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Abstract

The commuting graph of a ring R, denoted by �(R), is a graph whose vertices are all non-central
elements of R and two distinct vertices x and y are adjacent if and only if xy = yx. Let D be a division ring
and n � 3. In this paper we investigate the diameters of �(Mn(D)) and determine the diameters of some
induced subgraphs of �(Mn(D)), such as the induced subgraphs on the set of all non-scalar non-invertible,
nilpotent, idempotent, and involution matrices in Mn(D). For every field F , it is shown that if �(Mn(F ))

is a connected graph, then diam �(Mn(F )) � 6. We conjecture that if �(Mn(F )) is a connected graph,
then diam �(Mn(F )) � 5. We show that if F is an algebraically closed field or n is a prime number and
�(Mn(F )) is a connected graph, then diam �(Mn(F )) = 4. Finally, we present some applications to the
structure of pairs of idempotents which may prove of independent interest.
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1. Introduction

For a ring R, we denote the center of R by Z(R). If X is either an element or a subset of R,
then CR(X) denotes the centralizer of X in R. For each non-commutative ring R, we associate a
graph, with the vertex set R\Z(R) and join two vertices x and y if and only if x /= y and xy = yx.
This graph has been introduced in [2], is called the commuting graph of R, and is denoted by
�(R). If X is a subset of R, then �(X) denotes the induced subgraph of �(R) on X\Z(R); that
is the subgraph of �(R) with vertex set X\Z(R). If D is a division ring and m, n are natural
numbers, then we denote the set of all m × n matrices over D and the ring of all n × n matrices
over D by Mm×n(D) and Mn(D), respectively, and for simplicity we put Dn = Mn×1(D). We
denote the group of all invertible matrices in Mn(D) by GLn(D). For any i, j , 1 � i, j � n,
we denote by Eij , that element in Mn(D) whose (i, j)-entry is 1 and whose other entries are 0.
Also 0, I , 0r , and Ir denote the zero matrix, the identity matrix, the zero matrix of size r , and the
identity matrix of size r , respectively. A matrix E ∈ Mn(D) is called idempotent if E2 = E. Also
a matrix T ∈ Mn(D) is called an involution if T 2 = I . For any matrix X ∈ Mm×n(D), we denote
the transpose of X by Xt . Moreover, for any two matrices X ∈ Mm×n(D) and Y ∈ Mr×s(D), we
define

X ⊕ Y =
[
X 0
0 Y

]
∈ M(m+r)×(n+s)(D).

For any field F and matrices A, B, A′, B ′ ∈ Mn(F), a pair {A, B} is said to be similar to a pair
{A′, B ′} if there is a matrix P ∈ GLn(F ) such that A′ = PAP −1 and B ′ = PBP −1. We say that
{A, B} is triangularizable if there exists a matrix P ∈ GLn(F ) such that PAP −1 and PBP −1

are upper triangular. Also a pair {A, B} is said to be irreducible if every invariant subspace of
{A, B} is equal to {0} or Fn. In this paper, a matrix A ∈ Mn(D) is called cyclic if there is a vector
αt ∈ Dn such that {α, αA, . . . , αAn−1} is a basis for M1×n(D) as a left vector space over D.
Indeed, the representation of A in the above basis has the following form:



0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

. . .
...

0 0 . . . 0 1
a1 a2 . . . an−1 an


 (†)

for some a1, . . . , an ∈ D. If a1 = · · · = an = 0, then the above matrix is denoted by J . For
any matrix A ∈ Mn(D), LA and RA denote the left multiplication and the right multiplication
transformations of Dn and M1×n(D) by A, respectively. We use nullityA for dim Ker LA =
dim Ker RA. Let D be a division ring with center F . Then for any matrix A ∈ Mn(D), F [A]
denotes the F -subalgebra generated by A.

In a graph G, a path P is a sequence of distinct vertices v1 − v2 · · · − vk+1 in which every
two consecutive vertices are adjacent. The number k is called the length of P. For two vertices u

and v in a graph G, the distance between u and v, denoted by d(u, v), is the length of the shortest
path between u and v, if such a path exists; otherwise we define d(u, v) = ∞. The diameter of a
graph G is defined

diam G = sup
{
d(u, v) | u and v are distinct vertices of G

}
.

Moreover, a graph G is called connected if there exists a path between every two distinct vertices
of G.
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In this article, we denote the set of all non-invertible, nilpotent, idempotent, and involution
matrices in Mn(D) byAn,Nn,En, andIn, respectively. In [3] it is shown that the graphs �(An),
�(Nn), �(En), �(In) are connected. Here we find the diameters of these graphs as follows:

(i) diam �(An) = 4 for any n � 3;
(ii) diam �(N3) = 5 and diam �(Nn) = 4 for each n � 4;

(iii) diam �(En) = 3 for any n � 3;
(iv) diam �(In) = 3 for every n � 3, if char D /= 2; otherwise, diam �(I3) � 5 and

diam �(In) � 4 for every n � 4.

Note that according to Remarks 2–5 of [3], all the aforementioned commuting graphs for the
case n = 2, fail to be connected for every division ring D.

2. Non-invertible matrices

In this section we would like to obtain the diameter of the induced subgraph on all non-
invertible matrices in Mn(D). We begin with the following lemma.

Lemma 1. Let D be a division ring and n � 2. If A ∈ Mn(D) is a cyclic matrix of the form (†),

then for any matrix B ∈ CMn(D)(A), there exists a polynomial f (x) ∈ D[x] such that B = f (A).

