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Recent studies have uncovered profound and unexpected roles for a family of tiny regulatory RNAs, known as microR-
NAs (miRNAs), in the control of diverse aspects of hepatic function and dysfunction, including hepatocyte growth, stress

response, metabolism, viral infection and proliferation, gene expression, and maintenance of hepatic phenotype. In liver

cancer, misexpression of specific miRNAs suggests diagnostic and prognostic significance. Here, we review the biology

of the most abundant miRNA in human liver, miR-122, and consider the diversity of its roles in the liver. We provide a

compilation of all miRNAs expressed in the liver, and consider some possible therapeutic opportunities for exploiting miR-

NAs in the different settings of liver diseases.

� 2008 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
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1. Introduction

The RNA interference (RNAi) pathway achieves
silencing of gene expression. The best characterized trig-
gers of RNAi are small interfering RNAs (siRNAs) and
endogenous double-stranded (ds) RNAs. The predomi-
nant form of dsRNA in mammalian cells is derived from
endogenous microRNAs (miRNAs), which consist of
non-coding RNA molecules of 18–25 nucleotides emerg-
ing after a multiple step maturation process [1].
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First discovered in Caenorhabditis elegans [2], miR-
NAs have quickly been considered as a fundamental com-
ponent of the regulatory system of gene expression.
miRNAs direct the binding of protein complexes to spe-
cific nucleic acid sequences to affect either chromatin
structure, or mRNA stability, or translation. In humans,
the first clue of miRNA contributing to diseases came
from the identification of patients suffering from either
DiGeorge syndrome or mental retardation who presented
mutations, which resulted in dysfunction of miRNA bio-
genesis [3]. So far, most efforts have been directed towards
the study of alteration of miRNA expression in tumori-
genesis [3]. Today, approximately 500 miRNAs genes
have been identified in the human genome.

Currently, the biological functions of miRNAs are
actively being sought. Some studies have notably uncov-
ered roles for miRNAs in stress resistance, in metabolism,
in defence against pathogenic infections, and impor-
tantly, in the coordination of cell proliferation and cell
death, in tumorigenesis. How a single miRNA regulates
multiple-target mRNAs or even entire pathways is partic-
Published by Elsevier B.V. All rights reserved.
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ularly well exemplified by the liver-enriched miRNA miR-
122. Thus, miR-122 accounts for a paradigm to review
most of the complex influences of microRNAs reported
to date in normal liver, and in liver diseases along with
their therapeutic or diagnostic potential.
2. miR-122: a liver-specific microRNA

2.1. Discovery and biogenesis of miR-122

One of the first clues of the existence of miRNAs in
mammals came from studies on genetic alterations in
woodchuck liver tumors. In 1989, a gene rearrangement
of c-myc and an unusual transcript, named hcr, was
described in one of these tumors [4]. This transcript
was characterized as liver specific, essentially non-cod-
ing, specifically nuclear, and processed by endonucleases
[4]. Further, hcr was proposed to be the precursor for
miR-122. In the current understanding, the part of the
hcr transcript encompassing the so-called ‘‘pri-miRNA”

is predicted to be processed to form a 66-nt long ‘‘pre-
miRNA”, which presents a hairpin structure with 79%
base pairing, and which will ultimately be cleaved by
the endonuclease Dicer to form the mature miR-122 [5].

In 2002, systematic cloning and sequencing of small
RNAs prepared from different mouse tissues led to the
identification of miR-122 as an abundant miRNA in
the liver [6]. miR-122 was further characterized as the
most frequent miRNA isolated in the adult liver, reach-
ing around 70% of all cloned miRNAs [7]. miR-122 is
found in mouse, woodchuck and human livers, in
human primary hepatocytes, and in cultured liver-
derived cells, such as mouse Hepa 1-6 cells and human
Huh7 cells [5,8].
Fig. 1. Phylogenetic tree of miR-122 sequences. For analysis, we selected 1
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2.2. Evolutionary conservation of miR-122

MicroRNAs are known to be evolutionary conserved
across species [9]. Here, we examined genomic DNA for
orthologous sequences in ten animal species to assess the
conservation of miR-122 across species. The overall con-
servation of 10 sequences, which we documented as a
phylogenetic tree (Fig. 1) is remarkable. Homo sapiens,
Bos Taurus, Sus scrofa, Mus musculus, and Rattus nor-

vegicus are clustered in the same clade. These observa-
tions support the hypothesis that an ancient precursor
of the miR-122 gene may have been common to the ear-
liest animal lineages. So far, the role and specificity of
miR-122 in the liver seem rather conserved although it
is known that a conserved miRNA can regulate, in dis-
tinct organisms, different genetic pathways and develop-
mental processes [10].

