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a b s t r a c t

We study cellular automata with respect to a new communication complexity problem:
each of two players know half of some finite word, and must be able to tell whether the
state of the central cell will follow a given evolution, by communicating as little as possible
between each other. We present some links with classical dynamical concepts, especially
equicontinuity, expansivity, entropy and give the asymptotic communication complexity
of most elementary cellular automata.
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0. Introduction

Cellular automata (CA) were introduced in the fifties in order to represent natural complex systems. They were soon
studied as a computational model, especially for parallelism. Indeed, they can be seen as wide networks of small machines
communicating locally.

Introduced in [11], the communication complexity of a function f measures howmuch datamust be exchanged between
two machines which have part of the input of f in order for one to be able to compute f . This approach, representing
the degree of parallelism needed, was adapted to the context of CA in [4] and gave interesting results in [5–7] that
help understand the computation represented by some CA. The complexity notion that these references use is somehow
orthogonal to classical ones. For instance, bipermutive CA, which show strongly chaotic behaviors for many reasonable
definitions, appear to be simple with respect to this complexity measure.

In this article, we study a new variant of communication complexity problem, which involves more links with dynamical
chaos. In the first section, we give the definition of cellular automata and communication complexity. Thenwe address some
properties of cellular automata which allow some simple protocols. The third and fourth section are devoted to the links
with trace, entropy and expansivity.

1. Definitions

1.1. Cellular automata

A CA consists in a sequence of cells with states in some alphabet A, evolving according to their neighbors. We restrict our
study to one-dimensional CA with nearest neighbors. This choice will be crucial for our definitions, but they still somehow
apply to all one-dimensional CA since it is known that they can be simulated in a direct way by CA with nearest neighbors.
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Fig. 1. Some traces of the configuration w = 00101100000101110 by CA rule 28.

In this context, a cellular automaton (CA) is a map f : A3
→ A. In particular, if A = {0, 1}, there are exactly 256 so-called

elementary CA, which can be referred to by the following canonical number:
∑

a,b,c∈{0,1} f (abc)2
4a+2b+c .

We denote [i, j] the integer interval {k ∈ Z| i ≤ k ≤ j }. In order to simplify notation, a configuration w is a finite word of
odd length 2n+ 1 whose indexes are centered around the origin, i.e. w = w−nw−n+1 . . . wn ∈ A[−n,n]. Moreover, if [i, j] is a
subinterval of an interval I andw ∈ AI thenw[i,j] represents the patternwi . . . wj. If u ∈ A[i,j] and v ∈ A]j,k] for some intervals
[i, j] , ]j, k] ⊂ Z, then we will note uv ∈ A[i,k] the corresponding obvious juxtaposition of the two words.

The local rule of a CA can be applied in a parallel and synchronous way: f : A3
→ A is extended to all w ∈ A[i,j] with

j − i ≥ 2 by defining f̃ (w) ∈ A[i+1,j−1] as f̃ (w)k = f (wk−1, wk, wk+1) for all k ∈ [i+ 1, j− 1]; for convenience f̃ is again
written as f . We can therefore consider the iteration f t over any word w ∈ A[i,j] with j− i ≥ 2t .

Given an initial configuration w ∈ A[−n,n], its trace over a non-empty interval [i, j] ⊂ [−n, n] of cells is the sequence
of words f t(w)[i,j] ∈ A[i,j] that one observes in the space–time diagram for input w. One has to restrict this to time steps
0 ≤ t ≤ n − max(|i| , |j|) for which the states of all cells in [i, j] are defined. With the exception of Section 4, in the paper
only the special case i = j is considered. One then gets:

T {i}f : A
[−n,n]
→ A[0,n−|i|]

w → (t → f t(w)i) .

We will write Tf = T {0}f , corresponding to the central column of the computation triangle. It is a characteristic symbolic
system linked to the CA dynamics, which was for instance proved very complex in [1].