Proof. Let α = [1 0 · · · 0] and B be an element of CMn(D)(A). Since {α, αA, . . . , αAn−1}
is a basis for M1×n(D) as a left vector space over D, there are d0, . . . , dn−1 ∈ D such that
αB = ∑n−1

i=0 di(αAi). We show that B = ∑n−1
i=0 diA

i . Since AB = BA,

(αAj )B = (αB)Aj =
n−1∑
i=0

di(αAj )Ai

for any j , 0 � j � n − 1. But all entries of αAj are contained in Z(D) for each j , 0 � j � n − 1,
so we have (αAj )B = (αAj )

∑n−1
i=0 diA

i . This completes the proof. �

Lemma 2. Let D be a division ring and n � 3. Then d(J, J t ) = 4 in �(An).

Proof. We show that if two non-invertible matrices A ∈ CMn(D)(J ) and B ∈ CMn(D)(J
t ) com-

mute, then at least one of them is scalar. By Lemma 1, there exist α0, . . . , αn−1 ∈ D such that

A =




α0 α1 · · · αn−2 αn−1
0 α0 α1 · · · αn−2
...

...
. . .

. . .
...

0 0 . . . α0 α1
0 0 . . . 0 α0


 .

Since A is a non-zero non-invertible matrix, there exists the minimum integer r � 1 such that
αr /= 0. So we may assume that

A =
[

0 U

0 0

]
for some matrix U ∈ GLn−r (D). Assume that r � n/2. If the matrix
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X =

X11 X12 X13

X21 X22 X23
X31 X32 X33


 ∈ Mn(D),

where X11, X33 ∈ Mn−r (D), and X22 ∈ M2r−n(D), commutes with A, then by an easy calcula-
tion, using the invertibility of U , we find that X has the form

(i)


 � � �

0(2r−n)×(n−r) � �
0n−r 0(n−r)×(2r−n) �


 .

If r � n/2, then using a similarity we obtain that any element of CMn(D)(A) has the form

(ii)


 � � �

0(n−2r)×r � �
0r 0r×(n−2r) �


 .

On the other hand, Bt commutes with J , so Lemma 1 yields that there exist β0, . . . , βn−1 ∈ D

such that

B =




β0 0 · · · 0 0
β1 β0 · · · 0 0
... β1

. . .
...

...

βn−2
...

. . . β0 0
βn−1 βn−2 · · · β1 β0




.

Now, if B has one of the forms (i) or (ii), then we have β1 = · · · = βn−1 = 0. This shows that
d(J, J t ) � 4 in �(An). Since J − E1n − E22 − En1 − J t is a path in �(An), the proof is com-
plete. �

Theorem 3. Let F be a field and n � 3. If �(Mn(F )) is a connected graph, then diam
�(Mn(F )) � 4.

Proof. We show that d(J, J t ) = 4. To get a contradiction, assume that there is a path J − A −
B − J t in �(Mn(F )). So A and B have the forms given in the proof of Lemma 2. Hence two
matrices A − αoI ∈ CMn(F)(J ) and B − β0I ∈ CMn(F)(J

t ) commute. By Lemma 2, one of them
is a scalar matrix, a contradiction. �

Lemma 4. Let D be a division ring and n � 2. Suppose A, B ∈ Mn(D) are two matrices such
that Ker LA ∩ Ker LB /= {0} and Ker RA ∩ Ker RB /= {0}. Then CMn(D)({A, B}) contains at
least one matrix with rank 1.

Proof. By the hypothesis, there are non-zero elements X, Y ∈ Dn such that AX = BX = 0 and
Y tA = Y tB = 0. If we put M = XY t , then we have AM = MA = 0 and BM = MB = 0. Since
X and Y are non-zero, rank M = 1 and the proof is complete. �

Theorem 5. Let D be a division ring and n � 3. If An is the set of all non-invertible matrices in
Mn(D), then diam �(An) = 4.

Proof. Suppose that A and B are two non-zero matrices in An. Since A is non-invertible, there
exist non-zero elements X, Y ∈ Dn such that AX = Y tA = 0. Let A1 = XY t . We have rank
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A1 = 1 and AA1 = A1A = 0. Similarly, we find a matrix B1 ∈ Mn(D) such that rank B1 = 1
and BB1 = B1B = 0. Since A1 and B1 are rank 1 matrices, nullityA1 + nullityB1 = 2n − 2 > n.
This implies that Ker LA1 ∩ Ker LB1 /= {0} and Ker RA1 ∩ Ker RB1 /= {0}. By Lemma 4, there
is a matrix M ∈ CMn(D)({A1, B1}) with rank 1. Therefore A − A1 − M − B1 − B is a path in
�(An). Now Lemma 2 completes the proof. �

Theorem 6. Let F be a field and n � 3. IfTn is the set of all triangularizable matrices in Mn(F),

then diam �(Tn) = 4.

Proof. Suppose that A and B are two non-scalar matrices in Tn. Since A and B are triangular-
izable matrices, each of them has at least one eigenvalue in F . It means that there are scalars α,
β ∈ F such that A − αI and B − βI are non-zero non-invertible matrices. Using the proof of
Theorem 5, there is a path in �(Mn(F )) of length at most 4 between A − αI and B − βI whose
intermediate vertices are rank 1 matrices. Since each matrix of rank 1 is triangularizable, noting
Theorem 3, the assertion is proved. �

Corollary 7. Let F be an algebraically closed field and n � 3. Then diam �(Mn(F )) = 4.

3. Nilpotent matrices

Theorem 8. Let D be a division ring. If Nn is the set of all nilpotent matrices in Mn(D), then
diam �(N3) = 5 and diam �(Nn) = 4, for any n � 4.

