

Available online at www.sciencedirect.com

JOURNAL OF PURE AND APPLIED ALGEBRA

Journal of Pure and Applied Algebra 212 (2008) 1849-1851

www.elsevier.com/locate/jpaa

Erratum

Erratum to "On Heller lattices over ramified extended orders" [J. Pure Appl. Algebra 202 (2005) 55–71]

Shigeto Kawata

Department of Mathematics, Osaka City University, Osaka 558-8585, Japan

Received 28 January 2007; received in revised form 28 August 2007 Available online 27 December 2007

Communicated by I. Reiten

We use the same notation as in [1]. Let $(K, \varphi) \supset (K', \varphi')$ be an extension of complete discrete valuation fields, and let \mathcal{O} (resp. \mathcal{O}') be the valuation ring of φ (resp. φ') with unique maximal ideal (π) (resp. (π')) and the residue class field $k = \mathcal{O}/(\pi)$ (resp. $k' = \mathcal{O}'/(\pi')$). Let Λ' be an \mathcal{O}' -order and set $\Lambda = \mathcal{O} \otimes_{\mathcal{O}'} \Lambda'$. We denote by $\overline{\Lambda}$ and $\overline{\Lambda}'$ the *k*-algebra $\Lambda/\pi \Lambda$ and the *k'*-algebra $\Lambda'/\pi' \Lambda'$, respectively. For a $\overline{\Lambda}$ -module *M*, the kernel *Z* of the projective cover *P* of *M* viewed as a Λ -module is called the *Heller lattice* of $M: 0 \to Z \to P \to M \to 0$ (exact).

In the argument for proving the indecomposability of certain Heller lattices, the author carelessly estimated that $p_1(Q) \oplus p_2(Q) = \langle \alpha_i + \beta_i | 1 \le i \le h \rangle \Lambda$ [1, Section 2, page 62, line 12]. (We only have that $p_1(Q) \oplus p_2(Q) \supseteq \langle \alpha_i + \beta_i | 1 \le i \le h \rangle \Lambda$ at present.) Thus the proof of Lemma 2.8 of [1] is not valid as it is. The aim of this note is to give a corrected proof of the following [1, Theorem 2.9].

Theorem. Assume that the ramification index of φ over φ' is greater than or equal to 3, and $\overline{\Lambda}'/\text{Rad}(\overline{\Lambda}')$ is separable. Suppose that a non-projective indecomposable $\overline{\Lambda}$ -module M is realizable over k'. Then the Heller Λ -lattice Z of M is indecomposable.

Throughout this note, we assume the hypotheses in the above theorem, so $\pi' \in \pi^3 \mathcal{O}$ and $k \otimes_{k'}(\bar{\Lambda}'/\operatorname{Rad}(\bar{\Lambda}'))$ is semisimple and isomorphic to $\bar{\Lambda}/\operatorname{Rad}(\bar{\Lambda})$. We keep the original notation used in Sections 1, 2 of [1]. Let I' be an \mathcal{O}' -pure sublattice of Λ' such that $\operatorname{Rad}(\Lambda') = \pi'\Lambda' + I'$. Define an \mathcal{O} -pure sublattice I of Λ as follows:

 $I = \mathcal{O} \otimes_{\mathcal{O}'} I'.$

Note that $\operatorname{Rad}(\Lambda) = \pi \Lambda + I$ by our assumption that $\operatorname{Rad}(\overline{\Lambda}) = k \otimes_{k'} \operatorname{Rad}(\overline{\Lambda'})$. Let M be a $\overline{\Lambda}$ -module and suppose that M is realizable over k'. Let P be a projective cover of M regarded as a Λ -module. Let ℓ be the Loewy length of $P/\pi P$ viewed as a $\overline{\Lambda}$ -module, and let d_i be the k-dimension of the (i + 1)-st top $(PI^i + \pi P)/(PI^{i+1} + \pi P)$ of $P/\pi P$ for $0 \le i \le \ell - 1$.