1.2. Communication complexity

Let f be a map defined over some Cartesian product X × Y into A. If (x, y) ∈ X × Y , consider that two people, Alice and
Bob, are given x and y respectively, andmust compute the value f (x, y) by communicating as little as possible between each
other. This gives two variants of communication complexity (CC). Themulti-round CC of f is the cost of the best communication
protocol between the two players allowing one of them to produce the result f (x, y). In other words, assume Alice and Bob
agree on some deterministic protocol depending only on function f (a sequence of data exchange from one to anotherwhere
each message may depend on the previous ones); we are interested in the maximum for all possible inputs x and y, of the
number of bits exchanged between them, eventually allowing one of them to compute the result. The multi-round CC is the
minimum of these maxima for all possible protocols they could have agreed on.

The left (one-round) CC is the worst case number of bits that Alice needs to send in order to allow Bob to directly compute
the result; it corresponds to a protocol where only Alice sends information. We can similarly define the right CC. Of course,
the multi-round CC is at most equal to the minimum between the two one-round CCs.

A function f : {0, 1}n × {0, 1}n → {0, 1} can be represented by the square matrix M of size 2n such that Mi,j =

f ((un−1 . . . u0), (v0 . . . vn−1)) if i =
∑

k<n uk2k and j =
∑

k<n vk2k. Then it is known (see for instance [9]) that the left (resp.,
right) CC of f can be seen as the logarithm of the number of distinct lines (resp., columns) in the matrix M . Moreover, the
multi-round CC is conjectured in [10] to be polylogarithmic in the rank of M . We will see some examples of such matrices,
which help to get an intuition of the asymptotic CC: the complexity of the matrix in terms of number of distinct columns or
lines is very visual.

A subset S ⊂ X × Y is a fooling set for f if for every two distinct pairs (x, y), (x′, y′) ∈ S, we have f (x, y) = f (x′, y′) and
either f (x′, y) or f (x, y′) is distinct from f (x, y).

Proposition 1 ([9]). If a function f admits a fooling set S, then its multi-round CC is lower-bounded by log |S|.

1.3. Traced communication complexity

We can actually view a CA f as computing a function. The sequence of words f t(w) for 0 ≤ t < n and w = w−n . . . wn ∈

A[−n,n] (drawn in Fig. 1) is the computation triangle. If we consider that Alice initially knows w−n . . . w0 and Bob w0 . . . wn,
it is obvious that the former can compute the word f t(w)[t−n,−t] and the latter the word f t(w)[t,n−t], for 0 ≤ t ≤

 n
2


. The

other parts of the computation triangle will a priori require information exchange between Alice and Bob.
In [4,5], CC has been applied to CA, basically as that of the computation of the top cell, i.e. the CC of the map

(w[−n,−1], w[1,n]) → f n(w), for any n ∈ N, where Alice and Bob share some fixed w0. We will refer to this notion as classical
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Fig. 2. One-round protocol for the traced CC.

CC. In [6], this notionwas generalized to arbitrary cutting position (not always 0) betweenAlice’sword and Bob’s. In [7], some
new problems, the so-called invasion and cycle length, were associated to the CA. In each of these, the idea is to consider the
CA as complex (resp. simple) if the CC is asymptotically linear (resp. constant) when the size n of the input grows to infinity.

In a binary alphabet, the classical problem is for Alice and Bob to know whether the top cell of the computation triangle
is a 1. Instead of this we can require them to determine whether some state 1 appears in the central column, i.e. whether
f t(w)0 = 1 for some step t ∈ [0, n]. More generally, having fixed an arbitrary alphabet A, an integer n ∈ N and a word
z ∈ An+1, consider the indicator function:

f̂z : A[−n,1]
× A[1,n]

→{0, 1}

(u, v) →


0 if Tf (uz0v) = z
1 otherwise.

