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summed over nodes P E u Q? and curves C E %‘. The sum of the summations in 
(7.5) is C (j - 1) vj . Thus we have the desired expression for WZ. 

The number of edges is computed by summing (7.4) over all curves except 
the isolated closed, simple ones, then adding c, to count the latter. 1 

Besides such obvious special cases as forbidding free ends, which makes 
q, = 0, or having a connected, simply connected domain like E3, so k - p = 1, 
we might look at the case where there are no closed curves and no intersections 
except at the end points of curves. The system of curves is then merely a planar 
graph in D, whose edges are the curves and whose vertices are the nodes of the 
system plus the bound end points. The formula of Theorem 7.1 then simplifies 
immensely. Indeed there are v0 nodes and I edges in the system and the number 
of faces of the graph is 

m=l-v,,+k+e’-p. 

In the projective plane a closed curve not contractible within the plane we call 
pseudo-open. A projective line is pseudo-open; generally a pseudo-open simple 
curve has been called apseudozine [14; 10, Sect. 18.3; 121. For a system of curves 
in P2, let 

e, = 0 if there are no pseudo-open curves, 

=I if there are any. 

THEOREM 7.2. The number of regions into which the projective plane is dissected 
by a finite system of closed curves is 

m = e + 1 + t (j - 1) vj - e, . 
j=2 

The number of edges is cO + xr jvj . 

Proof. By pulling P2 back to S2 and using Theorem 7.1. A pseudo-open curve 
pulls back to a single curve, a contractible curve to an antipodal pair. 1 
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