2.3. miR-122 amongst other liver-expressed miRNAs

A variety of experimental approaches has been used to
characterize miRNAs and their expression patterns
[6,11–14]. Complementary bioinformatics screens and
algorithms provide an invaluable source of prediction of
hundreds of additional miRNAs [15–17]. A review of
the literature reveals limited references in the identifica-
tion of miRNAs that are specifically expressed in
human liver [18–21]. We compiled these miRNAs and
their relative levels of expression in Table 1. From
this table, overall comparison between the miRNAs that
are expressed in adult and/or fetal liver suggests a
developmental regulation of miRNAs expression. While
miR-122 appears as the most highly expressed miRNA
in adult liver, miR-92a and miR-483 seem to be more spe-
cifically expressed in the fetal liver (Table 1). Thus, in the
0 representative miR-122 RNA precursors amongst 10 species. Sanger
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Table 1

Repertoire of liver miRNAs
Table 1 (continued)

Notes: The left column corresponds to the most up-to-date compila-
tion in the liver referred to as ‘‘atlas liver” [21], the middle column to
‘‘adult liver” [20], and the right column to ‘‘fetal liver” [19]. We
assigned ‘‘+” and ‘‘�”signs to indicate the levels of expression of the
various miRNAs that we assessed from the different studies [19,20].
The minus sign is used to indicate very low to undetectable levels, one
plus to three pluses indicate a gradual expression from low levels to
very high levels. The slash stands for the miRNAs that were not
assayed. Cases outlined in dark grey illustrate the highest levels of
expression and cases in light grey the moderate expression but found at
least in two studies.Abbreviation: hsa-miR: homo sapiens microRNA.
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search for miRNA-deregulated pathways involved in
liver diseases, miR-122 serves as an interesting candidate.
3. Putative to experimentally validated targets of miR-122

3.1. Contribution of miR-122 in cellular stress response

Using computational tools, some genes, which were
proposed as putative miR-122-target genes, were further
experimentally confirmed in cultured hepatocytes. Chang
et al. used the Lewis-based model of prediction of miRNA
targets [22] to predict a binding site for miR-122 in the
30-untranslated region (UTR) of the cationic amino acid
transporter (CAT-1) mRNA [7]. Consistent with this pre-
diction, which would lead to repression of CAT-1 mRNA
by miR-122, an inversed pattern of expression of CAT-1
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and miR-122 was noted at all stages of liver development.
An antisense strategy targeting miR-122 with a 20-O-
methoxyethyl (20-OMe) oligonucleotide in the human
Huh7 cells brought up the dynamic evidence that miR-
122 inhibited CAT-1 mRNA [23]. Interestingly, miR-
122-induced inhibition through the CAT-1 30UTR was
efficiently relieved upon amino acid starvation, which val-
idates CAT-1 as a target of miR-122 and suggests a role
for miR-122 in cellular stress response [23].

3.2. Contribution of miR-122 to hepatocarcinogenesis

miR-122 was reported to be significantly and specifi-
cally down-regulated in hepatocarcinoma (HCC) in
humans as in rodents [24,25]. Amongst the putative tar-
get genes of miR-122 that can be predicted using compu-
tational tools, at least three are of interest in
tumorigenesis: the gene for N-Myc, which is frequently
rearranged in woodchuck liver tumors by woodchuck
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lated in liver malignancy” [27], and the gene for Cyclin
G1 [28]. In fact, miR-122 was shown to modulate cyclin

G1 expression in HCC-derived cell lines, and an inverse
correlation between miR-122a and cyclin G1 expression
in primary liver carcinomas was further observed [28].
These studies suggest an influence of the down-regula-
tion of miR-122 and the converse expression of cyclin
G1 in hepatocarcinogenesis.

3.3. miR-122 targets hepatitis C virus

A striking observation was made by Jopling et al.
that replication of the hepatitis C virus (HCV) was
dependent on the status of miR-122 expression. Indeed,
HCV RNA can replicate in the Huh 7 cells, which
express miR-122, but not in HepG2 cells, which do
not express miR-122 [8]. To further assess the role of
miR-122, silencing of miR-122 was carried out in
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Huh7 cells [8], as in two other HCV replicon cell lines
[29]. Using distinct antisense strategies, these studies
consistently resulted in a marked loss of replicating
RNAs from HCV [8] and eventually lowered its produc-
tion [29,30]. Mutational analysis of a putative miR-122
binding site in the 50-end of HCV genome provided
the evidence of the direct role of miR-122 into HCV rep-
lication [8]. Additionally, an indirect effect of miR-122
inhibition on HCV regulation was also characterized
at the level of two cellular genes (Fig. 2), via the up-reg-
ulation of the cytoprotective enzyme heme-oxygenase 1
(HO-1) and the converse down-regulation of HO-1
repressor Bach1 [25]. Altogether, these studies reveal
miR-122 as a potential target for HCV treatment.