Lemma 1 ([1, Lemma 1.2]). P has an \mathcal{O} -basis $\bigcup_{0 \le i \le \ell-1} \{x_{i,j} \mid 1 \le j \le d_i\}$ satisfying the following conditions for each $0 \le i \le \ell - 1$:

(i) $\{x_{i,j} + (PI^{i+1} + \pi P) \mid 1 \le j \le d_i\}$ is a k-basis for the (i + 1)-st top of $P/\pi P$;

DOI of original article: 10.1016/j.jpaa.2005.02.008.

E-mail address: kawata@sci.osaka-cu.ac.jp.

^{0022-4049/\$ -} see front matter © 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.jpaa.2007.10.015

(ii) $\{x_{i,j} \mid 1 \le j \le d_i\} \subset \mathcal{O}\langle x_{0,j} \mid 1 \le j \le d_0\rangle I^i$; (iii) $x_{i,j}\Lambda \subset P_{[i]} + \pi'P$ and $x_{i,j}I \subset P_{[i+1]} + \pi'P (\subseteq P_{[i+1]} + \pi^3P)$,

where $P_{[i]}$ ($0 \le i \le \ell - 1$) are \mathcal{O} -submodules of P defined as follows [1, Section 2]:

$$P_{[i]} = \bigoplus_{s=i}^{\ell-1} \mathcal{O}\langle x_{s,t} \mid 1 \le t \le d_s \rangle.$$

We recall that P has another basis $\{a_i \mid 1 \le i \le m\} \cup \{b_i \mid 1 \le i \le n\}$ such that

$$Z := \pi P + \mathcal{O}\langle b_1, \ldots, b_n \rangle = \mathcal{O}\langle \pi a_1, \ldots, \pi a_m \rangle \oplus \mathcal{O}\langle b_1, \ldots, b_n \rangle$$

is the Heller lattice of M. See Proposition 2.2 of [1]. Also, put

 $Q = \pi P$ and $Y = \operatorname{Rad}(Q) + \mathcal{O}(b_1, \dots, b_n)$.

Note that *Y* is a Λ -submodule of *Z* [1, Lemma 2.3].

Now, we define a subset E_Y of the endomorphism ring $\operatorname{End}_A(Z)$ of Z by

$$E_Y = \{ f \in \operatorname{End}_A(Z) \mid \operatorname{Im} f \subseteq Y \}.$$

Note that $\pi \operatorname{End}_A(Z) \subset E_Y$. From the following fact, E_Y is a two-sided ideal of $\operatorname{End}_A(Z)$.

Lemma 2 ([1, Lemma 1.4]). For any Λ -endomorphism f of Z, $f(Y) \subseteq Y$.

The following easy fact will be used later.

Lemma 3. Let $g: O(=\pi P) \to Z$ be a Λ -homomorphism. Then g extends (uniquely) to a Λ -endomorphism of Z if and only if $g(\pi b_i) \in \pi Z$ for all $1 \le i \le n$. In particular, a Λ -endomorphism g of Q extends (uniquely) to a A-endomorphism of Z if and only if $g(\pi b_i) \in \pi Z$ for all $1 \le i \le n$.

Put $Q = \bigoplus_{i=1}^{h} e_i \varepsilon_i \Lambda$, where e_i $(1 \le i \le h)$ are generators of Q and ε_i $(1 \le i \le h)$ are primitive idempotents of Λ with $e_i \Lambda_{\Lambda} \cong \varepsilon_i \Lambda_{\Lambda}$. Let f be a Λ -endomorphism of Z and suppose that $f \in E_Y$. Then each $f(e_i)$ $(1 \le i \le h)$ can be written as

$$f(e_i) = f(e_i\varepsilon_i) = y_i + \pi q_i = y_i\varepsilon_i + \pi q_i\varepsilon_i$$