Proof. Suppose that A and B are two non-zero matrices in Nn. There are two matrices P ,
Q ∈ GLn(D) such that PAP −1 and QBQ−1 are upper triangular matrices whose diagonal en-
tries are 0. Clearly, E1n(PAP −1) = (PAP −1)E1n = 0 and E1n(QBQ−1) = (QBQ−1)E1n =
0. Hence if we put A′ = P −1E1nP and B ′ = Q−1E1nQ, then we have AA′ = A′A = 0 and
BB ′ = B ′B = 0. Furthermore, rank A′ = rank B ′ = 1 imply that dim (Ker LA′ ∩ Ker LB ′) �
n − 2. Assume that n � 3. Hence there is a matrix T ∈ GLn(D) such that the first columns of
two matrices T A′T −1 and T B ′T −1 are zero. So we have (T A′T −1)E = (T B ′T −1)E = 0, where
E = [1 0 · · · 0]t ∈ Dn.

First, assume that n � 4. Since dim (Ker RA′ ∩ Ker RB ′) � 2, there is an element X ∈ Dn

whose first component is 0 and Xt(T A′T −1) = Xt(T B ′T −1) = 0. Let S = EXt . We have
(T A′T −1)S = S(T A′T −1) = 0 and (T B ′T −1)S = S(T B ′T −1) = 0. Note that S is a non-zero
nilpotent matrix, so A − A′ − T −1ST − B ′ − B is a path in �(Nn). Now Lemma 2 shows that
diam �(Nn) = 4.

Next, suppose that n = 3. Since nullity T A′T −1 = nullity T B ′T −1 = 2, using the method
used for Ker RA′ ∩ Ker RB ′ in the previous case, we find two elements Y, Z ∈ D3 whose first
components are 0, Y t (T A′T −1) = 0 and Zt(T B ′T −1) = 0. Let M = EY t and N = EZt . We
have (T A′T −1)M = M(T A′T −1) = 0 and (T B ′T −1)N = N(T B ′T −1) = 0. On the other hand,
it is not hard to see that M and N are non-zero nilpotent matrices and MN = NM = 0. Hence

A − A′ − T −1MT − T −1NT − B ′ − B

is a path in �(N3). Now, we claim that d(J, J t ) = 5 in �(N3). By the proof of Lemma 2, every
nilpotent matrix that commutes with a matrix H1 ∈ CMn(D)(J ) is strictly upper triangular and
every nilpotent matrix that commutes with a matrix H2 ∈ CMn(D)(J

t ) is strictly lower triangular.
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This implies that d(J, J t ) � 5 in �(N3), so the claim is established. Therefore diam �(N3) = 5,
and the proof is complete. �

Theorem 9. Let D be a division ring and n � 3. If M, N ∈ Mn(D) are two non-zero matrices
such that M2 = N2 = 0, then d(M, N) � 2 in �(Mn(D)).

Proof. Clearly, nullity M and nullity N are more than or equal to n/2. If Ker LM ∩ Ker LN /=
{0} and Ker RM ∩ Ker RN /= {0}, then Lemma 4 establishes the assertion. So without loss of
generality, suppose that Ker LM ∩ Ker LN = {0} (if Ker RM ∩ Ker RN = {0}, then we consider
Mt and Nt instead of M and N ). It implies that n = 2r for some integer r � 2, and nullity M =
nullity N = r . If W1 and W2 are two bases for Ker LM and Ker LN , respectively, then W1 ∪
W2 is a basis for Dn. Since M2 = N2 = 0, then using the basis W1 ∪ W2, we find a matrix
P ∈ GLn(D) such that

PMP −1 =
[

0 M1
0 0

]
and PNP −1 =

[
0 0

N1 0

]

for some M1, N1 ∈ GLr(D). Now for any non-scalar matrix X ∈ CMr(D)(M1N1), we have
P −1(X ⊕ M−1

1 XM1)P ∈ CMn(D)({M, N})\FI , as desired. �

4. Idempotent and involution matrices

Theorem 10. Let D be a division ring and n � 3. If En is the set of all idempotent matrices in
Mn(D), then diam �(En) = 3.

Proof. First we prove the assertion for n = 3. Let A, B be two non-scalar matrices in E3. Without
loss of generality, replacing an idempotent P by I − P if necessary, assume that nullity A and
nullity B are equal to 2. Hence dim (Ker LA ∩ KerLB) � 1. There exists a matrix Q ∈ GL3(D)

such that

QAQ−1 =

0 0 0

0 0 0
0 0 1


 and QBQ−1 =

[
0 R

0 S

]
,

where S ∈ M2(D) is a non-scalar idempotent. Clearly, RS = R and we have the path

A − Q−1E11Q − Q−1(I1 ⊕ S)Q − B.

Now, suppose that n � 4 and A and B are two non-scalar matrices in En. There are two
matrices P , Q ∈ GLn(D) such that A1 = PAP −1 = Ir ⊕ 0n−r and QBQ−1 = Is ⊕ 0n−s for
some r, s � 1. Thus B and Q−1E11Q commute. So it is enough to prove that CMn(D)({A1, B1})
contains at least one non-central idempotent, where B1 = P(Q−1E11Q)P −1. Assume that

B1 =
[
X Y

Z T

]
,

where Y is an r × (n − r) matrix. Since rank B1 = 1, rank X and rank T are at most 1. First
assume that both of X and T are nilpotent. Hence X2 = 0 and T 2 = 0. Idempotency of B1 implies
that XY + YT = Y . Thus XY = Y (I − T ) and since I − T is invertible, Y = XY(I − T )−1 =
X2Y (I − T )−2. Now since X2 = 0, we have Y = 0. Similarly we obtain that Z = 0. Therefore
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B2
1 = 0, a contradiction. Without loss of generality, we may assume that X is not nilpotent. First,

suppose that r � 2. Since rank X = 1, there is a matrix U ∈ GLr(D) which UXU−1 = λErr for
some λ ∈ D\{0}. Using similarity with the matrix V = U ⊕ In−r , it is enough to show that there
exists a non-scalar idempotent matrix which commutes with both A1 and B ′

1, where

B ′
1 = V B1V

−1 =
[

λErr UY

ZU−1 T

]
.