3.4. Overall role of miR-122 in adult liver

Using distinct protocols to silence miR-122, Krutzfeldt
et al. and Esau et al. found the overall importance of miR-
122 in the regulation of metabolism [31,32]. Through an
antisense strategy based on a 20-OMe phosphorothio-
ate-modified oligonucleotide specific to miR-122, Esau
et al. observed that several genes that regulate lipid metab-
olism, specifically the key enzyme phosphomevalonate
kinase, were down-regulated [32]. Remarkably, silencing
miR-122 in high-fat fed mice resulted in a significant
reduction of hepatic steatosis, which was associated with
reduced cholesterol synthesis rates and stimulation of
hepatic fatty-acid oxidation [32].

Likewise, Krutzfeldt et al. proposed a novel antisense
strategy based on a cholesterol-conjugated 20-OMe
oligoribonucleotide complementary to the targeted
miR-122, and referred to it as an ‘‘antagomir” [31]. Silenc-
ing of the miR-122 resulted in increased expression of
several hundred genes, which were notably represented
as putative miR-122 target mRNAs, including those that
are normally repressed in hepatocytes. These results argue
for the involvement of miR-122 in maintaining an
adult-liver phenotype by suppressing the expression of
non-liver genes. At last, in both studies, silencing
miR-122 resulted in a notable decrease of plasma choles-
terol levels, which was consistently associated with
decreased expression of genes involved in cholesterol
biosynthesis. These results provided a great source of
hope that miRNAs could serve as therapeutic targets [33].
4. Existing rationale for miR-based therapeutic

approaches

4.1. miR-122 antagomir as a new agent for liver-specific

RNAi

Antisense oligonucleotide approaches and siRNA-
like technologies for inhibiting miRNA function are
being explored as potential therapeutic agents. The cur-
rent strategy to constitutively synthesize siRNA mole-
cules is based on viral vectors that express short
hairpin RNA (shRNA), which share features of miR-
NAs [34–36]. A particular caveat of this approach lies
in the dosage. Indeed, intravenous infusion of AAV/
shRNA vectors in mice results in strong competition
of small RNAs for limiting cellular factors required
for their processing [35], and a possible side effect in
the activation of interferon response though no change
was noted in the expression of miR-122 [37].

Actually, the exciting first step towards miRNA ther-
apy in the liver was with miR-122 antagomir [31]. In this
study, the pharmacological approach proposed by
Krutzfeldt et al. was remarkably efficient, specific and
stable. Injection of the antagomir into the tail veins of
the mice selectively degraded miR-122 but not other
miRNAs from the liver, even after more than 20 days
indicating a durable effect [31]. Also, the selectivity of
the effect of miR-122 inhibition was provided by the fact
that despite distinct antisense protocols, a similar effect
on cholesterol rates was observed [31,32]. Thus, in con-
trast to the challenges raised by gene therapy, the effi-
cacy of intravenous antagomir to target the liver
suggests that some issues such as the mode of delivery
and the specificity will be more easily alleviated. Taken
together, these studies show that while some safety
issues still need to be carefully addressed, treatment of
hepatic disorders through RNAi is becoming a plausible
scenario.

4.2. Hepatitis viruses as adequate targets

Over the past 4 years, strategies based on targeting
hepatitis B virus (HBV), and to a lesser extent HCV,
by both synthetic and expressed activators of the RNAi
pathway have proved efficient to inhibit viral replication
both in vitro as in vivo [38]. Recently, a number of
reports shed new light on the role of miRNAs as critical
effectors in the intricate host–pathogen interaction net-
works, which involves three levels: (i) the RNAi path-
way, (ii) viral miRNAs, and (iii) cellular miRNAs, as
schematized in Fig. 2 and summarized in Table 2.

Through a systematic approach of silencing host fac-
tors, Randall et al. demonstrated the requirement of dif-
ferent proteins of the RNAi pathway, in particular
Dicer, for optimal HCV replication [30]. In contrast, a
previous study revealed the ability of Dicer to inhibit
the replication of subgenomic HCV replicons [39].
Together, these results indicate that Dicer interferes with
HCV replication either as an antiviral or a facilitating
factor, which then likely implicates other cellular
factors.

