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The innate immune sensor RIG-I recognizes viral RNAwhile avoiding unwanted activation by self RNA. In this
issue of Immunity, Schuberth-Wagner et al. (2015) show that a histidine residue in the RNA binding pocket of
RIG-I sterically excludes the cap1 structure of self RNA, thereby preventing downstream activation.
The innate immune sensors RIG-I and

MDA5 sense RNA virus genomes, leading

to activation of the transcription factor

IRF3 and induction of interferon-mediated

antiviral responses.Structural studies indi-

cate that RIG-I recognizes the 50 triphos-
phate terminus of double-stranded RNA

(dsRNA) (reviewed in Kolakofsky et al.,

2012), whereas MDA5 binds the internal

duplex structure (Wu et al., 2013). Similar

to viral RNAs, endogenous host RNAs

also contain a 50 triphosphate end. The

mechanisms by which sensors like RIG-I

and MDA5 can distinguish viral from self

RNA have been under active investigation

(Anchisi et al., 2015; Kato et al., 2011).

Accumulating evidence suggests that

enzymatic modification of host RNA con-

fers molecular signatures that mask an

otherwise stimulatory molecule (Hornung

et al., 2006; Pichlmair et al., 2006).

Eukaryotic mRNA is characterized by

a cap structure that consists of a 50

triphosphate linked to a methylated gua-

nosine at N7 (m7G). This cap0 structure

is essential for translation initiation and

mRNA stability. The mRNA of higher eu-

karoytes is also modified by 20O-methyl-

ation at N1 (cap1) and N2 (cap2). Previous

studies implicated the cap0 structure of

RNA ligands as an inhibitory modification

to RIG-I activation. However, additional

work demonstrated that the in vitro

transcription protocols typically used

to generated these ligands can also

generate aberrant 50 triphosphate-con-

taining RNAs that activate RIG-I (Schlee

et al., 2009). A systematic characterization

of the relative contributions of host modifi-

cations to the stimulatory or inhibitory

properties of synthetic (not in vitro-tran-

scribed) dsRNA has not been carried out.

In this study, Schuberth-Wagner et al.

(2015) sought to characterize which of

these 50 mRNA modifications prevent

RIG-I activation. In lieu of in vitro transcrip-
tion, they synthesized a series of well-

defined 24-mer RNA ligands containing a

50-triphosphate (ppp-RNA) and one or

more features of cap0, cap1, or cap2

RNAs. Single-stranded RNAs containing

these modifications were hybridized to a

complementary RNA to generate blunt-

ended dsRNA molecules. The identity and

purity of the capped RNAs were verified

bymass spectrometry. The various RNA li-

gandswere transfected intohumanperiph-

eral blood mononuclear cells (PBMCs) or

murine bone-marrow-derived dendritic

cells, and RIG-I activation was measured

by IFN-a production. The authors found

that a single 20O-methyl group at N1

(pppGmA, cap1 modification) completely

abolished RIG-I activation (Figure 1),

whereas the cap0 and cap2 modifications

only modestly reduced IFN-a induction.

To determine structural features of RIG-I

that confer protection from activation by

self RNAs, the authors mutated selected

amino acids in the RIG-I RNA binding

pocket. The RIG-I mutants were assayed

for activation by IP-10 induction in RIG-I-

deficient 293 cells. An unmodified ppp-

dsRNA unexpectedly showed higher acti-

vation in cells expressing RIG-I with a

mutation (H830A) as compared to wild-

type RIG-I. Because H830 is dispensable

for activation and has been shown to con-

tact the 20OH of N1 in activating ligands,

the authors hypothesized that RNA ligands

with a 20O-methyl modification at N1 might

be subject to steric exclusion in the binding

pocket, thereby precluding activation.

To address this, the authors compared

RIG-I(WT) and RIG-I(H830A) activation by

their panel of 50-modified 24-mer dsRNAs.

Whereas RIG-I(WT) was not activated by

ppp-dsRNAcontaininga20O-methylgroup

atN1 (pppGmA),RIG-I(H830A)wassuscep-

tible to activation by this ligand (Figure 1).

A similar ligand with a m7G cap (m7G-

pppGmA) also activated RIG-I(H830A).
Immu
In vitro binding studies using WT and

H830A RIG-I largely confirmed the acti-

vation phenotypes. Ligands bearing cap1

modifications (m7G-pppGmA) bound RIG-

I(H830A) but not RIG-I(WT). In the absence

of the m7G modification, binding of the N1-

modified pppGmA dsRNA to RIG-I(H830A)

was reduced but not abolished. The au-

thors hypothesize that this unexpected

result might be due to residual, non-

competitive binding. Together, the results

suggest that H830 sterically excludes

ppp-dsRNAbearing20O-methylationatN1.