Since rank B ′
1 = 1, the first row of UY and the first column of ZU−1 are zero. This implies

that V −1E11V ∈ CMn(D)({A1, B1}), as desired. Now, assume that r = 1. If T is not nilpotent,
then since n − 1 � 2 by a similar argument we prove the assertion. Thus suppose that T is
nilpotent. Since rank T � 1, there is a matrix U ′ ∈ GLn−1(D) which U ′T U ′−1 = µE1(n−1) for
some µ ∈ D. Using similarity with the matrix V ′ = I1 ⊕ U ′, it is enough to show that there exists
a non-scalar idempotent matrix which commutes with both A1 and B ′′

1 , where

B ′′
1 = V ′B1V

′−1 =
[

X YU ′−1

U ′Z µE1(n−1)

]
.

If µ = 0, since rank B ′′
1 = 1, at most one of two matrices Y and Z is non-zero. Without loss

of generality, suppose that Y = 0. Now, if S ∈ Mn−1(D) is a non-zero idempotent matrix such
that SU ′Z = 0, then 01 ⊕ S ∈ CMn(D)({A1, B

′′
1 }), as desired. If not, since rank B ′′

1 = 1, it is not
hard to see that the third row and the third column of B ′′

1 are zero. This yields that V ′−1E33V
′ ∈

CMn(D)({A1, B1}), as desired.
To complete the proof, for each n � 3 we should find two matrices A and B whose distance

in �(En) is equal to 3. Let

R =
∑

i is odd

Eii, S1 =
∑

i<n is odd

Ei(i+1), and S2 =
∑

i<n is even

Ei(i+1).

If we put A = R + S1 and B = R − S2, then with an easy calculation we find that A and B are
idempotents and A − B = S1 + S2 = J . Assume that M is an idempotent matrix commutes with
both A and B. Then M is also commutes with J and by Lemma 1, M is a polynomial in J . Thus
M is an upper triangular matrix with the same diagonal entries. Hence all eigenvalues of M are
the same and so M = 0 or I . This shows that CMn(D)({A, B}) contains no non-scalar idempotent,
so the proof is complete. �

Theorem 11. Let D be a division ring and n � 3. If A, B ∈ Mn(D) are two non-scalar idempotent
matrices, then d(A, B) � 2 in �(Mn(D)).

Proof. We have A(I − A) = (I − A)A = 0, so one of nullity A or nullity (I − A) is at least
n/2. Since I − A is idempotent, without loss of generality, we may assume that nullity A � n/2
and similarly nullity B � n/2. If Ker LA ∩ Ker LB /= {0} and Ker RA ∩ Ker RB /= {0}, then
using Lemma 4, we find a non-scalar matrix in CMn(D)({A, B}), as desired. So without loss
of generality, suppose that Ker LA ∩ Ker LB = {0} (if Ker RA ∩ Ker RB = {0}, then we con-
sider At and Bt instead of A and B). This implies that n = 2r for some integer r � 2, and
nullity A = nullity B = r . If W1 and W2 are two bases for Ker LA and Ker LB , respectively,
then W1 ∪ W2 is a basis for Dn. Since Dn = Ker LA ⊕ Im LA, then for any ω ∈ W2, there
are vectors a ∈ Ker LA and a′ ∈ Im LA such that ω = a + a′. So Aω = a′ = −a + ω. Using
the representation of A in the basis W1 ∪ W2, we find a matrix P ∈ GLn(D) such that
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PAP −1 =
[

0 A′
0 Ir

]

for some A′ ∈ Mr(D), and by a similar method, we conclude that

PBP −1 =
[
Ir 0
B ′ 0

]

for some B ′ ∈ Mr(D). Now, if A′B ′ /= B ′A′, then P −1(A′B ′ ⊕ B ′A′)P is a non-scalar ele-
ment of CMn(D)({A, B}). So assume that A′B ′ = B ′A′. Hence there is a non-scalar matrix
S ∈ Mr(D) commuting with A′ and B ′ and therefore P −1(S ⊕ S)P is a non-scalar element
of CMn(D)({A, B}), and the proof is complete. �

Remark 12. The previous theorem shows that if D is a division ring with center F and n � 3,
then Mn(D) cannot be generated by any two idempotents as an F -algebra. This fact has been
proved in [6, Theorem 4] and the above gives a new proof for it.

Theorem 13. Let D be a division ring and n � 3. If In is the set of all involutions in Mn(D),

then the following hold:

(i) If char D /= 2, then diam �(In) = 3.
(ii) If char D = 2, then diam �(I3) � 5 and diam �(In) � 4 for any n � 4.

Proof. First, assume that char D /= 2. Indeed, the matrix A ∈ Mn(D) is a non-scalar involution
if and only if (A + I )/2 is a non-scalar idempotent matrix. Hence by Theorem 10, the assertion
given in (i) is proved.

