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Biallelic Mutations in Nuclear Pore Complex Subunit
NUP107 Cause Early-Childhood-Onset Steroid-Resistant
Nephrotic Syndrome

Noriko Miyake,1,17 Hiroyasu Tsukaguchi,2,17,* Eriko Koshimizu,1 Akemi Shono,3 Satoko Matsunaga,4

Masaaki Shiina,5 Yasuhiro Mimura,6 Shintaro Imamura,7 Tomonori Hirose,8 Koji Okudela,9

Kandai Nozu,3 Yuko Akioka,10 Motoshi Hattori,10 Norishige Yoshikawa,11 Akiko Kitamura,12

Hae Il Cheong,13,14,15 Shoji Kagami,16 Michiaki Yamashita,7 Atsushi Fujita,1 Satoko Miyatake,1

Yoshinori Tsurusaki,1 Mitsuko Nakashima,1 Hirotomo Saitsu,1 Kenichi Ohashi,9 Naoko Imamoto,6

Akihide Ryo,4 Kazuhiro Ogata,5 Kazumoto Iijima,3 and Naomichi Matsumoto1,*

The nuclear pore complex (NPC) is a huge protein complex embedded in the nuclear envelope. It has central functions in nucleocyto-

plasmic transport, nuclear framework, and gene regulation. Nucleoporin 107 kDa (NUP107) is a component of the NPC central scaffold

and is an essential protein in all eukaryotic cells. Here, we report on biallelicNUP107mutations in nine affected individuals who are from

five unrelated families and show early-onset steroid-resistant nephrotic syndrome (SRNS). These individuals have pathologically focal

segmental glomerulosclerosis, a condition that leads to end-stage renal disease with high frequency. NUP107 is ubiquitously expressed,

including in glomerular podocytes. Three of four NUP107 mutations detected in the affected individuals hamper NUP107 binding to

NUP133 (nucleoporin 133 kDa) and NUP107 incorporation into NPCs in vitro. Zebrafish with nup107 knockdown generated by

morpholino oligonucleotides displayed hypoplastic glomerulus structures and abnormal podocyte foot processes, thereby mimicking

the pathological changes seen in the kidneys of the SRNS individuals with NUP107 mutations. Considering the unique properties

of the podocyte (highly differentiated foot-process architecture and slit membrane and the inability to regenerate), we propose a

‘‘podocyte-injury model’’ as the pathomechanism for SRNS due to biallelic NUP107 mutations.
Introduction

Nephrotic syndrome (NS) is a renal disease caused by

disruption of the glomerular filtration barrier, which results

in massive proteinuria, hypoalbuminemia, and dyslipide-

mia. Idiopathic NS occurs in 16/100,000 children.1 Most

children with idiopathic NS respond well to steroids, but

10%–20% of affected children are categorized as having

steroid-resistant NS (SRNS).2–6 SRNS is a clinically and

genetically heterogeneous renal disorder that might have

an immunological, structural, or functional etiology.2,5,7–9

Higher rates of genetic delineation are expected in early-

onset SRNS.7 Clinical differences in SRNS have been

suggested to depend on its age of onset.7 Current medical

management and prognosis in NS are based largely on the

histological diagnosis. Effective SRNS treatments are not

well established, and renal transplantation is eventually

required. Importantly, 63%–73% of those with childhood-

onset SRNS show pathologically focal segmental glomeru-
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losclerosis (FSGS),which carries a great risk of progression

to end-stage renal disease (ESRD).1,6,8,10 To date, at least

27 genes are associated with SRNS, thereby expanding our

knowledge of the pathomechanisms involved in SRNS

and podocyte development and function.11 Although

SRNS is the leading cause of ESRD in children worldwide,

approximately 70% of those with childhood-onset SRNS

are genetically uncharacterized.7,11 We describe here an

additional genetic cause of early-onset SRNS and propose

its possible pathomechanism.
Material and Methods

Human Subjects
A total of 18 families (10 with affected siblings and 8 with a single

affected individual) who lack any known genetic causes of SRNS

(in 27 known genes) were recruited to this study. They presented

with non-syndromic early-onset SRNS with onset ages between 1

and 11 years. The clinical aspects of 7 of the 18 families have
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been described previously.12 Affected individuals were resistant to

standard steroid therapy but were partially responsive to immuno-

suppressive drugs. At least ten affected individuals in eight families

underwent renal transplants and have had no recurrence of SRNS

to date. All samples were collected after written informed consent

was obtained. The study protocol was approved by the institu-

tional review boards of Yokohama City University School of Med-

icine, KansaiMedical University, RIKEN, TokyoWomen’s Hospital,

and Kobe University.

DNA Extraction
Peripheral-blood leukocytes or saliva from affected individuals and

their families was collected. Genomic DNA was extracted with a

QIAamp DNA Blood Max Kit (QIAGEN) or Oragene DNA (DNA

Genoteck) according to the instructions of each manufacturer.

Whole-Exome Sequencing and Informatics Analyses
Whole-exome sequencing (WES) was performed on affected indi-

viduals (one individual from each family) and their parents when

the samples were available, as reported previously.13 In brief, 3-mg

samples of genomic DNAwere sheared with the Covaris S2 system

(Covaris); genome partitioning was performed with SureSelect

Human All Exon V5 (Agilent Technology) according to the manu-

facturer’s instructions. Prepared samples were run on a HiSeq 2000

instrument (Illumina) with 101-bp paired-end reads and 7-bp

index reads. The sequence reads were mapped to the human refer-

ence sequence (GRCh37) by Novoalign 3.00. Next, PCR duplica-

tion and variant calls were processed by Picard and the Genome

Analysis Toolkit. Ten of the 18 families have multiple affected

children, suggesting the autosomal-recessive model, in which

homozygous or compound-heterozygous variants are focused in

each affected individual. Genetic variants in exons and canonical

splice sites (52 bp) with a minor allele frequency (MAF) of>0.005

in the NHLBI Exome Sequencing Project Exome Variant Server

(EVS), Exome Aggregation Consortium (ExAC) Browser, Human

Genetic Variation Database (HGVD, which is a public exome data-

base for the Japanese population), or in-house Japanese exome

data (n ¼ 575) were removed from the candidates. Genes that

harbor recessive variants detected commonly in two or more

probands were selected. Candidate recessive variants were checked

in each family by Sanger sequencing for confirmation that such

variants co-segregated with the disease.