See Fig. 2 for an visual intuition of the function. Its CC will be referred to as the traced CC.
Note that the rule f and the word z are fixed, hence allowing Alice and Bob to agree on a protocol which will depend on

them. We will see some examples of simple reasoning on the local rule to bound the CC corresponding to some given word
z, often the uniform word z = 0n+1. We then study some properties inspired by topological dynamics which imply either
low CC for anyword z or high CC for someword. The idea is more or less to consider a CA as (extremely) complex if there is a
linear map of nwhich lower-bounds the maximal multi-round CC corresponding to the words of length n. On the contrary,
it will be considered as (extremely) simple if any such CC is bounded by a constant. When considering the word 0n+1, note
that (each version of) the CC f̂0n+1 is nondecreasing on n, since if a 1 appears in the trace within n steps, then in particular
it appears within n+ 1 steps. We will abusively say that the CC of f̂0n+1 is constant when it is asymptotically, i.e. when it is
bounded by some constant.

In the next sections, an alphabet A, an integer n ∈ N and a word z ∈ An+1 are fixed, unless explicitly stated otherwise.
Each figure presented further will represent, for some elementary CA f , the matrix of the function f̂0n+1 (assimilating gray
with black), superposed with the corresponding matrix corresponding to the classical CC (assimilating white with gray); in
other words, gray cells correspond to the words whose evolution has reached state 1 but eventually came back to state 0.

2. Simple communications

2.1. Onesided rules

Similarly to the classical CC, the traced CC of any onesided CA, i.e. those that depend only on either left cells or right cells,
is clearly constant: one of the two parties is completely able to compute the function f̂z by himself. We can be a little more
general in the (nearly) uniform case.

If B ⊂ A, then a CA f is B-leftsided if ∀a, c, d ∈ A, b ∈ B, f (abc) = f (abd). Similarly, we define B-rightsided CA. A CA is
B-onesided if it is either B-leftsided or B-rightsided. If all letters of z are in B, one party can compute the evolution of the
central cell if it stays in B; if it does not, then the trace cannot be z. Hence, no communication is needed.

Proposition 2. For any B-onesided CA f , the one-round CC for f̂z , with z ∈ Bn+1, is at most 1.

Proof. Let us prove the result for left CC; the case of right CC is symmetric.

• If it is B-leftsided, Alice can compute whether some letter which is not in B appears in the central cell and give the answer
to Bob.
• If it is B-rightsided, she does not say anything to Bob; he will be able to find the answer by himself. �

For z = 0n+1, the previous proposition can be applied to the 64 0-onesided elementary CA (B-onesided for B = {0}), i.e.
those whose number can be written as a7a6a4a4a3a2a0a0 or a7a6a1a0a3a2a1a0 in base 2 (Fig. 3).
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Fig. 3.Matrix of the rule 143.

Fig. 4.Matrix of the rule 182.

2.2. Spreading states

A state 0 ∈ A is quiescent for the CA f if f (000) = 0. Consider a subalphabet B ⊂ A. We note B̄ the complementary
subalphabet A \ B (we may also note 0̄ = A \ {0}). We say that B is left semi-strongly spreading (resp., weakly spreading) for
the CA f if f (AB̄B) ⊂ B (resp., f (B̄B̄B) ⊂ B). Symmetrically, right spreadingness can be defined.

We can see that any elementary CA forwhich state 1 is both left and right semi-strongly spreading and state 0 is quiescent
has f̂0n+1(u, v) = 1 if and only if u0v contains some 1, which will progressively spread towards the center. The following
proposition generalizes this observation.

Proposition 3. If 0 is quiescent and 0̄ is left semi-strongly spreading, then the right CC for f̂0n+1 is at most 1.

Proof. If Bob has a letter in 0̄, then he knows that it will spread towards the center, and he can say with one bit to Alice that
f̂ will give 1. Otherwise Alice knows that he has word v = 0n. �

Symmetrically, if 0 is quiescent and 0̄ is right semi-strongly spreading, then the left CC for f̂0n+1 is constant. On the other
hand, if f is an elementary CA such that 0̄ is semi-strongly spreading but 0 is not quiescent, then a rapid case study shows
that we always have f̂0n+1 = 1 as soon as n > 1. We globally obtain, whenever 0̄ is semi-strongly spreading, a constant CC
for f̂0n+1 . This corresponds to the 96 elementary CA whose number in base 2 can be written either as a7a611a3a2a1a0 or as
a7a61a4a3a21a0 (Fig. 4).