Next, suppose that char D = 2. For any non-scalar B ∈ In, we have (B + I )2 = 0 and so
B + I is a non-scalar nilpotent matrix. Moreover, for any non-zero nilpotent matrix N , we know
that there is a natural number k such that Nk = 0 and Nk−1 /= 0. If s is the least integer such that
2s � k, then (N2s−1 + I )2 = I . Therefore if we have a path in �(Nn), then we can find a path
in �(In). Hence Theorem 8 completes the proof. �

5. Invertible matrices

The following theorems have been proved in [1] and [3], respectively.

Theorem A. Let F be a field and n � 3. The graph �(Mn(F )) is connected if and only if for
each cyclic matrix A ∈ Mn(F), F [A]\FI contains at least one non-cyclic matrix.

Theorem B. Let D be a division ring with center F and |F | � 3, and let n be a natural number.
Then �(Mn(D)) is a connected graph if and only if �(GLn(D)) is a connected graph.

Let D be a division ring with center F , and let n a natural number. The matrix A ∈ Mn(D)

is called totally transcendental over F if for any non-zero polynomial f (t) ∈ F [t], f (A) is an
invertible matrix.
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Now, we would like to obtain some relations between the diameter of commuting graph of
invertible matrices and the diameter of commuting graph of the full matrix ring.

Theorem 14. Let D be a division ring with center F such that |F | � 3 and n be a natural number.
Then

diam �(GLn(D)) � diam �(Mn(D)) � diam �(GLn(D)) + 2.

Furthermore, if D = F and n � 3, then

4 � diam �(GLn(F )) � diam �(Mn(F )) � diam �(GLn(F )) + 1.

Proof. If n = 1, then there is nothing to prove. So we may assume that n � 2. By Theorem
B, if �(Mn(D)) is non-connected, then so is �(GLn(D)). In this case diam �(GLn(D)) =
diam �(Mn(D)) = ∞ and the result follows. So we may suppose that both of them are connected
graphs. We show that for any non-invertible matrix A, there exists a polynomial f (x) over F

such that f (A) is a non-scalar invertible matrix. First, suppose that A is not algebraic over F ,
then by [5, Proposition 8.3.1], A is similar to a matrix with form A0 ⊕ A1, where A0 is algebraic
and A1 is totally transcendental over F . By the fact that A is a non-invertible matrix, we have
A0 ⊕ A1 /= A1, and since A is not algebraic over F , A0 ⊕ A1 /= A0. Let g(x) be the minimal
polynomial of A0 over F . Thus g(A1) + I and so g(A) + I is a non-scalar invertible matrix. Now,
suppose that A is algebraic over F . Thus F [A] is an Artinian ring. If there exists a nilpotent matrix
C ∈ F [A], then I + C is a non-scalar invertible matrix. Otherwise, since the Jacobson radical of
F [A] is a nilpotent ideal, it is zero. Therefore by [4, Theorem 8.7, p. 90], F [A] is a direct product
of finitely many fields. Since |F | � 3, it is easily seen that there exists a non-scalar invertible
matrix in F [A], as desired. This shows that diam �(GLn(D)) � diam �(Mn(D)). Now, suppose
that B, C ∈ Mn(D)\FI are arbitrary. There are h1(x), h2(x) ∈ F [x] such that h1(B) and h2(C)

are non-scalar invertible matrices. Therefore d(B, C) � diam �(GLn(D)) + 2.
Next, suppose that D is commutative. By the proof of Theorem 3, d(I + J, I + J t ) � 4 in

�(GLn(F )). So, by the first part of the theorem, to prove the second part it is suffices to show
that diam �(Mn(F )) � diam �(GLn(F )) + 1. Assume that E, G ∈ Mn(F)\FI are arbitrary. If
both of them are non-invertible, then by Theorem 5, d(E, G) � 4. If both of them are invertible,
then the result clearly follows. So we may assume that one of them, for example E, is non-
invertible. Since �(Mn(F )) is a connected graph, by Theorem A, there exists H ∈ F [G] which
is a non-cyclic non-scalar matrix. Assume that H1 ⊕ · · · ⊕ Hk is the rational form of H , where
for any i, 1 � i � k, Hi ∈ Mni

(F ) and n1 � · · · � nk . Since 0 ⊕ · · · ⊕ 0 ⊕ Ik commutes with
H1 ⊕ · · · ⊕ Hk , we find a matrix K ∈ Mn(F) such that rank K � n/2 and d(G, K) � 2. On the
other hand, since E is a non-invertible matrix, by the proof of Theorem 5, it commutes with a rank
1 matrix, say L. Since n � 3, Ker LL ∩ Ker LK /= {0} and Ker RL ∩ Ker RK /= {0}. Hence by
Lemma 4, there exists a matrix M ∈ CMn(F)(K) ∩ CMn(F)(L) such that rank M = 1. So we have
the path G − H − K − M − L − E and the proof is complete. �

Theorem 15. Let D be a division ring with center F and n � 2. If |F | > n, then

diam �(GLn(D)) = diam �(Mn(D)).

Proof. Since |F | > n, [5, Theorem 8.2.3, p. 377] implies that for any matrix X ∈ Mn(D), there
is a scalar λX ∈ F such that X − λXI is invertible.



170 S. Akbari et al. / Linear Algebra and its Applications 418 (2006) 161–176

Now, suppose that R and S are two arbitrary distinct vertices of �(Mn(D)). If P is a path
between R − λRI and S − λSI in �(GLn(D)), then by replacing the vertices R − λRI and
S − λSI in P with R and S, respectively, we conclude that diam �(Mn(D)) � diam �(GLn(D))

and Theorem 14 completes the proof. �

6. Full matrix rings

The following theorem has been proved in [1].