Haplotype Analysis
To determine the haplotype associated with c.2492A>C

(p.Asp831Ala), which was found commonly in the five families,

we amplified samples of genomic DNA or whole-genome-ampli-

fied DNA with 13 microsatellite markers (D12S364, S12S310,

D12S1617, D12S345, D12S85, D12S368, D12S83, D12S326,

D12S351, D12S346, D12S78, D12S79, and D12S86) from the ABI

PRISM Linkage Mapping Set (Life Technologies).The PCR products

were run on a 3500xl Genetic Analyzer (Life Technologies) and

analyzed with GeneMapper 5 software (Life Technologies).

Additionally, informative SNPs were chosen from the WES data

for each affected individual and used thereafter for constructing

haplotype blocks.

Expression of Human NUP107
NUP107 (nucleoporin 107 kDa; GenBank: NM_020401.2; MIM:

607617) expression in human embryos and adults was checked

by a TaqMan Gene Expression Assay with two probe sets
556 The American Journal of Human Genetics 97, 555–566, October
(Hs00914854_g1 and Hs00220703_m1 from Life Technologies)

internally standardized by beta actin (Life Technologies). cDNA

from human fetal and adult tissues was purchased from Clontech.

qPCR was performed by a Rotor-Gene Q instrument (QIAGEN),

the data from which was analyzed by the DDCt method with

Rotor-Gene 6000 Series software (QIAGEN). The experiments

were done in duplicate. The expression level of each tissue repre-

sents the mean value of the duplicates.

Histopathology and Transmission Electron

Microscopy on Samples from Individuals with

Early-Onset SRNS
We stained 3-mm-thick sections cut from paraffin-embedded

biopsied kidney tissues with H&E, periodic acid-Schiff stain, and

periodic acid methenamine silver stain according to standard

methods. For transmission electron microscopy, 1-mm renal-bi-

opsy specimen cubes were fixed in 2% phosphate-buffered glutar-

aldehyde (pH 7.3) at room temperature, dehydrated in an alcohol

gradient, and embedded in Epon-Araldite resin. Sections of 1-mm

thickness were cut with an ultra-microtome (Ultracut UCT, Leica),

stained with toluidine blue, and examined with a light micro-

scope. Ultrathin sections (60–90 nm) stained by lead citrate were

examined with a JEM1011 transmission electron microscope

(JEOL). The TUNEL method was used to detect apoptotic cells

on tissue sections with an in situ apoptosis detection kit (Takara)

according to the manufacturer’s instruction.

Immunofluorescence Microscopy
We deparaffinized and rehydrated 3-mm-thick paraffin sections of

a necropsy specimen and then autoclaved them in target retrieval

solution (S1700, Dako) for 15min at 105�C. The sections were sub-

jected to immunofluorescence labeling with primary antibodies

including rabbit anti-NUP107 mAb (1.5 mg/ml, EPR12241,

ab182559, Abcam), mouse anti-WT1 mAb (1:100, WT49, NCL-L-

WT1-562, Leica), and mouse anti-Ezrin mAb (1:500, 3C12,

E8897, lot 102K4824, Sigma-Aldrich). Normal rabbit and mouse

immunoglobulins (IgGs) (sc-2027 [lot L1212] and sc-2025 [lot

H1512], respectively, Santa Cruz) were used for negative controls.

The CSAII kit (K1497, DAKO) was used for signal amplification

of WT1, and other primary antibodies were visualized with

Alexa555-conjugated anti-rabbit (1 mg/ml) or Alexa647-conju-

gated anti-mouse IgG (2 mg/ml) secondary antibodies (A21429 or

A21236, respectively, Life Technologies), and then samples were

mounted with ProLong Gold antifade reagent (P36930, Life Tech-

nologies). Single optical sections were acquired at 16-bit data

depth with a confocal microscope system (AxioImager.Z1 micro-

scope with LSM 700 laser scanner, Carl Zeiss) equipped with a

C-Apochromat water immersion objective (403, 1.2 numerical

aperture [NA], Carl Zeiss); images were arranged with Photoshop

CS5 (Adobe Systems).

Expression Vectors
Mammalian expression vectors were prepared with the Gateway

system (Life Technologies). The NUP107 open reading frame was

amplified by PCR with human cDNA derived from a human lym-

phoblastoid cell line. The PCR product was introduced into the

Gateway pDONR221 vector (Life Technologies), and its sequence

was confirmed by Sanger sequencing. For mutagenesis, a Quick-

Change II XL Site-Directed Mutagenesis Kit (Agilent Technologies)

was used. After confirming appropriate mutagenesis, we per-

formed LR recombination to create a mammalian expression
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vector (pcDNA-DEST53, Life Technologies) to produce N-termi-

nally GFP-fused NUP107 proteins. Among fourNUP107mutations

observed in this cohort, c.969þ1G>A was mimicked by

c.969_970insTAG, which created the nonsense codon just after

the mutation (p.Asp324*). Whereas two truncating mutations

(c.969þ1G>A and c.1079_1083delAAGAG [p.Glu360Glyfs*6])

are thought unlikely to be present in vivo because of nonsense-

mediated decay, these constructs were used as controls for the

binding loss, given that C-terminally truncated proteins report-

edly lose the NUP107-NUP133 interaction.14
Cell-free Protein Synthesis and In Vitro Pull-Down

Assays
In vitro transcription and cell-free protein synthesis were

performed as described previously.15,16 In vitro transcription tem-

plates for wild-type or mutant NUP107 were amplified by slit-

primer PCR. For generation of transcription templates, the first

PCR was performed with 50 ng/ml of each plasmid, 100 nM of

the S1 common primer (50-CCACCCACCACCACCAACAAAAAAG
CAGGCTATG-30), and 100 nMof the vector-specific reverse primer

(50-ATCTTTTCTACGGGGTCTGA-30). The second PCR was per-

formed with the first PCR product as a template with 100 mM of

the SPu primer (50-GCGTAGCATTTAGGTGACACT-30), 100 mM of

the vector-specific reverse primer (50-ACGTTAAGGGATTTTGGT

CA-30), and 1 mM of either the deSP6-E02-FLAG-tagged primer or

the biotin-ligation site (bls) primer for the addition of the nucleo-

tide sequences of the FLAG tag or the bls tag, respectively (FLAG

tagged: 50-GGTGACACTATAGAACTCACCTATCTCTCTACACAAA

ACATTTCCCTACATACAACTTTCAACTTCCTATTATGGACTACAA

GGATGACGATGACAAGCTCCACCCACCACCACCAATG-30; bls

tagged: 50-GGTGACACTATAGAACTCACCTATCTCTCTACACAAA

ACATTTCCCTACATACAACTTTCAACTTCCTATTATGGGCCTGA

ACGACATCTTCGAGGCCCAGAAGATCGAGTGGCACGAACTCC

ACCCACCACCACCAATG-30).
An ENDEXTWheat Germ Expression Kit (CellFree Sciences) was

used for cell-free protein synthesis according to themanufacturer’s

instructions for the bilayer translation method. Biotinylated pro-

teins were produced as described previously.17

Biotinylated wild-type or alteredNUP107wasmixedwith FLAG-

NUP133 (nucleoporin 133 kDa; GenBank: NM_018230.2; MIM:

