and cardiovascular disease amongst others. Treatment effects and cohort characteristics (mean age 63.1 years, diabetes duration 12.8 years, HbA1c 8.17%, BMI 30.3 kg/m²) were based on the German cohort of the PREDICTIVE (Predictable Results and Experience in Diabetes through Intensification and Control to Target: an International Variability Evaluation) study. Direct medical costs were derived from published sources and expressed in 2006 Euro (€) values. Projections were made over a 35-year time horizon. Future costs and clinical benefits were discounted at 3.5% annually. Sensitivity analyses were performed.

RESULTS: Treatment with IAsp was projected to improve quality-adjusted life expectancy by approximately 0.10 quality-adjusted life years (QALYs) (6.06 ± 0.09 versus 5.96 ± 0.09 QALYs). Increased treatment costs with IAsp were partially offset by cost savings due to reductions in the cumulative incidence of diabetes-related complications. Over patient lifetimes, mean direct medical costs were projected to increase by approximately €1,274 per patient with IAsp versus HSI (€435,423 ± 1,354 versus €44,149 ± 1,391). This resulted in an incremental cost-utility ratio of €13,305 per QALY gained.

CONCLUSION: Over patient lifetimes, IAsp treatment was projected to result in fewer diabetes-related complications and improved quality-adjusted life expectancy compared to HSI. Based on currently accepted willingness-to-pay limits, IAsp would represent good value for money in the German setting.