One breakthrough came from the discovery that a
number of viruses, including hepatotropic ones, encode
miRNAs. The first evidence of viral miRNA (vmiRNA)
came from a study by Pfeffer et al. [40], who discovered



Table 2

Experimental characterization of miRNAs in the liver

Characterization miRNA References

Metabolism Regulation of lipid metabolism (cholesterol biosynthesis) miR-122 [31,32]
Maintenance of adult liver phenotype

Stress Inversed pattern expression miR-122/CAT-1 in liver miR-122 [23,59]
Alteration of cellular miRNA in response to nutrient or toxic stress
response
Response to hepatotoxicants miR-298, miR-370 [60]

Cancer Regulation of NF2, modulation by Stat-3 let-7a [54]
Involved in survival signaling by interleukin-6
Regulation of c-myc, regulated by Wy-14,643 let-7c Review [52]
Overexpression in HCC miR-195, miR-199a, miR-92,

miR-20, miR-18, miR-18
precursor

[24,28,55]

Overexpression in HCC, modulation of cell proliferation LIN28B [51]
Overexpression in HCC, modulation of cell proliferation, migration and
invasion

miR-21 [25]

Overexpression in malignant cholangiocytes
Response of cholangiocarcinoma cells to chemotherapy miR-21 [47]
Epigenetic regulation by interleukin-6 miR-370 [61]
Inverse correlation with cyclin G1 expression in primary liver carcinoma miR-122 [28]
Regulation of cyclin G1 in HCC-derived cell lines
Low expression in HCC
High expression in response to tamoxifen and methyl-deficient diet miR-34 [62,24]

Infection Viral miRNA

Putative vmiRNA within HBV genome vmiR [43]
Cellular miRNA

Inhibition of HCV replication Dicer [39]
Permissive of HCV replication, cytoprotection through modulation of
heme-oxygenase 1

miR-122 [8,29,30]

Targeting viral genomes and induced by interferon beta miR-1, miR-30, miR-128, miR-
196, miR-296, miR-351, miR-
431, miR-448

[63]

Abbreviations: miRNA, microRNA; vmiR, viral microRNA.
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five vmiRNAs in cells infected by Epstein–Barr virus
(EBV) that interfere with EBV latency and also with
host cell genes expression [40] (Fig. 2). Since, vmiRNAs
have been cloned in Kaposi’s sarcoma-associated her-
pesvirus (KSHV), human cytomegalovirus (HCMV),
mouse gammaherpesvirus 68 (MHV68), herpes simplex
virus 1 (HSV1), and simian viruses (SV40) [41]. By con-
trast, no vmiRNAs have been cloned in RNA viruses
such as hepatitis delta virus (HDV) [5], nor HCV, nor
human inmmunodeficiency virus 1 (HIV1) [42]. Beyond
the negative cloning data on HCV, the existence of
vmiRNAs is unlikely in most RNA viruses that are cyto-
plasmic-restricted due to the need for pre-miRNA to be
processed in the cytoplasm. Early on, it has been dem-
onstrated that HDV RNA is resistant to Dicer action
[5]. More recently, extensive searches on hepatitis
viruses led to scan a single putative vmiRNA within
HBV genome [43]. Surprisingly, the only potential target
of this miRNA was not found within the human genome
but within its own genome (Fig. 2). This interesting find-
ing suggests a novel mechanism of vmiRNA action and
opens new means to target hepatitis viruses.
Experimentally, the recent study by Pedersen et al.
provided great insights into validating sequence-pre-
dicted targets of cellular miRNAs within the HCV gen-
ome (Fig. 2). Using results of miRNA microarray
analysis in response to the current standard treatment
for chronic HCV infection, i.e., interferon, they could
demonstrate that cellular miRNAs, including miR-122,
were specifically regulated by interferon displayed anti-
viral activity against HCV. Thus, as discussed above,
miRNAs, whether cellular or viral, have emerged as
viral regulators of host and/or viral gene expression.
As a consequence, the range of interactions possible
through miRNA–mRNA crosstalk at the host–patho-
gen interface becomes considerable.