607613) in lysis buffer containing 25 mM Tris-HCl (pH 7.5),

100 mM NaCl, 1 mM EDTA, 2% Triton X-100, 1 mM DTT, and

10mg/ml BSA. After incubation for 1 hr at 26�C, streptavidinMag-

neSphere beads (Promega) were added, and the mixture was incu-

bated for 30 min at room temperature. After three washes with

lysis buffer, bound proteins were eluted from the beads with

20 ml of 23 SDS sample buffer. Bound proteins were separated by

SDS-PAGE followed by immunoblotting with an anti-FLAG anti-

body (Sigma-Aldrich) or a Streptavidin-HRP conjugate (GE Health-

care). Proteins on the blot were detected with ImmobilonWestern

Chemiluminescent HRP Substrate (Millipore) and FluorChem FC2

(Alpha Innotech) in accordance with the protocol from each

manufacturer.
Immunoprecipitation
The cell lysate used for immunoprecipitation was prepared accord-

ing to a method reported previously18,19 with a slight modifica-

tion. In brief, HeLa cells were transfected with the wild-type or

altered N-terminally GFP-fused NUP107 construct by Viafect

(Promega) according to the manufacturer’s instructions. The cells

were lysed with lysis buffer containing 10 mM Tris-HCl (pH 7.4),
The Americ
400 mM NaCl, 1% Triton X-100, 2 mM EDTA, 1 mM DTT supple-

mented with complete proteinase inhibitor cocktail (Roche Diag-

nostics GmbH), and PhosSTOP (Roche Diagnostics); sonicated;

and then incubated for 30 min at 4�C. For debris removal, the

crude lysate was centrifuged at 20,6303 g for 20 min at 4�C. After
collection, the supernatant was diluted 3.753 in dilution buffer

(10 mM Tris-HCl [pH 7.4], 2 mM EDTA, 1 mM DTT, complete

proteinase inhibitor cocktail, and PhosSTOP). For immunoprecip-

itation of the GFP-fused NUP107, mouse anti-GFP antibody (11-

814-460-001, Roche Diagnostics) and Protein G Sepharose beads

(17-0618-01, GE Healthcare) were added. After incubation for

2 hr at 4�C, the beads were washed with wash buffer (lysis buffer

diluted 3.753 in dilution buffer). After the protein-bound beads

were boiled, they were run on an SDS-PAGE gel and transferred

to a polyvinylidene fluoride membrane (Millipore). Membranes

prepared in this manner were incubated in 0.2% Casein in Tris-

buffered saline containing 0.1% Tween 20 (TBS-T) for blocking.

The membrane was probed with rabbit anti-GFP primary antibody

(598, MBL) diluted at 1:1,000 and mouse anti-NUP133

(M00055746-M01, Abnova) diluted at 1:500 followed by second-

ary antibodies HRP-rabbit anti-rat IgG (A5795, Sigma-Aldrich)

and HRP-goat anti-mouse IgG (170-6516, Bio-Rad) both diluted

at 1:3,000 with 0.2% Casein in TBS-T. For obtaining protein

signals, Immobilon Western Chemiluminescent HRP Substrate

(Millipore) was used as a chemiluminescence substrate.
Subcellular Localization of NUP107
HeLa cells cultured in DMEM (Life Technologies) containing 10%

fetal bovine serum (Sigma-Aldrich) at 37�C in an atmosphere of

5% CO2 on poly-L-lysine-coated coverslips (Wako) were trans-

fected with the wild-type or altered N-terminally GFP-fused

NUP107 vector with the use of Viafect (Promega). After incuba-

tion for 48 hr, the cells were washed with pre-warmed PBS at

37�C and then fixed with pre-warmed 2% paraformaldehyde

(Wako) in PBS at 37�C for 10 min. The cells were treated with

0.5% Triton X-100 in PBS for 2.5 min and then incubated with

5% normal goat serum (NGS, Merck Millipore) in PBS for 1 hr.

After blocking, the cells were reacted with the primary antibody

(MAb414 [mouse anti-nuclear pore complex (NPC) proteins],

MMS-120P, Covance) diluted at 1:3,000 in 1% NGS in PBS for

2 hr, washed with PBS, and then reacted with the secondary

antibody (Alexa Fluor 594 goat anti-mouse IgG, A11032, Life

Technologies) in 1% NGS in PBS for 2 hr. After staining, the cells

were mounted in paraphenylenediamine solution (80% glycerol

in PBS and 1 mg/ml paraphenylenediamine, 11873580001, Roche

Diagnostics). Images were captured with a DeltaVision micro-

scope (Applied Precision) equipped with a Plan Apo objective

lens (1003, 1.35 NA, Olympus) and a Cool Snap HQ2 CCD cam-

era (Photometrics).
Zebrafish Knockdown by Microinjection of

Morpholino Oligonucleotides
The antisense morpholino oligonucleotides (MOs) for nup107

translation blocking (TB) (50-AAGTCTGACTCCATTCCATATT

GTC-30)20 and for nup107 splice blocking (SB) (50-ATACATTTA
AGCTCACCTCTCTGAC-30) and a standard MO control (50-CCT
CTTACCTCAGTTACAATTTATA-30) obtained from Gene Tools

were injected into 1- to 2-cell-stage embryos, each at a final con-

centration of 0.25 mM. The experiment was authorized by the

Institutional Committee for Fish Experiments at the National

Research Institute of Fisheries Science.
an Journal of Human Genetics 97, 555–566, October 1, 2015 557



RNA Isolation and RT-PCR Analysis
Total RNA was extracted from embryos at 24 hr post-fertilization