for some $y_i = y_i \varepsilon_i \in (P_{[1]} + \pi^2 Q) \cap Z$ and some $\pi q_i = \pi q_i \varepsilon_i \in \pi Q$ since both $(P_{[1]} + \pi^2 Q) \cap Z$ and πQ are A-submodules of Z. Define A-endomorphisms g and h of Z by $g(e_i) = y_i$ $(1 \le i \le h)$ and by $h(e_i) = \pi q_i$ $(1 \le i \le h)$, respectively. (Indeed, $h \in \text{End}_A(Z)$ by Lemma 3 and so $g = f - h \in \text{End}_A(Z)$.) Then $g, h \in E_Y$ and f = g + h. Note that g and h satisfy the following conditions:

(*) $g(\pi x_{0,j}) = \sum_{1 \le t \le d_0} x_{0,t} \sigma_{j,t}$ for some $\sigma_{j,t} \in I + \pi^3 \Lambda$ $(1 \le j \le d_0)$; (**) $h(Q) \subseteq \pi Q$.

Lemma 4. $E_Y/\pi \operatorname{End}_A(Z)$ is a nilpotent ideal of $\operatorname{End}_A(Z)/\pi \operatorname{End}_A(Z)$.

Proof. If $g \in E_Y$ satisfies the condition (*), then

 $g((P_{[i]} + \pi Z) \cap Z) \subseteq (P_{[i+1]} + \pi Z) \cap Z = (P_{[i+1]} \cap Z) + \pi Z$

for $0 \le i \le \ell - 1$. Indeed, an element $z \in P_{[i]} \cap Z$ is written as $z = \sum_{1 \le j \le d_0} x_{0,j} \delta_j$ for some $\delta_j \in \mathcal{O}\langle I^i \rangle$ by Lemma 1(ii), and so we have

$$g(z) = \sum_{1 \le j, t \le d_0} \pi^{-1} x_{0,t} \sigma_{j,t} \delta_j \in \pi^{-1}(P_{[i+1]} + \pi^3 P) \cap Z$$

by Lemma 1 (iii) since $\sigma_{j,t}\delta_j \in \mathcal{O}\langle I^{i+1}\rangle + \pi^3 \Lambda$ and $g(z) \in Z$. Hence homomorphic images of compositions of $\ell \Lambda$ endomorphisms of Z satisfying (*) are contained in πZ . Moreover, if $g \in E_Y$ satisfies (*), then $g \circ h$ and $h \circ g$ also satisfy (*) for any $h \in E_Y$ satisfying the condition (**). If both h_1 and h_2 in E_Y satisfy (**), then $[h_1 \circ h_2](Q) \subseteq \pi^2 Q$ and $[h_1 \circ h_2](Z) \subseteq \pi Z$. Thus we see that $E_Y^{2\ell} \subseteq \pi \operatorname{End}_A(Z)$. \square

With regard to the decomposition

 $Z/\pi Z = (\mathcal{O}\langle \pi a_1, \dots, \pi a_m \rangle + \pi Z)/\pi Z \oplus (\mathcal{O}\langle b_1, \dots, b_n \rangle + \pi Z)/\pi Z \cong M \oplus \Omega M$

in Proposition 2.2(2) of [1], i_M and $i_{\Omega M}$ denote the inclusions from M and ΩM to $Z/\pi Z \cong M \oplus \Omega M$ respectively, and p_M and $p_{\Omega M}$ denote the projections from $Z/\pi Z$ onto M and ΩM respectively. For $f \in \text{End}_{\Lambda}(Z)$, define $\overline{f} \in \text{End}_{\overline{\Lambda}}(Z/\pi Z)$ by $\overline{f}(z + \pi Z) = f(z) + \pi Z(z \in Z)$. The following holds from Lemma 2.

Lemma 5. Let $f \in \text{End}_{\Lambda}(Z)$. Then $f \in E_Y$ if and only if $\text{Im}(p_M \circ \overline{f} \circ i_M) \subseteq \text{Rad}(M)$. In particular, if $p_M \circ \overline{f_1} \circ i_M = p_M \circ \overline{f_2} \circ i_M$ for $f_1, f_2 \in \text{End}_{\Lambda}(Z)$, then $f_1 - f_2 \in E_Y$.