4.3. Interests converging on miRNAs in liver cancer
treatment

There are different means by which miRNAs give rise
to strong interests in cancer (Table 1). One is the intrigu-
ing link between fragile sites and the genomic location of
miRNAs [44], exemplified by miR-122 embedded in the
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hcr locus [4]. Other studies noted that hot genomic
regions often involved in HCC – either by deletion or
by viral insertion – tend to encompass miRNA-contain-
ing regions. In particular, the common deletion found in
13q31 in human colocalizes with the cluster miR-17-92,
which is rather referred to as an oncogene [45]. Likewise,
it was suggested that HBV integration nearby miR-200a,
at the fragile FRA1A site in the genome, could promote
HCC through silencing miR-200a expression, which is
known to be decreased in HCC [46]. Another observa-
tion concerns the integration of AAV in mice, which
was shown to be associated with HCC, and was repeat-
edly localized in the same 6-kb region of chromosome
12, which encompasses no fewer than 34 miRNAs [35].
Conversely, it was noted by Meng et al. that miR-141,
which showed strong overexpression in malignant cho-
langiocytes, was specifically localized in 12p, a region
of known chromosomal aberration in biliary tract can-
cers [47].

Another reason for interest in miRNAs in cancer lies
in their putative role as master regulators of cellular pro-
cesses involved in tumorigenesis [48–50]. Specifically in
the liver, few miRNAs have been shown to modulate
important targets of proliferation such as miR-122
targeting cyclin G1, let-7 targeting LIN28B [51] and
c-myc in response to PPARalpha [52], or miR-141 target-
ing CLOCK, which can act as a tumor-suppressor [47].
Importantly, as demonstrated by Meng et al. miR-21 tar-
gets PTEN [47], and results in further modulation of HCC
cell migration and invasion, through modulating the
phosphorylation of focal adhesion kinase and expression
of matrix metalloproteinases 2 and 9 [25]. These data raise
further the potential interest in decreasing miR-21 to limit
HCC growth and metastasis.

The important breakthrough in the field of hepato-
carcinogenesis came from the accurate correlation of
alterations in miRNAs with tumor proliferation and dif-
ferentiation. Notably in HCC, this alteration seems to
take place at the expression level rather than at the
sequence levels [53]. So far, there has been very limited
insight into the characterization of this modulation,
though the influence of interleukin-6 in malignant cho-
langiocytes was noted [54]. Using miRNA microarray
analysis in patient-derived paired samples from the
tumoral tissue and the non-tumoral adjacent tissues,
Murakami et al. [55] found miR-92, miR-20, miR-18,
and miR-18 precursor, which were inversely correlated
with the degree of HCC differentiation. Consistent with
different studies, miR-199a and miR-21 were, respec-
tively, found lowered and overexpressed [24,25,28,55].
Therefore, it appears that a limited number of miRNAs,
which could stand as an miRNA signature, could help in
future molecular profiling of HCC [55,56]. These obser-
vations in HCC are all the more interesting because
diagnostic and prognostic significance of any tested
markers has proved limited due to their high variability.
Furthermore, Meng et al. showed that inhibition of
miR-21 sensitized the response of cholangiocarcinoma
cell lines to chemotherapy [47]. This observation gives
rise to significant hope that miR-21 could serve as a bio-
marker for drug response in cholangicarcinoma.

4.4. Therapeutic opportunities and challenges

In the near future, the distinctive signature patterns
of miRNA expression associated with liver cancer
should allow classification of different stages in tumor
progression. Further, creating artificial miRNAs with
salutary effects by promoting the expression of beneficial
gene products (e.g., tumor-suppressor proteins) or tar-
geting viral genomes (e.g., molecules designed to specif-
ically target HCV-genome sequences) may become part
of our patient management and complement chemother-
apy and antiviral treatments.

As for miR-122, its role in regulating cholesterol bio-
synthesis, in maintaining the adult-liver phenotype, its
association with hepatocarcinogenesis and its role in
HCV replication make it an invaluable target to expand
our knowledge in the pathophysiology of diverse liver
diseases. One potential therapeutic application comes
from the effect of miR-122 antagomir in high-fat fed
mice to reduce hepatic steatosis [31], which may provide
an interesting opportunity to treat patients with non-
alcoholic steatohepatitis. Another interesting applica-
tion of miR-122 antagomir consists in taking advantage
of its effect on the down-regulation of adult-liver genes
expression [31] to generate in vitro a new attractive
expandable cell source for hepatocyte transplantation
that would feature stem/progenitor cell phenotype.

It has been less than 5 years since the discovery that
natural miRNAs were also functional in humans [57].
So far, the fast pace of discovery in this field is providing
increasing rationale for manipulating miRNAs thera-
peutically. As such the number of recent patent applica-
tions is growing quickly [58]. Given the broad effects of
miR-122 in the liver, and the number of miRNAs, it is
quite certain that many new and unanticipated roles of
miRNAs in the control of normal and abnormal liver
function are awaiting discovery.