(hpf) with TRIzol reagent according to the manufacturer’s (Life

Technologies) protocol. Double-stranded cDNA was synthesized

with M-MLV reverse transcriptase (Promega) and then amplified

by PCR with ExTaq (Takara). For detecting the splicing mutation

(caused by the MO injections) in nup107 exon 24, the following

primers were used: 50-TGAACTGTCCTCCGGTGAAG-30 (forward)

and 50-TGCGATGATGTCAGCAAGAC-30 (reverse). For the PCR

amplifications, the initial denaturing step at 94�C for 5 min was

followed by 29 cycles of 30 s at 94�C, 30 s at 61�C, 30 s at 72�C,
and a final extension of 7 min at 72�C. PCR products were sepa-

rated on 3% agarose gels.
Histopathology and Transmission Electron

Microscopy of Zebrafish
Larvae injected with control MO, nup107-TB MO, and nup107-SB

MO at 5.5 days after fertilization were fixed with 2% paraformalde-

hyde and 2% glutaraldehyde in 0.1 M cacodylate buffer (pH 7.4) at

4�C overnight. After fixation, the samples were washed three times

with 0.1 M cacodylate buffer for 30 min each and then postfixed

with 2% osmium tetroxide in 0.1 M cacodylate buffer at 4�C for

3 hr. The samples were dehydrated in graded ethanol solution

(50%, 70%, 90%, and 100%), infiltrated with propylene oxide

(PO) two times for 30 min each, immersed in a 70:30 mixture of

PO and resin (Quetol-812, Nisshin EM) for 1 hr, and then kept

in an open-capped tube so that volatile PO would evaporate over-

night. The samples were transferred to fresh 100% resin and poly-

merized at 60�C for 48 hr. The polymerized resins were cut into

semi-thin (1.5-mm) sections with an Ultracut UCT (Leica) and

then stainedwith 0.5% toluidine blue. Ultra-thin (70-nm) sections

were cut on an Ultracut UCT (Leica) ultramicrotome andmounted

on copper grids. The sections were stained with 2% uranyl acetate

at room temperature for 15 min, washed with distilled water, and

stained with lead stain solution (Sigma-Aldrich) at room tempera-

ture for 3 min. The grids were observed with a transmission elec-

tron microscope (JEM-1400Plus, JEOL) at 80 kV.
Molecular-Dynamics Simulation of the p.Asp831Ala

Substitution in NUP107
Molecular-dynamics (MD) simulations of the wild-type and

p.Asp831Ala Nup107 were carried out with the program package

GROMACS (Groningen Machine for Chemical Simulation)

version 5.0 with the Optimized Potentials for Liquid Simulations

all-atom force field based on the local Møller-Plesset perturbation

theory (OPLS-AA/L).21 The starting structure of NUP107 was ex-

tracted from the crystal structure of the NUP107-NUP133 complex

(PDB: 3CQC). The missing regions in NUP107 were modeled with

the Phyre2 modeling server,22 and the p.Asp831Ala substitution

was introduced with FoldX software.23 The wild-type and altered

NUP107 molecules were solvated with simple-point-charge water

molecules in a cubic box extending at least 1.0 nm from the pro-

tein surface. Sodium ions were added to neutralize the systems,

which were then subjected to energy minimization for 50,000

steps by steepest descent. The minimized systems were then equil-

ibrated by position-restrained MD simulation for soaking the

water molecules in the macromolecules in two steps as follows:

an NVT ensemble (constant number of particles, volume, and

temperature) for 100 ps and an NPT ensemble (constant number

of particles, pressure, and temperature) for 4,000 ps each at

310 K. The well-equilibrated systems were then subjected to MD
558 The American Journal of Human Genetics 97, 555–566, October
simulations for 30 ns each at 310 K without any restrictions. In

all simulations, for maintaining a constant temperature of

310 K, temperature coupling using velocity rescaling with a

stochastic term24 was employed with a coupling constant t of

0.1 ps. Van der Waals interactions were modeled with 6–12 Len-

nard-Jones potentials with a 1.4-nm cutoff. Long-range electro-

static interactions were calculated with the particle-mesh Ewald

method25 with a 1.4-nm cutoff for the real-space term. Covalent

bonds were constrained with the LINCS algorithm.26
Results

Pathogenic Mutations Detected by WES

To identify the genetic cause of early-onset SRNS, we per-

formed WES on 18 probands. Because we found multiple

affected siblings in ten families, we speculated on an auto-

somal-recessive inheritance pattern for SRNS and focused

on the recessive variants shared by two or more families

with well-performed WES data (Tables S1–S3, S4, and S5).

Biallelic mutations in NUP107, which encodes NUP107,

were common in five families, and the mutation co-segre-

gated perfectly with the affected state in all five families

(Figure 1A, Table 1, and Figure S1). None of the other fam-

ilies in our cohort had any pathological variants inNUP107

or any other known genes associated with SRNS, as listed

in Table S6.

We identified a total of fourNUP107mutations, including

two missense mutations (c.469G>T [p.Asp157Tyr]

and c.2492A>C [p.Asp831Ala]), one 5-bp deletion

(c.1079_1083delAAGAG [p.Glu360Glyfs*6]), and one

splice-donor-site mutation (c.969þ1G>A) (Table 2).

Heterozygous c.2492A>C was common in all five families.

The two missense mutations altered evolutionally

conserved amino acids (Figure S2) and were predicted to

be pathogenic byweb-based programs PolyPhen-2 andMu-

tationTaster (Table 2). Furthermore, p.Asp831Ala resides

within the Nup84-Nup100 domain (Figure S3). The 5-bp

deletion was subjected to nonsense-mediated mRNA decay

and probably led to a lack of protein synthesis (Figure S4).

The splicing mutation (c.969þ1G>A) causes a loss of the

intrinsic splicing donor site (Figure S5). All four variants

were examined in the EVS, ExAC Browser, HGVD,

and in-house Japanese exome database (n ¼ 575). The

c.1079_1083delAAGAG variant was observed at fre-

quencies of 0.0000083 in the ExAC Browser and

0.0008696 in the in-house Japanese exome data. Another

variant, c.2492A>C, was observed at a frequency of

0.0013587 only in HGVD, but not in the EVS, ExAC

Browser, or in-house Japanese exome data (Table 2). The

other mutations (c.469G>T and c.969þ1G>A) were never

observed in any of four variant databases. Among 881

NUP107 variants registered in the ExAC Browser, a total of

31 variantswith aMAFR0.005were innon-coding regions

(intronic but not in canonical acceptor or donor sites or

UTRs) or were synonymous variants (Table S7). Further-

more, 36 loss-of-functionvariants inNUP107 arenothomo-

zygous (all heterozygous; Table S8). Therefore, this genetic
1, 2015



Figure 1. Genetic Analysis and Clinical Course of Early-Onset SRNS in Affected Individuals with NUP107 Mutations
(A) Familial pedigrees and NUP107 mutations. Mutant alleles are colored in red. WT indicates the wild-type allele. Filled and unfilled
symbols represent affected and unaffected members, respectively.
(B) Clinical course of the affected individuals. The onset of renal symptoms and diagnosis of ESRD are represented by squares and crosses,
respectively. Blue and red horizontal bars indicate the period leading to ESRD and the period before completed ESRD, respectively.
SRNS-1 II-2 died from a viral infection before the advent of ESRD.
evidence strongly suggests that biallelicNUP107mutations