Theorem C. Let F be a field and n � 3. The graph �(Mn(F )) is connected if and only if every
field extension of degree n over F contains at least one proper intermediate field.

Lemma 16. Let A ∈ Mn(F) and B ∈ Mm(F) be two matrices such that the minimal polynomial
of A divides the minimal polynomial of B. Then the equation AX = XB has at least one non-zero
solution in Mn×m(F ).

Proof. Suppose that E is the algebraic closure of F . Since the minimal polynomial of A divides
the minimal polynomial of B, A and B have at least one common eigenvalue in E. Since X = 0
is a solution of the equation AX = XB, by [7, Theorem 27.5.1], this equation has infinitely many
solutions over E. Now, since AX − XB = 0 is a system of linear equations with coefficients in
F which has a non-zero solution over E, it should have a non-zero solution over F . The proof is
complete. �

Theorem 17. Let F be a field and n � 3. If �(Mn(F )) is a connected graph, then
diam �(Mn(F )) � 6.

Proof. By Theorem 9, it is enough to show that for every vertex A of �(Mn(F )), there is a vertex
C such that C2 = 0 and d(A, C) � 2. Since �(Mn(F )) is a connected graph, by Theorem A,
there exists a non-cyclic matrix B in F [A]\FI . Assume that B1 ⊕ · · · ⊕ Bk is the rational form
of B, where for any i, 1 � i � k, Bi is a cyclic matrix of size ni and n1 � · · · � nk . Since the
minimal polynomial of B2 divides the minimal polynomial of B1, by Lemma 16, there exists a
non-zero matrix B ′ ∈ Mn1×n2(F ) such that B1B

′ = B ′B2. So the matrix

C =
[

0 B ′

0 0

]
⊕ 0n−n1−n2

commutes with B and its square is zero, as desired. �

Conjecture 18. Let F be a field. If �(Mn(F )) is a connected graph, then its diameter is at
most 5.

In the next theorem we show that the conjecture is true when n is a prime number.

Theorem 19. Let F be a field and p � 3 a prime number. If �(Mp(F )) is a connected graph,

then diam �(Mp(F )) = 4.
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Proof. Let M be an arbitrary matrix in Mp(F)\FI . We show that M is adjacent to a matrix
whose nullity is at least (p + 1)/2. If M is a non-cyclic matrix, then using the rational form of
M , we find a matrix with the desired property. So we may assume that M is a cyclic matrix.
Let f (x) be the minimal polynomial of M . Since �(Mp(F )) is a connected graph, by Theorem
C, f (x) is reducible. So there are non-scalar polynomials f1(x) and f2(x) in F [x] such that
f (x) = f1(x)f2(x). Since f1(M)f2(M) = 0 and f1(M) and f2(M) are non-zero matrices, the
nullity of at least one of them is not less than (p + 1)/2.

Suppose that A, B ∈ Mp(F)\FI are two arbitrary matrices. There are A′, B ′ ∈ Mp(F)\FI

such that AA′ = A′A and BB ′ = B ′B and their nullities are at least (p + 1)/2. Then Ker LA′ ∩
Ker LB ′ /= {0} and Ker RA′ ∩ Ker RB ′ /= {0}. By Lemma 4, we find a common neighbor for A′
and B ′, say S. So A − A′ − S − B ′ − B is a path in �(Mp(F )). Now Theorem 3 completes the
proof. �

Theorem 20. Let H be the division ring of real quaternions. Then diam �(M2(H)) � 6 and
diam �(Mn(H)) � 4, for all n � 3.

Proof. Suppose that A and B are two vertices of �(Mn(H)). By [9, Theorem 1], there are two
matrices P , Q in Mn(H) such that PAP −1 and QBQ−1 are contained in Mn(C). Using the
proof of Theorem 5, the vertices PAP −1 and QBQ−1 have neighbors of rank 1 in �(Mn(C)).
Hence there are two matrices A1, B1 ∈ Mn(H) with rank 1 that commute with A, B, respectively.
If Ker LA1 ∩ Ker LB1 /= {0} and Ker RA1 ∩ Ker RB1 /= {0}, then by Lemma 4, there is a non-
scalar matrix M that commutes with both A1 and B1. Therefore A − A1 − M − B1 − B is a path
in �(Mn(H)), as desired. So without loss of generality, assume that Ker LA1 ∩ Ker LB1 = {0} (if
Ker RA1 ∩ Ker RB1 = {0}, then we consider At

1 and Bt
1 instead of A1 and B1). Since rank A1 =

rank B1 = 1, dim (Ker LA1 ∩ Ker LB1) � n − 2 and hence n = 2. Moreover, there is a matrix
U ∈ GL2(H) such that

UA1U
−1 =

[
0 a1
0 a2

]
and UB1U

−1 =
[
b1 0
b2 0

]

for some a1, a2, b1, b2 ∈ H. Let D = d1I for some d1 ∈ CH({a1, a2})\R, if a1a2 = a2a1; and
otherwise, letD = diag(a1a2a

−1
1 , a2). Also letD′ = d2I for somed2 ∈ CH({b1, b2})\R, ifb1b2 =

b2b1; and otherwise, let D′ = diag (b1, b2b1b
−1
2 ). Now,

A − A1 − U−1DU − U−1E11U − U−1D′U − B1 − B

is a path in �(M2(H)). This completes the proof. �

7. On the structure of pairs of idempotents

In this section we would like to obtain simple representations for pairs of idempotents in Mn(F),
for any field F and each integer n � 2. We start with three well-known results; we include short
proofs for completeness.