References

[1] Ambros V. The functions of animal microRNAs. Nature
2004;431:350–355.

[2] Ambros V, Lee RC, Lavanway A, Williams PT, Jewell D.
MicroRNAs and other tiny endogenous RNAs in C. elegans. Curr
Biol 2003;13:807–818.

[3] Chang TC, Mendell JT. The roles of microRNAs in vertebrate
physiology and human disease. Annu Rev Genomics Hum Genet
2007;8:215–239.

[4] Moroy T, Etiemble J, Bougueleret L, Hadchouel M, Tiollais P,
Buendia MA. Structure and expression of hcr, a locus rearranged
with c-myc in a woodchuck hepatocellular carcinoma. Oncogene
1989;4:59–65.



M. Girard et al. / Journal of Hepatology 48 (2008) 648–656 655
[5] Chang J, Provost P, Taylor JM. Resistance of human hepatitis
delta virus RNAs to Dicer activity. J Virol 2003;77:11910–11917.

[6] Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W,
Tuschl T. Identification of tissue-specific microRNAs from
mouse. Curr Biol 2002;12:735–739.

[7] Chang J, Nicolas E, Marks D, Sander C, Lerro A, Buendia MA,
et al. miR-122, a mammalian liver-specific microRNA, is pro-
cessed from hcr mRNA and may downregulate the high affinity
cationic amino acid transporter CAT-1. RNA Biol
2004;1:106–113.

[8] Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P.
Modulation of hepatitis C virus RNA abundance by a liver-
specific MicroRNA. Science 2005;309:1577–1581.

[9] Bartel DP, Chen CZ. Micromanagers of gene expression: the
potentially widespread influence of metazoan microRNAs. Nat
Rev Genet 2004;5:396–400.

[10] Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda
MI, Maller B, et al. Conservation of the sequence and temporal
expression of let-7 heterochronic regulatory RNA. Nature
2000;408:86–89.

[11] Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identi-
fication of novel genes coding for small expressed RNAs. Science
2001;294:853–858.

[12] Lagos-Quintana M, Rauhut R, Meyer J, Borkhardt A, Tuschl T.
New microRNAs from mouse and human. Rna 2003;9:175–179.

[13] Lau NC, Lim LP, Weinstein EG, Bartel DP. An abundant class of
tiny RNAs with probable regulatory roles in Caenorhabditis

elegans. Science 2001;294:858–862.
[14] Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT,

et al. Real-time quantification of microRNAs by stem-loop RT-
PCR. Nucleic Acids Res 2005;33:e179.

[15] Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O,
et al. Identification of hundreds of conserved and nonconserved
human microRNAs. Nat Genet 2005;37:766–770.

[16] Berezikov E, Plasterk RH. Camels and zebrafish, viruses and
cancer: a microRNA update. Hum Mol Genet
2005;14:R183–R190.

[17] Hammond SM. MicroRNA therapeutics: a new niche for
antisense nucleic acids. Trends Mol Med 2006;12:99–101.

[18] Sempere SM, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky
E, Ambros V. Expression profiling of mammalian microRNAs
uncovers a subset of brain-expressed microRNAs with possible
roles in murine and human neuronal differentiation. Genome Biol
2004;5:R13.

[19] Fu H, Tie Y, Xu C, Zhang Z, Zhu J, Shi Y, et al. Identification of
human fetal liver miRNAs by a novel method. FEBS Lett
2005;579:3849–3854.

[20] Barad O, Meiri E, Avniel A, Aharonov R, Barzilai A, Bentwich I,
et al. MicroRNA expression detected by oligonucleotide micro-
arrays: system establishment and expression profiling in human
tissues. Genome Res 2004;14:2486–2494.

[21] Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A,
et al. A mammalian microRNA expression atlas based on small
RNA library sequencing. Cell 2007;129:1401–1414.

[22] Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB.
Prediction of mammalian microRNA targets. Cell
2003;115:787–798.

[23] Bhattacharyya SN, Habermacher R, Martine U, Closs EI,
Filipowicz W. Relief of microRNA-mediated translational repres-
sion in human cells subjected to stress. Cell 2006;125:1111–1124.

[24] Kutay H, Bai S, Datta J, Motiwala T, Pogribny I, Frankel W,
et al. Downregulation of miR-122 in the rodent and human
hepatocellular carcinomas. J Cell Biochem 2006;99:671–678.