could lead to autosomal-recessive SRNS.
A Common Haplotype Harboring c.2492A>C

Interestingly, all affected individuals carry c.2492A>C

heterozygously. To determine whether c.2492A>C was

derived from an ancestral chromosome, we constructed

the haplotype in all families by using informative micro-

satellite markers and SNPs. We confirmed that a 412-kb

haplotype was shared by all five families (Figure S6).
The Americ
Considering the extreme rarity of c.2492A>C in different

whole-exome databases, c.2492A>C is likely to be specific

to East Asians.
Clinical Characterization of NUP107-Related SRNS

Noticeably, the clinical course of affected individuals with

NUP107 mutations was similar (Figure 1B and the supple-

mental note). In brief, the four families consistently

showed early-onset SRNSwhereby NS firstmanifested itself

at age 2–3 years and ESRD became evident before age 10
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Table 1. Clinical and Genetic Summary of SRNS-Affected Families Harboring NUP107 Mutations

Family Individual Mutation
Age at Onset
(Years)

Age at Diagnosis
of ESRD (Years) Treatment

Histology (Subtype, Age in
Years)

SRNS-1a II-2b ND 3 NA Pred FSGS (NOS, 3)

II-4 c.[1079_1083del];[2492A>C] 3 9 Pred, CyA, CPA FSGS (NOS, 3)

SRNS-2a II-1 c.[1079_1083del];[2492A>C] 2 10 Pred, CPA MCNS (NOS, 2), FSGS (NOS, 4)

II-3 c.[1079_1083del];[2492A>C] 2 7 Pred MCNS (2)

II-4 c.[1079_1083del];[2492A>C] 2 7 Pred FSGS (NOS, 2)

SRNS-TK1 II-1 c.[969þ1G>A];[2492A>C] 2 4 Pred, CyA, CPA FSGS (NOS, 2)

SRNS-TWH1 II-1 c.[1079_1083del];[2492A>C] 3 5 Pred, ARB, PP FSGS (collapsing, 3)

II-2 c.[1079_1083del];[2492A>C] 3 5 Pred, CyA, ARB FSGS (collapsing, 3)

SRNS-12a II-2 c.[469G>T];[2492A>C] 10 NA ARB ND

II-3 c.[469G>T];[2492A>C] 11 12 Pred, ARB FSGS (NOS, 11)

Abbreviations are as follows: ARB, AT II receptor blocker; collapsing, collapsing variants; CPA, cyclophosphamide; CyA, cyclosporine A; ESRD, end-stage renal dis-
ease; FSGS, focal segmental glomerulosclerosis; MCNS, minimal-change nephrotic syndrome; NA, not applicable; ND, not determined; NOS, non-specific type;
PP, plasmapheresis; Pred, prednisone.
aThese families appear in a previous report by Kitamura et al.12
bThis individual died from a viral infection at the age of 3 years.
years. One family (SRNS-12) showed an exceptionally late

onset of NS, which appeared after 10 years of age, and renal

function has been relatively preserved at the current 34

years of age. Renal biopsies revealed histopathological

FSGS in all affected individuals (Figure 2, Table 1, and

Figure S7). Depletion of NUP107 was shown to lead to

apoptosis in eukaryotes,20,27 and we observed apoptotic

changes in the renal biopsy samples from SRNS individuals

(SRNS-TWH1 II-1 and II-2) with NUP107 mutations. Cells

with the characteristic morphological features, such as nu-

clear shrinkage and fragmentation, were occasionally

found in the glomeruli and renal tubules (Figure S8).

Some of these cells could be TUNEL positive (apoptotic),

although we failed to recognize TUNEL-positive cells in

the glomeruli of the few biopsied specimens, given that

only ten glomeruli were observed (data not shown).

Among them, five individuals underwent renal transplants

and have experienced no recurrence of SRNS to date. Addi-

tionally, none of them showed neurological phenotypes.

NUP107 Function and NUP107 Expression in Humans

NUP107 is an essential component of the NPC, which is

one of the largest protein complexes (~125 MDa in verte-

brates) in eukaryotes and comprises ~30 nucleoporins

embedded in the nuclear envelope.28,29 It facilitates the

efficient transfer of macromolecules between the nucleus

and cytoplasm in a highly selective manner and plays

pivotal roles in the nuclear framework and gene expres-

sion.28,30–33 Although some nucleoporins have tissue spec-

ificity,34 NUP107 and NUP107 are ubiquitously expressed

as the core gene and the essential scaffold protein, respec-

tively, of the NPC.29,35–37 As the results of the TaqMan

expression assay show, NUP107 is expressed ubiquitously

in most human fetal and adult tissues, including the kid-

ney (Figure S9). To evaluate the physiological relevance
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of NUP107 in human podocytes, we examined the intra-

cellular localization of NUP107, along with WT1 (a podo-

cyte-specific transcription factor38) and Ezrin (a marker

protein for apical domains of epithelial cells39), in human

podocytes. Confocal microscopy demonstrated that

NUP107 co-localized with WT1 and was distributed in a

speckle-like pattern in the nuclei of human podocytes sur-

rounding the glomerular capillary tufts (Figure S10). In

addition to podocytes, most other cell types showed a

similar staining pattern for NUP107. These data suggest

that NUP107 has an important function for renal filtration

in human podocytes. A direct link between NUP107 and

renal disease has never been shown, but NUP107 knock-

down in HeLa cells altered the localization of ELYS, and

this affected the proper localization of lamin A/C,19 an

alteration in which caused FSGS.40

Effect of the Common NUP107 p.Asp831Ala

Substitution on the Structure of the Protein and Its

Binding to NUP133

To evaluate the effect of p.Asp157Tyr and p.Asp831Ala

substitutions from a structural viewpoint, we mapped the

variant positions on the crystal structure of the yeast

Sec13-Nup145C-Nup84 complex (PDB: 3IKO),41 which is

analogous to the human SEC13-NUP96-NUP107 complex

(NUP96 is the C-terminal half product of NUP98

[GenBank: NM_016320.4; MIM: 601021], processed after

translation42,43) and the human NUP107-NUP133 com-

plex (PDB: 3CQC).14 Asp157 is predicted to reside on the

surface of the protein, suggesting that the p.Asp157Tyr

substitution does not affect the folded structure of

NUP107 (Figure S11). However, because this protein inter-

acts with many other proteins,44 the possibility that

the p.Asp157Tyr substitution might impair these inter-

actions cannot be excluded, although no such changed
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Table 2. NUP107 Mutations in Affected Individuals with Early-Onset SRNS