Because H830 is strictly conserved

across evolution and prevented RIG-I acti-

vation by N1-2
0O-methylated ppp-dsRNA,

theauthorsproposed that selfRNAbearing

thisprotective20O-methylationmight exist.

They first showed that long-term expres-

sionofRIG-I(H830A) incells lackingendog-

enous RIG-I(WT) could eventually trigger

IP-10 production in the absence of an

exogenous activating ligand, suggesting

cellular accumulation of RNAs bearing

20O-methylation at N1. The authors then

immunoprecipitated cellular RNAs that

associated with a FLAG-tagged RIG-I

truncation containing the ppp-dsRNA

binding domain (RD domain). These puri-

fied RNAs activated RIG-I(H830A), but not

RIG-I(WT), further implicating theexistence

of self RNAs that are modified to avoid

RIG-I activation. Lastly, siRNA-mediated

silencing of the endogenous cap1 methyl-

transferase (hMTr1) resulted in IFN induc-

tion in the presence, but not absence, of

RIG-I. These results indicated that the

host uses cap1 modification to prevent

the formation of self RNAswith immunosti-

mulatory properties.

To explore the relevance of 20O-methyl-

ation at N1 in the context of self versus

non-self RNA, the authors turned to the

flaviviruses, which express a 20O-methyl-

transferase activity as part of the multi-

functional non-structural protein 5 (NS5).
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Figure 1. Schematic of RIG-I Exclusion of Self RNA
The RIG-I helicase andC-terminal regulatory domain (blue ring) recognize dsRNA (red helix) containing a 50

triphosphate. In the absence of 20O-methylation at N1, a common feature of many viral RNAs, the dsRNA
binds RIG-I to activate downstream responses. Self RNA (and some evasion-competent viral RNA, such
as flavivirus) contains a 20O-methyl group at N1, which is excluded from the RIG-I binding pocket by a high-
ly conserved H830 residue. With a H830A mutation, RIG-I is susceptible to activation by 20O-methylated
self RNAs. For simplicity, the m7G modification has been omitted from the illustration.
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A yellow fever virus replicon (YFVR)

bearing a NS5 E218A mutation, which ab-

rogates 20O-methylation activity, was

used to determine whether the virus natu-

rally uses 20O-methylation to evade host

recognition by RIG-I. In RIG-I-replete

A549 cells, replication of the YFVR-

E218A genome was attenuated when

compared to YFVR-WT. By contrast,

IFN-deficient Vero cells replicated both

E218A and WT YFVR to similar levels.

Similar results were obtained with fully

infectious viruses. When RIG-I(WT) was

expressed in RIG-I-deficient cells, YFVR-

E218A stimulated higher amounts of IP-

10 production when compared to YFVR-

WT. By contrast, both YFVR-WT and

YFVR-E218A activated cells expressing

RIG-I(H830A) to similar levels. These data

indicate that YFV NS5 methyltransferase

marks theviralRNAwitha20O-methylation

that evades recognition and activation of

RIG-I(WT) but not RIG-I(H830A).
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The findings in this study potentially

resolve the issue of how RIG-I can distin-

guish viral from self RNA. By capitalizing

on a highly conserved H830 residue,

RIG-I sterically avoids host RNAs contain-

ing a cap1 modification (Figure 1). This

result highlights a new function for 20O-

methylation, a well-known but not neces-

sarily well-understood RNA modification.

Recent work has also indicated that 20O-

methylation of viral RNAs allows viruses

to evade host restriction by MDA5 and

IFIT family members (Daffis et al., 2010;

Züst et al., 2011), suggesting an increas-

ingly critical role for this RNAmodification.

This study implicates the existence of

a pool of self RNAs that can serve as

endogenous ligands for RIG-I. The stimu-

latory activity of these RNAs could be

revealed only by removing their 50 modifi-

cations or by using cells expressing RIG-

I(H830A) mutant. The identity and nature

of theseactivating self RNAswasnot char-
Inc.
acterized in this study. Thus, it is intriguing

to speculate whether they are random and

varied, or whether they fall into a specific

class of RNAs that might have functional

consequences to the immune system or

the host cell in general. It will also be of

great interest to determine whether a

similar pool of self RNAs exists in vivo.

Another consideration stemming from

this study is the potential for customiz-

able RIG-I-based ligands. Whereas 20O-

methylation at N1 abolished RIG-I activa-

tion, 20O-methylation at N2 was still

partially activating, but not to the extent

of non-methylated ppp-dsRNA. Thus,

one can envision generating novel RIG-I

ligands with titratable activation profiles

depending on their modifications. More-

over, the finding that H830 in the dsRNA

binding pocket of RIG-I is critical for

excluding self RNAs suggests that the

RIG-I binding pocket might also be cus-

tomizable. Engineering customRIG-I mol-

ecules with tailor-made ligands could pro-

vide useful tools for additional research

into ‘‘self versus non-self’’ recognition,

and might also serve as a platform for

the development of novel therapeutics.
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