[25] Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel
T. MicroRNA-21 regulates expression of the PTEN tumor
suppressor gene in human hepatocellular cancer. Gastroenterol-
ogy 2007;133:647–658.
[26] Jacob JR, Sterczer A, Toshkov IA, Yeager AE, Korba BE, Cote
PJ, et al. Integration of woodchuck hepatitis and N-myc
rearrangement determine size and histologic grade of hepatic
tumors. Hepatology 2004;39:1008–1016.

[27] Harada H, Nagai H, Ezura Y, Yokota T, Ohsawa I, Yamaguchi
K, et al. Down-regulation of a novel gene, DRLM, in human liver
malignancy from 4q22 that encodes a NAP-like protein. Gene
2002;296:171–177.

[28] Gramantieri L, Ferracin M, Fornari F, Veronese A, Sabbioni S,
Liu CG, et al. Cyclin G1 is a target of miR-122a, a microRNA
frequently down-regulated in human hepatocellular carcinoma.
Cancer Res 2007;67:6092–6099.

[29] Shan Y, Zheng J, Lambrecht RW, Bonkovsky HL. Reciprocal
effects of micro-RNA-122 on expression of heme oxygenase-1 and
hepatitis C virus genes in human hepatocytes. Gastroenterology
2007;133:1166–1174.

[30] Randall G, Panis M, Cooper JD, Tellinghuisen TL, Sukhodolets
KE, Pfeffer S, et al. Cellular cofactors affecting hepatitis C virus
infection and replication. Proc Natl Acad Sci USA
2007;104:12884–12889.

[31] Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T,
Manoharan M, et al. Silencing of microRNAs in vivo with
‘antagomirs’. Nature 2005;438:685–689.

[32] Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M, et al.
miR-122 regulation of lipid metabolism revealed by in vivo
antisense targeting. Cell Metab 2006;3:87–98.

[33] Czech MP. MicroRNAs as therapeutic targets. N Engl J Med
2006;354:1194–1195.

[34] Carmona S, Ely A, Crowther C, Moolla N, Salazar FH, Marion
PL, et al. Effective inhibition of HBV replication in vivo by anti-
HBx short hairpin RNAs. Mol Ther 2006;13:411–421.

[35] Grimm D, Streetz KL, Jopling CL, Storm TA, Pandey K, Davis
CR, et al. Fatality in mice due to oversaturation of cellular
microRNA/short hairpin RNA pathways. Nature
2006;441:537–541.

[36] Ying RS, Zhu C, Fan XG, Li N, Tian XF, Liu HB, et al. Hepatitis
B virus is inhibited by RNA interference in cell culture and in
mice. Antiviral Res 2007;73:24–30.

[37] Witting SR, Brown M, Saxena R, Nabinger S, Morral N. Helper-
dependent adenovirus-mediated shRNA expression in the liver
activates the interferon response. J Biol Chem
2008;283:2120–2128.

[38] Ying C, De Clercq E, Neyts J. Selective inhibition of hepatitis B
virus replication by RNA interference. Biochem Biophys Res
Commun 2003;309:482–484.

[39] Wang Y, Kato N, Jazag A, Dharel N, Otsuka M, Taniguchi H,
et al. Hepatitis C virus core protein is a potent inhibitor of RNA
silencing-based antiviral response. Gastroenterology
2006;130:883–892.

[40] Pfeffer S, Zavolan M, Grasser FA, Chien M, Russo JJ, Ju J, et al.
Identification of virus-encoded microRNAs. Science
2004;304:734–736.

[41] Pfeffer S, Voinnet O. Viruses, microRNAs and cancer. Oncogene
2006;25:6211–6219.

[42] Pfeffer S, Sewer A, Lagos-Quintana M, Sheridan R, Sander C,
Grasser FA, et al. Identification of microRNAs of the herpesvirus
family. Nat Methods 2005;2:269–276.

[43] Jin WB, Wu FL, Kong D, Guo AG. HBV-encoded microRNA
candidate and its target. Comput Biol Chem 2007;31:124–126.

[44] Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E,
Yendamuri S, et al. Human microRNA genes are frequently
located at fragile sites and genomic regions involved in cancers.
Proc Natl Acad Sci USA 2004;101:2999–3004.

[45] Lin YW, Sheu JC, Liu LY, Chen CH, Lee HS, Huang GT, et al.
Loss of heterozygosity at chromosome 13q in hepatocellular
carcinoma: identification of three independent regions. Eur J
Cancer 1999;35:1730–1734.