Mutation
Amino Acid
Change PolyPhen-2 PyloP MutationTaster Grantham EVS ExAC HGVD

In-House Exomesa

(n ¼ 575)

c.469G>T p.Asp157Tyr 0.712 2.84 0.998403 160 0 0 0 0

c.969þ1G>A splice site NA NA NA NA 0 0 0 0

c.1079_1083delAAGAG p.Glu360Glyfs*6 NA NA NA NA 0 0.0000083 0 0.0008696

c.2492A>C p.Asp831Ala 1.000 1.952 0.99995 126 0 0 0.0013587 0

Mutations were annotated according to NUP107 cDNA (GenBank: NM_020401.2). Abbreviations are as follows: EVS, NHLBI Exome Sequencing Project Exome
Variant Server; HGVD, Human Genetics Variation Database (the public exome database of the Japanese population).
aIn-house exome database of Japanese control individuals.
interaction for this particular variant site has been re-

ported. Because the Asp831 side chain forms hydrogen

bonds with the Arg842 side chain, the p.Asp831Ala substi-

tution is considered to disrupt these hydrogen bonds. To

evaluate the effects of this variant on the structure of

NUP107, we performed MD simulations for wild-type

and altered NUP107 in solution. In this substitution, a re-

gion around the variant site and a region involved in inter-

actions with NUP133 (amino acid residues 881–890) both

showed more fluctuations than did those same regions in

the wild-type protein (Figure S12). This NUP133-interact-

ing region is considered to be structurally correlated

with the variant site through van der Waals contacts

(Figure S12B). The results from theMD simulations suggest

that the p.Asp831Ala substitution impairs the molecular

interaction between NUP107 and NUP133.

Impaired Function of the Altered NUP107

Because NUP107 interacts with NUP133 via its C-terminal

tail,14 we investigated the mutational effects on the pro-

tein-protein interaction between NUP107 and NUP133

in vitro. We used an in vitro pull-down assay with recom-

binant proteins produced in a wheat germ cell-free system

to determine the contribution of the C-terminal region of

NUP107. Consistent with a previous report,14 the altered

NUP107 that lacked a third of the C-terminal region

(amino acids 645–925) did not bind to NUP133 as tightly

as wild-type NUP107 under equilibrium conditions

(Figure S13). Likewise, two truncated NUP107 proteins

with extensively shorter C termini (p.Asp324* and

p.Glu360Glyfs*6) also showed weaker binding to

NUP133. Notably, a p.Asp831Ala protein with an altered

C terminus exhibited significantly reduced binding to

NUP133, whereas a p.Asp157Tyr protein with an altered

N terminus retained full binding activity (Figure 3A).

Wild-type GFP-fused NUP107, which was transiently pro-

duced by a mammalian expression vector, was bound to

endogenous NUP133 in HeLa cells, and the p.Asp831Ala

protein was also bound to NUP133 but weakly in compar-

ison to the wild-type (Figure 3B). Observation of the intra-

cellular localization of altered GFP-NUP107 indicated that

the two truncated proteins were distributed mainly in the

cytoplasm, whereas the wild-type protein was clearly local-

ized in the nuclear envelope (Figure 3C). The p.Asp831Ala
The Americ
altered protein was localized in the nuclear envelope and

cytoplasm (Figure 3C). These results are consistent with

the impaired interaction observed between the altered

NUP107 and NUP133.

Zebrafish with nup107 Knockdown Have Glomerular

Abnormalities Mimicking SRNS

Reportedly, zebrafish with homozygous nup107 mutations

and morphants with nup107 knockdown produced with

anti-sense MOs each similarly showed a thin pharyngeal

skeleton, unfolded intestine, and loss of swim bladder and

died on days 5 and 6.20 However, the specific renal pheno-

type was not investigated. Therefore, we injected the

nup107-TB MO or nup107-SB MO to create an in-frame

(15-bp) deletion at exon 24 tomimic the commonly shared

missense mutation (c.2492A>C [p.Asp831Ala]) and then

carefully observed the renal phenotype in vivo (Figures

S14 and S15). As reported previously,20 neither of the zebra-

fishmorphants developed edema until they died at around

days 5 and 6 (Figure S14A). Furthermore, we sought to iden-

tify the glomerular filtration impairment in knockdown

zebrafish (nup107-TB MO) but did not observe any traces

of recognizable protein leakage in glomeruli at 96 hpf

(data not shown). Although zebrafish might not be the

best animal model for generating renal phenotypes, in a

microscopic section of the nup107-SB morphant, we were

able to find supportive findings in that the glomeruli were

generally underdeveloped and showed hypoplastic or

poorly organized capillary vessels and mesangial regions

(Figures S14C–S14E). Electron microscopy revealed abnor-

mally shaped foot processes and collapse of the capillary

lumen in both morphants (Figures S14F–S14K and S16).

Because these observations are similar to those from

humans with FSGS, the zebrafish morphants might reflect

the renal changes caused by the NUP107 mutation.