Lemma 6. Let ψ be a $\overline{\Lambda}$ -endomorphism of M. Then there exists a Λ -endomorphism f of Z such that $\psi = p_M \circ \overline{f} \circ i_M$.

Proof. Note that $M \cong Q/\pi Z$ and $\pi Z = \pi Q + \mathcal{O}\langle \pi b_1, \ldots, \pi b_n \rangle$. Consider

$$\begin{array}{cccc} Q & \stackrel{w}{\longrightarrow} & Q/\pi Z \\ & & & \downarrow^{\psi} \\ Q & \stackrel{w}{\longrightarrow} & Q/\pi Z & \longrightarrow & 0, \end{array}$$

where ϖ is a natural surjection. Since $Q \cong P$ is projective, there exists a Λ -endomorphism f of Q with $\varpi \circ f = \psi \circ \varpi$. Then ψ coincides with the $\overline{\Lambda}$ -endomorphism of $Q/\pi Z \cong M$ defined by mapping $q + \pi Z$ to $f(q) + \pi Z(q \in Q)$. Since $f(\pi b_i) \in \pi Z$ for all $1 \le i \le n$, f extends to a Λ -endomorphism of Z by Lemma 3, and the statement holds. \Box

By Lemma 6, for each $\overline{\Lambda}$ -endomorphism ψ of M, we can choose a Λ -endomorphism f_{ψ} of Z such that $p_M \circ \overline{f_{\psi}} \circ i_M = \psi$. By Lemma 5, a map Ψ from End $_{\overline{\Lambda}}(M)$ to End $_{\Lambda}(Z)/E_Y$ is well defined by the rule

 $\Psi(\psi) = f_{\psi} + E_Y \quad (\psi \in \operatorname{End}_{\bar{A}}(M)).$

Lemma 7. Ψ is a surjective ring homomorphism.

Proof. Since $\Psi(p_M \circ \overline{f} \circ i_M) = f + E_Y$ for any $f \in \text{End}_A(Z)$, Ψ is surjective.

Let $\psi, \mu \in \operatorname{End}_{\bar{A}}(M)$. Then $p_M \circ \overline{(f_\mu \circ f_\psi - f_{\mu \circ \psi})} \circ i_M = p_M \circ \overline{f}_\mu \circ (i_M \circ p_M + i_{\Omega M} \circ p_{\Omega M}) \circ \overline{f}_\psi \circ i_M - p_M \circ \overline{f}_{\mu \circ \psi} \circ i_M = \mu \circ \psi + p_M \circ \overline{f}_\mu \circ i_{\Omega M} \circ p_{\Omega M} \circ \overline{f}_\psi \circ i_M - \mu \circ \psi$ and we have $\operatorname{Im}(p_M \circ \overline{(f_\mu \circ f_\psi - f_{\mu \circ \psi})} \circ i_M) \subseteq p_M \circ \overline{f}_\mu(\Omega M)$. Since $\overline{f}(\Omega M) \subseteq \operatorname{Rad}(M) \oplus \Omega M$ for any $f \in \operatorname{End}_A(Z)$ by Lemma 2, we see that $f_\mu \circ f_\psi - f_{\mu \circ \psi} \in E_Y$ by Lemma 5 and Ψ is a ring homomorphism. \Box

Proof of Theorem. As *M* is indecomposable, $\operatorname{End}_{\overline{\Lambda}}(M)$ is local and so is $\operatorname{End}_{\Lambda}(Z)/E_Y$ by Lemma 7. Thus $\operatorname{End}_{\Lambda}(Z)$ is also local by Lemma 4. \Box

References

[1] S. Kawata, On Heller lattices over ramified extended orders, J. Pure Appl. Algebra 202 (2005) 55-71.