2.3. Stagnating states

A word u ∈ A∗ is stagnating for the CA f if ∀a, b ∈ A, f (aub) = u.
In this subsection, we assume A = {0, 1}. Note that if 0 is stagnating, then the rule is both 0-leftsided and 0-rightsided

and we have already seen that the one-round CC is constant. We can generalize this to the following case.

Proposition 4. If 0 is quiescent and 1 is neither left nor right weakly spreading, then both one-round CCs for f̂0n+1 are at most 1.
Proof. • If f (101) = 0, then 0 is stagnating; this is a subcase of Proposition 2.
• If f (101) = 1, then 00 is stagnating, but single 0s disappear. Hence f̂ (u, v) = 0 if and only if u−1 = 0 or v1 = 0. The

result of this test can be transmitted in one bit. �

This proposition applies to the elementary CA who map 0 to any neighborhood containing two consecutive 0s, i.e. whose
number in base 2 can be written a7a6a50a3a200 (Fig. 5).

Remark 5. Any elementary CA f with stagnating 1 has a CC for f̂0n+1 equal to its classical CC. Indeed, for any words
u ∈ A[−n,−1] and v ∈ A[1,n], f̂0n+1(u, v) is equal to f n(u0v). For instance, from [7], the CA 222 has logarithmic CC for f̂0n+1
(Fig. 6).

3. Trace protocol

In order to decide whether Tf (uz0v) = z or not, Alice and Bob need to compute only until the first step t ∈ [1, n] when
the central state does not correspond to zt . In a first approximation, each of them can compute their side by assuming that
the central column corresponds to z – note that this central column and his/her initial word completely determine his/her
half-triangle, since the rule has radius 1 – and then check if this assumption could lead to a contradiction (Fig. 7).
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Fig. 5. Matrix of the rule 232.

Fig. 6. Matrix of the rule 222.

Fig. 7. Trace protocol in Bob’s side.

Formally, for v ∈ A[1,n] we define f 0
→z(v) = v and for t < n − 1, f t+1

→z (v) = f (zt f t→z(v)), which is an element of A[1,n−t].
Then Tf→z(v) = (f t

→z(v)1)t<n represents the column that should be just right to the column z in a computation triangle
where Bob has word v (if ever such a triangle is possible).

The word Tf→z(v) actually represents a valid message from Bob to Alice. In particular, if it has a short algorithmic
complexity, then the right CC will be low.

Proposition 6. The right CC for f̂z is upper-bounded by

log

Tf→z(A[1,n])
.

Proof. If Alice has word u, Bob word v and m is such that for any step t < m, the central letter of f t(uz0v) is zt , then by an
immediate recurrence, we have ∀t < m, f t+1(uz0v)0 = f (Tf←z(u)tztTf→z(v)t). In


log

Tf→z(A[1,n])
 bits, Bob can encode

the data of the word Tf→z(v), and give it to Alice. She can then compute Tf←z(v); she answers that f̂z(u, v) = 0 if and only
if the successive central cells represent a valid application of the local rule when juxtaposing the three columns. �

Let us see a little variant of the previous result. Consider the set τf→z =


T {1}f (w)

 w ∈ A[−n,n] and Tf (w) = z

of all

possible columns juxtaposed at the right of z in some (full valid) computation triangle. Note that all of its elements can be
written as Tf→z(w[1,n]), but the converse is false in the sense that the right half-triangle built with some Tf→z(v) could be
impossible to extend to the left.

Proposition 7. The right CC for f̂z is upper-bounded by

log

τf→z
+ 1


.