Unchanged NPC Localization in Lymphoblastoid

Cells from Affected Individuals with NUP107

Mutations

Reportedly, NUP107 depletion results in decreased or

absent NPCs.29,36 However, a lymphoblastoid cell line

derived from affected individuals showed no apparent

NPC loss or abnormality by immunohistochemistry anal-

ysis (data not shown), which indicates that some residual
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Figure 2. Kidney Histopathology of Affected Individuals with Biallelic NUP107 Mutations
(A–C) Light micrographs of kidney biopsy specimens from SRNS-TWH II-1. (A) A low-power view (periodic acid-Schiff stain, 1003
magnification) of two representative abnormal glomeruli (arrows). Half of the glomerulus is sclerosed (arrowheads). (B and C) Enlarged
images (periodic acid methenamine silver stain, 4003 magnification) show the collapse of glomerular tufts with hypertrophy and hy-
perplasia of the glomerular epithelial cells that fill the urinary space. Tubular injury accompanying atrophy of epithelia and interstitial
fibrosis is noted.
(D–F) Electron micrographs of biopsy specimens from SRNS-2 II-1 (D), SRNS-2 II-3 (E), and SRNS-2 II-4 (F). Effacement of podocyte foot
processes and some mesangial expansion with sub-endothelial electron-dense deposits are apparent. The thickness of the glomerular
basement membrane appears normal and shows no evidence of splitting, lamellation, or fragmentation, thereby excluding the possibil-
ity of a primary basement-membrane defect. Accumulation of storage materials and dysmorphic mitochondria were not found in the
podocyte cytoplasm. Abbreviations are as follows: E, endothelial cell; M, mesangial cell; P, podocyte; Pa, papillary epithelia. Arrowheads
indicate effacement of podocyte foot processes, yellow arrows represent electron dense deposits, black arrows show flattened podocyte
foot processes, and yellow asterisks show paramesangial deposits.
Scale bars represent100 mm (A), 40 mm (B and C), 2 mm (D and E), and 5 mm (F).
functions of altered NUP107 might persist in the cells of

affected individuals, at least under non-stressful condi-

tions. NUP107 is an essential scaffold protein in the

NPC, a structure that is evolutionary conserved from yeast

to vertebrates.29,36 Therefore, in the null state, NUP107

mutants might be lethal in humans.
Discussion

In this study, we have shown that biallelic NUP107

mutations cause early-onset SRNS in humans. Affected
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individuals with NUP107 mutations usually developed

SRNS at 2–3 years of age and progressed to ESRD before

10 years of age but experienced no recurrence of the

disease after renal transplantation. How do NUP107 mu-

tations cause a glomerular phenotype in humans? This

might be partly explained by the specific properties of

podocytes, which are highly differentiated with a unique

architecture (foot processes and slit membranes).45,46

In affected individuals with NUP107 mutations, insuffi-

cient NUP107 function could cause immature and/

or hypoplastic podocytes, or at least functionally

impaired podocytes that are progressively destroyed by
1, 2015



Figure 3. Decreased Intermolecular Interactions between NUP107 and NUP133
(A) In vitro protein-protein binding assay of altered NUP107 with NUP133. The FLAG-tagged NUP133 mixed with biotinylated altered
NUP107 proteins was subjected to a pull-down assay with streptavidinmagnetic beads. The bound proteins were separated by SDS-PAGE
and then detected with an anti-FLAG antibody or with streptavidin-horseradish peroxidase. The corresponding protein inputs are
shown in the middle and bottom panels.
(B) Evaluation of the interaction between NUP107 and NUP133 with the use of wild-type NUP107 and its alterations. Wild-type GFP-
NUP107 or its alterations were transiently produced in HeLa cells and precipitated with an anti-GFP antibody. The NUP107-NUP133
interaction was analyzed via immunoblotting using the antibodies indicated.
(C) Subcellular localization of NUP107 or its alterations. For visualizing localization of altered or wild-type GFP-NUP107 in HeLa cells,
the cells were fixed and stained with a MAb414 antibody recognizing the NPC on the nuclear envelopes. Scale bars represent 20 mm.
The following abbreviation is used: WT, wild-type.
increased filtration pressure after birth. Interestingly,

nuclear-envelope proteins, including NPCs, are closely

associated with mechanotransduction signaling,47,48

and mechanical stretching decreases podocyte prolifera-

tion and cell-body size by reorganizing the actin cyto-

skeleton in vitro.49,50 Thus, increased post-natal capillary

pressure leading to mechanical stretching of vulnerable

podocytes might accelerate glomerulus damage. Further-

more, mature podocytes do not regenerate.51,52 Thus,

the core pathological condition of SRNS caused by

NUP107 mutations is a structural abnormality, which

correlates well with the early SRNS onset in childhood,
The Americ
its steroid resistance, and its lack of post-transplant

relapse (Figure S17).

Recently, a homozygous missense mutation (c.303G>A

[p.Met101Ile]) was reported in an affected individual

who is from a consanguineous family and presents with

global developmental delay and early-onset FSGS.53 How-

ever, none of our affected individuals with NUP107 reces-

sive mutations show neurological impairment. Additional

genetic factors might be involved in the neurological

symptoms of the consanguineous family. Alternatively,

different mutations could cause an additional neurological

phenotype. This mutation has been suggested to lead to
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abnormal splicing (and possibly a nearly null function),

although no direct evidence has been shown.53 As for

p.Asp157Tyr, we could not find direct evidence of its

functional impairment experimentally. However, it could

be a hypomorphic variant; if so, this might explain the

milder phenotype in the SRNS-12 family, who carries

both missense mutations (c.469G>T [p.Asp157Tyr] and

c.2492A>C [p.Asp831Ala]). Thus, it is possible that the re-

sidual NUP107 function left by missense mutations

(including c.469G>T [p.Asp157Tyr]) is related to the late

onset age and/or milder severity of the disease. It is

intriguing that mutations in NUP107, which encodes an

essential nucleoporin of the NPC, lead to a kidney-specific

disease in humans.

In summary, biallelic NUP107 mutations cause early-

onset SRNS for which renal transplantation is the only

effective treatment. Access to genetic information is

useful for proper clinical management of NS. Therefore,

screening NUP107 mutations in SRNS individuals with

broad ranges of clinical severity is strongly encouraged.

Furthermore, we did not identify the genetic cause in six

pairs of affected siblings and seven single affected individ-

uals in our cohort, which implies a heterogenetic etiology

for early-onset SRNS. Further research is necessary to un-

cover the whole picture of this type of SRNS.
Supplemental Data

Supplemental Data include a supplemental note, 17 figures, and 8

tables and can be found with this article online at http://dx.doi.

org/10.1016/j.ajhg.2015.08.013.
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45. Pavenstädt, H., Kriz, W., and Kretzler, M. (2003). Cell biology

of the glomerular podocyte. Physiol. Rev. 83, 253–307.

46. Quaggin, S.E., and Kreidberg, J.A. (2008). Development of

the renal glomerulus: good neighbors and good fences. Devel-

opment 135, 609–620.

47. Swift, J., and Discher, D.E. (2014). The nuclear lamina is

mechano-responsive to ECM elasticity in mature tissue.

J. Cell Sci. 127, 3005–3015.
566 The American Journal of Human Genetics 97, 555–566, October
48. Fedorchak, G.R., Kaminski, A., and Lammerding, J. (2014).

Cellular mechanosensing: getting to the nucleus of it all.