656 M. Girard et al. / Journal of Hepatology 48 (2008) 648–656
[46] Feitelson MA, Lee J. Hepatitis B virus integration, fragile sites,
and hepatocarcinogenesis. Cancer Lett 2007;252:157–170.

[47] Meng F, Henson R, Lang M, Wehbe H, Maheshwari S, Mendell
JT, et al. Involvement of human micro-RNA in growth and
response to chemotherapy in human cholangiocarcinoma cell
lines. Gastroenterology 2006;130:2113–2129.

[48] He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D,
Goodson S, et al. A microRNA polycistron as a potential human
oncogene. Nature 2005;435:828–833.

[49] O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT. c-
Myc-regulated microRNAs modulate E2F1 expression. Nature
2005;435:839–843.

[50] Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F,
et al. A microRNA expression signature of human solid tumors
defines cancer gene targets. Proc Natl Acad Sci USA 2006;103:
2257–2261.

[51] Guo Y, Chen Y, Ito H, Watanabe A, Ge X, Kodama T, et al.
Identification and characterization of lin-28 homolog B (LIN28B)
in human hepatocellular carcinoma. Gene 2006;384:51–61.

[52] Gonzalez FJ, Shah YM. PPARalpha: mechanism of species
differences and hepatocarcinogenesis of peroxisome proliferators.
Toxicology 2007, [Epub ahead of print].

[53] Yang J, Zhou F, Xu T, Deng H, Ge YY, Zhang C, et al. Analysis
of sequence variations in 59 microRNAs in hepatocellular
carcinomas. Mutat Res 2008;638:205–209.

[54] Meng F, Henson R, Wehbe-Janek H, Smith H, Ueno Y, Patel T.
The MicroRNA let-7a modulates interleukin-6-dependent STAT-
3 survival signaling in malignant human cholangiocytes. J Biol
Chem 2007;282:8256–8264.
[55] Murakami Y, Yasuda T, Saigo K, Urashima T, Toyoda H,
Okanoue T, et al. Comprehensive analysis of microRNA expres-
sion patterns in hepatocellular carcinoma and non-tumorous
tissues. Oncogene 2006;25:2537–2545.

[56] Roessler S, Budhu A, Wang XW. Future of molecular profiling
of human hepatocellular carcinoma. Future Oncol 2007;3:
429–439.

[57] Zeng Y, Wagner EJ, Cullen BR. Both natural and designed micro
RNAs can inhibit the expression of cognate mRNAs when
expressed in human cells. Mol Cell 2002;9:1327–1333.

[58] Recent patent applications in microRNAs. Nat Biotechnol
2006;24:44.

[59] Marsit CJ, Eddy K, Kelsey KT. MicroRNA responses to cellular
stress. Cancer Res 2006;66:10843–10848.

[60] Fukushima T, Hamada Y, Yamada H, Horii I. Changes of micro-
RNA expression in rat liver treated by acetaminophen or carbon
tetrachloride–regulating role of micro-RNA for RNA expression.
J Toxicol Sci 2007;32:401–409.

[61] Meng F, Wehbe-Janek H, Henson R, Smith H, Patel T.
Epigenetic regulation of microRNA-370 by interleukin-6
in malignant human cholangiocytes. Oncogene 2008;27:
378–386.

[62] Pogribny IP, Tryndyak VP, Boyko A, Rodriguez-Juarez R,
Beland FA, Kovalchuk O. Induction of microRNAome deregu-
lation in rat liver by long-term tamoxifen exposure. Mutat Res
2007;619:30–37.

[63] Pedersen IM, Cheng G, Wieland S, Volinia S, Croce CM, Chisari
FV, et al. Interferon modulation of cellular microRNAs as an
antiviral mechanism. Nature 2007;449:919–922.


	miR-122, a paradigm for the role of microRNAs in the liver
	Introduction
	miR-122: a liver-specific microRNA
	Discovery and biogenesis of miR-122
	Evolutionary conservation of miR-122
	miR-122 amongst other liver-expressed miRNAs

	Putative to experimentally validated targets of miR-122
	Contribution of miR-122 in cellular stress response
	Contribution of miR-122 to hepatocarcinogenesis
	miR-122 targets hepatitis C virus
	Overall role of miR-122 in adult liver

	Existing rationale for miR-based therapeutic approaches
	miR-122 antagomir as a new agent for liver-specific RNAi
	Hepatitis viruses as adequate targets
	Interests converging on miRNAs in liver cancer treatment
	Therapeutic opportunities and challenges

	References