Lemma 21. Let F be an algebraically closed field and n � 3. Then every pair of idempotents in
Mn(F) has a non-trivial common invariant subspace.



172 S. Akbari et al. / Linear Algebra and its Applications 418 (2006) 161–176

Proof. Assume that {A, B} is a pair of idempotents in Mn(F). By Theorem 11, there exists a
non-scalar matrix M that commutes with both A and B. Since F is algebraically closed, there is
λ ∈ F such that M − λI is not invertible. Clearly, Ker LM−λI is an invariant subspace under A

and B. This completes the proof. �

Lemma 22. Let F be a field and {A, B} an irreducible pair of idempotents in M2(F ). Then there
is an element t ∈ F\{0, 1} such that {A, B} is similar to{[

1 0
0 0

]
,

[
t t

1 − t 1 − t

]}
.

Proof. Without loss of generality, we may assume that

A =
[

1 0
0 0

]
and B =

[
a b

c d

]
for some a, b, c, d ∈ F . By irreducibility, we have bc /= 0. Since B is not scalar, rank B = 1.
This implies that a + d = 1 and ad /= 0. Using the similarity effected by diag (a, b), we obtain
that

B =
[
a a

c′ 1 − a

]
for some c′ ∈ F . Since rank B = 1, we have c′ = 1 − a, and the proof is complete. �

Corollary 23. Let F be an algebraically closed field and n � 2. If A and B are two idempotents
in Mn(F), then there exists an integer k � 0 such that {A, B} is similar to a pair of block upper
triangular form matrices with diagonal blocks {Ai, Bi}, where for any i, 1 � i � k,

Ai =
[

1 0
0 0

]
and Bi =

[
ti ti

1 − ti 1 − ti

]
are matrices in M2(F ) for some scalars ti /= 0, 1, and {Ai, Bi} ⊆ {0, 1} for each i � k + 1.

Proof. If n = 2, then using Lemma 22, we are done. So assume that n � 3. By Lemma 21, {A, B}
has a non-trivial invariant subspace. Thus there are the idempotents A1, A2, B1, B2 whose sizes
are less than n and {A, B} is similar to{[

A1 �
0 A2

]
,

[
B1 �
0 B2

]}
.

Now, by induction the proof is complete. �

Lemma 24. Let F be an algebraically closed field and n � 2. If {A, B} is a pair of idempotents
in Mn(F) such that d(A, B) = 3 in �(En), then there exist a scalar λ ∈ F and a nilpotent matrix
N such that (A − B)2 = λI + N.

Proof. Clearly, S = (A − B)2 commutes with both A and B. Since F [S] ⊆ CMn(F)({A, B}) and
d(A, B) = 3 in �(En), F [S] has no non-trivial idempotent. By [4, Theorem 8.7, p. 90], F [S]
is a local ring. Since F is an algebraically closed field, there exists a scalar λ ∈ F such that
S − λI is not invertible. Because F [S] is an Artinian local ring and S − λI is contained in the
Jacobson radical of F [S], by [4, Corollary 8.2, p. 89], S − λI is a nilpotent matrix. This implies
that S = λI + N for some nilpotent matrix N . �
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Lemma 25. Let F be a field and {A, B} a pair of idempotents in Mn(F), where n � 2. If A − B

is a nilpotent matrix, then {A, B} is triangularizable.

Proof. By McCoy’s Theorem [8, Theorem 1.3.4, p. 8], we may assume that F is an algebraically
closed field. For any t ∈ F\{1}, the matrix[

1 0
0 0

]
−

[
t t

1 − t 1 − t

]
is not nilpotent. Since A − B is a nilpotent matrix, so all of the diagonal blocks Ai and Bi appearing
in Corollary 23, are 0 or 1. This yields that {A, B} is triangularizable, as desired. �

Corollary 26. Let F be an algebraically closed field and n � 3 an odd integer. Then every pair
of idempotents in Mn(F) with distance 3 in �(En) is triangularizable.

Proof. Without loss of generality, we may assume that nullity A and nullity B are at least (n +
1)/2. Thus Ker LA ∩ Ker LB /= {0} and therefore A − B is not invertible. By Lemma 24, A − B

is nilpotent and so Lemma 25 completes the proof. �

Theorem 27. For every field F, the following are equivalent:

(i) F is an algebraically closed field.
(ii) For any n � 3, every pair of idempotents in Mn(F) has a non-trivial common invariant

subspace.
(iii) For any n � 1, every non-triangularizable pair of idempotents in M2n(F ) with distance 3

in �(E2n), is similar to{[
In 0
0 0

]
,

[
M M

I − M I − M

]}
,

where M = λI + J ∈ Mn(F) and λ /= 0, 1.

Proof. By Lemma 21, (i) implies (ii). For the other direction, suppose that F is not algebraically
closed. Thus there is an irreducible polynomial p(x) of degree m � 2 in F [x]. Let S ∈ Mm(F)

be the companion matrix of p(x). Then we claim that the following pair of idempotents:

E1 =
[
I 0
0 0

]
and E2 =

[
S S

I − S I − S

]
has no non-trivial common invariant subspace. Assume that V ⊆ F 2m is a non-trivial common
invariant subspace of E1 and E2. Let[

α

β

]
be a non-zero vector in V , where α, β ∈ Fm. We know that

E1

[
α

β

]
=

[
α

0

]
and (I − E1)

[
α

β

]
=

[
0
β

]
are two vectors in V . Thus without loss of generality, we may assume that α /= 0. For any
f (x) ∈ F [x], we have

f (E1E2)