Prog. Biophys. Mol. Biol. 115, 76–92.

49. Endlich, N., Kress, K.R., Reiser, J., Uttenweiler, D., Kriz, W.,

Mundel, P., and Endlich, K. (2001). Podocytes respond to

mechanical stress in vitro. J. Am. Soc. Nephrol. 12, 413–422.

50. Petermann, A.T., Hiromura, K., Blonski, M., Pippin, J., Mon-

kawa, T., Durvasula, R., Couser, W.G., and Shankland, S.J.

(2002). Mechanical stress reduces podocyte proliferation

in vitro. Kidney Int. 61, 40–50.

51. Kriz, W. (1996). Progressive renal failure–inability of podo-

cytes to replicate and the consequences for development of

glomerulosclerosis. Nephrol. Dial. Transplant. 11, 1738–1742.

52. Nagata, M., Nakayama, K., Terada, Y., Hoshi, S., and Wata-

nabe, T. (1998). Cell cycle regulation and differentiation in

the human podocyte lineage. Am. J. Pathol. 153, 1511–1520.

53. Alazami, A.M., Patel, N., Shamseldin, H.E., Anazi, S., Al-

Dosari, M.S., Alzahrani, F., Hijazi, H., Alshammari, M., Aldah-

mesh, M.A., Salih, M.A., et al. (2015). Accelerating novel

candidate gene discovery in neurogenetic disorders via

whole-exome sequencing of prescreened multiplex consan-

guineous families. Cell Rep. 10, 148–161.
1, 2015

http://refhub.elsevier.com/S0002-9297(15)00363-8/sref41
http://refhub.elsevier.com/S0002-9297(15)00363-8/sref41
http://refhub.elsevier.com/S0002-9297(15)00363-8/sref42
http://refhub.elsevier.com/S0002-9297(15)00363-8/sref42
http://refhub.elsevier.com/S0002-9297(15)00363-8/sref42
http://refhub.elsevier.com/S0002-9297(15)00363-8/sref42
http://refhub.elsevier.com/S0002-9297(15)00363-8/sref43
http://refhub.elsevier.com/S0002-9297(15)00363-8/sref43
http://refhub.elsevier.com/S0002-9297(15)00363-8/sref43
http://refhub.elsevier.com/S0002-9297(15)00363-8/sref43
http://refhub.elsevier.com/S0002-9297(15)00363-8/sref44
http://refhub.elsevier.com/S0002-9297(15)00363-8/sref44
http://refhub.elsevier.com/S0002-9297(15)00363-8/sref44
http://refhub.elsevier.com/S0002-9297(15)00363-8/sref44
http://refhub.elsevier.com/S0002-9297(15)00363-8/sref45
http://refhub.elsevier.com/S0002-9297(15)00363-8/sref45
http://refhub.elsevier.com/S0002-9297(15)00363-8/sref46
http://refhub.elsevier.com/S0002-9297(15)00363-8/sref46
http://refhub.elsevier.com/S0002-9297(15)00363-8/sref46
http://refhub.elsevier.com/S0002-9297(15)00363-8/sref47
http://refhub.elsevier.com/S0002-9297(15)00363-8/sref47
http://refhub.elsevier.com/S0002-9297(15)00363-8/sref47
http://refhub.elsevier.com/S0002-9297(15)00363-8/sref48
http://refhub.elsevier.com/S0002-9297(15)00363-8/sref48
http://refhub.elsevier.com/S0002-9297(15)00363-8/sref48
http://refhub.elsevier.com/S0002-9297(15)00363-8/sref49
http://refhub.elsevier.com/S0002-9297(15)00363-8/sref49
http://refhub.elsevier.com/S0002-9297(15)00363-8/sref49
http://refhub.elsevier.com/S0002-9297(15)00363-8/sref50
http://refhub.elsevier.com/S0002-9297(15)00363-8/sref50
http://refhub.elsevier.com/S0002-9297(15)00363-8/sref50
http://refhub.elsevier.com/S0002-9297(15)00363-8/sref50
http://refhub.elsevier.com/S0002-9297(15)00363-8/sref51
http://refhub.elsevier.com/S0002-9297(15)00363-8/sref51
http://refhub.elsevier.com/S0002-9297(15)00363-8/sref51
http://refhub.elsevier.com/S0002-9297(15)00363-8/sref52
http://refhub.elsevier.com/S0002-9297(15)00363-8/sref52
http://refhub.elsevier.com/S0002-9297(15)00363-8/sref52
http://refhub.elsevier.com/S0002-9297(15)00363-8/sref53
http://refhub.elsevier.com/S0002-9297(15)00363-8/sref53
http://refhub.elsevier.com/S0002-9297(15)00363-8/sref53
http://refhub.elsevier.com/S0002-9297(15)00363-8/sref53
http://refhub.elsevier.com/S0002-9297(15)00363-8/sref53
http://refhub.elsevier.com/S0002-9297(15)00363-8/sref53

	Biallelic Mutations in Nuclear Pore Complex Subunit NUP107 Cause Early-Childhood-Onset Steroid-Resistant Nephrotic Syndrome
	Introduction
	Material and Methods
	Human Subjects
	DNA Extraction
	Whole-Exome Sequencing and Informatics Analyses
	Haplotype Analysis
	Expression of Human NUP107
	Histopathology and Transmission Electron Microscopy on Samples from Individuals with Early-Onset SRNS
	Immunofluorescence Microscopy
	Expression Vectors
	Cell-free Protein Synthesis and In Vitro Pull-Down Assays
	Immunoprecipitation
	Subcellular Localization of NUP107
	Zebrafish Knockdown by Microinjection of Morpholino Oligonucleotides
	RNA Isolation and RT-PCR Analysis
	Histopathology and Transmission Electron Microscopy of Zebrafish
	Molecular-Dynamics Simulation of the p.Asp831Ala Substitution in NUP107

	Results
	Pathogenic Mutations Detected by WES
	A Common Haplotype Harboring c.2492A﹥C
	Clinical Characterization of NUP107-Related SRNS
	NUP107 Function and NUP107 Expression in Humans
	Effect of the Common NUP107 p.Asp831Ala Substitution on the Structure of the Protein and Its Binding to NUP133
	Impaired Function of the Altered NUP107
	Zebrafish with nup107 Knockdown Have Glomerular Abnormalities Mimicking SRNS
	Unchanged NPC Localization in Lymphoblastoid Cells from Affected Individuals with NUP107 Mutations

	Discussion
	Supplemental Data
	Acknowledgments
	Web Resources
	References