[
α

0

]
=

[
f (S)α

0

]
∈ V,
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and since F 2m is irreducible as F [S]-module,[
x

0

]
∈ V,

for each x ∈ Fm. Now for any x, y ∈ Fm, we have[
x

y

]
=

[
x − S(I − S)−1y

0

]
+ E2

[
(I − S)−1y

0

]
∈ V,

a contradiction.
Next, we prove that (i) implies (iii). Suppose that {A, B} is a pair of non-triangularizable idem-

potents in M2n(F ) such that d(A, B) = 3 in �(E2n). We claim that Ker LA ∩ Ker LB = {0}. To
get a contradiction assume that Ker LA ∩ Ker LB /= {0}. So, Lemma 24 implies that (A − B)2

is nilpotent. Now by Lemma 25, {A, B} is triangularizable, a contradiction. Therefore Ker LA ∩
Ker LB = {0} and similarly Ker LA ∩ Ker LI−B = {0}, Ker LI−A ∩ Ker LB = {0} and
Ker LI−A ∩ Ker LI−B = {0}. So we conclude that rank A = rank B = n. Without loss of gen-
erality, we can assume that

A =
[
In 0
0 0

]
and B =

[
X Y

Z T

]
,

where X, Y , Z, T ∈ Mn(F). We claim that Y is an invertible matrix. Suppose otherwise. Since
B is idempotent, XY + YT = Y and so Ker LY is invariant under T . Thus {A, B} is similar to



In 0 0

0 0 0
0 0 0


 ,


 X Y1 0

Z1 T11 0
Z2 T21 T22





 ,

where T22 is an idempotent matrix. Thus at least one of the subspace Ker LA ∩ Ker LB and
Ker LA ∩ Ker LI−B is non-zero, a contradiction. By a similar argument, one can prove that Z

is invertible. Now, using similarity by the matrix Y−1 ⊕ In, we may assume that Y = I . Since
B2 = B, we find that

B =
[

X I

X − X2 I − X

]
.

Also, noting that X is necessarily invertible, and using similarity by the matrix X ⊕ In, we may
assume that B is equal to the matrix[

X X

I − X I − X

]
. (∗)

By Lemma 24, there are λ ∈ F and nilpotent matrix N such that

(A − B)2 =
[
I − X 0

0 I − X

]
= λI + N.

This yields that X = (1 − λ)I + N ′ for some nilpotent matrix N ′ ∈ Mn(F). Since {A, B} is not
triangularizable and X is invertible, by Lemma 25, we have λ /= 0, 1. To complete the proof, we
must show that N ′ is a cyclic matrix. If N ′ is not cyclic, then using the rational form of N ′, we
find a non-scalar idempotent E ∈ CMn(F)(N

′). Now, by the form of B given in (∗), it is easily
seen that E ⊕ E is a non-scalar idempotent matrix which commutes with both A and B, and this
contradicts d(A, B) = 3 in �(E2n).

Finally, we prove that (iii) implies (i). To get a contradiction, suppose that F is not alge-
braically closed. We show that {E1, E2} which was defined in the first step of the proof, is not
triangularizable and d(E1, E2) = 3 in �(E2m). Since F [S] is a field,
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(E1E2 − E2E1)
2 =

[
S2 − S 0

0 S2 − S

]
is not a nilpotent matrix and so {E1, E2} is not triangularizable. Moreover, if d(E1, E2) � 2 in
�(E2m), then there exists a non-scalar idempotent matrix with the form X ⊕ Y commuting with
E2. Since S is a cyclic matrix, CM2m(F)(S) = F [S] is a field. Thus X, Y are two idempotents in
F [S] and so {X, Y } = {0, Im}. Since XS = SY , we conclude that X = Y , a contradiction. Now,
we show that {E1, E2} is not similar to{[

I 0
0 0

]
,

[
M M

I − M I − M

]}
,

where M = λI + J ∈ Mm(F) and λ ∈ F\{0, 1}. Indeed if it is, then there exists a matrix P ∈
GLn(F ) such that M = PSP −1. This yields that x − λ divides p(x), which contradicts the fact
that p(x) is an irreducible polynomial of degree m � 2. �

Remark 28. Note that each of the three statements in the previous theorem is equivalent to the
assertion that every matrix A ∈ Mn(F) has a non-trivial invariant subspace.

Theorem 29. Let F be an algebraically closed field and n � 2. If A and B are two idempotents
in Mn(F), then there is an integer k � 1 such that {A, B} is similar to

{A1 ⊕ · · · ⊕ Ak, B1 ⊕ · · · ⊕ Bk},
such that for every i, 1 � i � k, the pair {Ai, Bi} is either upper triangularizable or equal to{[

I 0
0 0

]
,

[
Mi Mi

I − Mi I − Mi

]}
,

where for each i, ni � 1, I = Ini
, Mi = λiI + J ∈ Mni

(F ) and λi ∈ F\{0, 1}.

Proof. By Lemma 22, the case n = 2 is easily verified. Assume that n � 3. If d(A, B) = 1 in
�(En), then {A, B} is triangularizable and we are done. Also if d(A, B) = 3 in �(En), then by
Corollary 26 and Theorem 27, the assertion is proved. Thus assume that d(A, B) = 2 in �(En).
This means that there exists a non-scalar idempotent matrix E commuting with both A and B.
Indeed, E is similar to Ir ⊕ 0n−r for some r � 1. Hence A and B are similar to A1 ⊕ A2 and
B1 ⊕ B2, respectively, where A1, B1 ∈ Mr(F ) and A2, B2 ∈ Mn−r (F ) are idempotents. Now by
induction, the proof is complete. �
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