Proof. Looking back at the previous proof, note that Bob can encode in

log

τf→z
+ 1


bits the data of the word Tf→z(v)

in the case when it belongs to τf→z , and some prespecified extra code otherwise. In the first case, Alice will be able to
compute f̂z(u, v) as before. In the second case, Alice will know that there is no possible initial word of right part v which can
give z as a trace, hence f̂z(u, v) = 0. �

Symmetrically, we can define Tf←z and τf←z in Alice’s side. The left CC for f̂z is upper-bounded by

log

Tf←z(A[1,n])
, and

by

log

τf←z
+ 1


.

3.1. Grouping

Let us see a simple class of CA where Alice and Bob’s sides can be seen independently enough, each one with the
information of the trace, to get a very low CC: they do not even need to send their Tf→z or Tf←z words to one another.

Let f : A3
→ A be a CA. We define its 2-grouped as the CA f <2> on alphabet A2 defined by f <2>((x−1, y−1), (x0, y0),

(x1, y1)) = (f (y−1, x0, y0), f (x0, y0, x1)). It can be seen as the same CA where the cells have been grouped 2 by 2.
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Fig. 8.Matrix of the rule 159.

Grouping is one of the interesting tools allowing to define cellular simulation and intrinsic universality, which are a way
to order the CA in terms of their ability to embed the dynamics of other CA (see for instance [2]). The classical CC of CA
has been used to prove the non-ability of a CA to simulate other CA, based on the fact that this CC is nonincreasing with
simulation. We will see that it is no more the case for traced CC.

Proposition 8. For any 2-grouped CA f = g<2> and any word z ∈ An+1, the one-round CC of f̂z is at most 1.

Proof. It can be seen that Tf (uz0v) = z if and only if both Tf←z(u) ∈ τf←z and Tf→z(v) ∈ τf→z : the 2-block construction
allows to glue any two valid half-triangles together into a full valid computation triangle. If Alice has word u and Bob v, he
can compute Tf→z(v) and check whether it belongs to τf→z . It only needs to send the result of this test to Alice. �

As a result, even the simplest simulation, i.e. the reverse operation of 2-grouping, can increase the traced CC.

3.2. B⋆onesided rules

Let us see a simple case where Proposition 7 can be applied, which corresponds to some other kind of partial
onesidedness. If B ⊂ A, then a CA f is B⋆leftsided if ∀b, c, d ∈ A,∀a ∈ B, f (abc) = f (abd). Similarly, we define B⋆rightsided
CA.

Proposition 9. If z ∈ Bn+1 and f is B⋆leftsided, then the right CC for f̂z is constant.

Proof. For any two words w, w′ ∈ A[−n,n], if Tf (w) = Tf (w′) = z and w1 = w′1, then by the B⋆leftsided property we have
f (w)1 = f (w′)1, and by induction, for any t < n, f t(w)1 = f t(w′)1. It results that the words of Tf→z(A[1,n]) are determined
by their first letter, which gives

Tf→z(A[1,n])
 = |A|. From Proposition 6, the right CC for f̂z is then bounded by ⌈log |A|⌉. �

Intuitively, if Bob has the word v, then it is sufficient for him to send to Alice the initial state v1 of his first cell, since the
evolution of this cell will not depend on cells which are on the right if he assumes that the central column is z. Alice can thus
compute Tf→z(v) and then know whether the central cell will reach some state which does not correspond to z.

Similarly, if f is B⋆rightsided, then the left CC for f̂z is constant. Overall, the proposition applies to the elementary CA
whose number in base 2 can be written a7a6a5a4a2a2a0a0 or a7a2a5a0a3a2a1a0 (Fig. 8).

The hypothesis is satisfied in two cases: the cell just on the right of the word z has a state which either loops, or remains
always the same. In the latter case and for a binary alphabet, we can be slightly more general if we allow logarithmic
communications.

Proposition 10. If A = {0, 1} and ∃a ∈ {0, 1}, f (0a0) = f (0a1) = a, then the right CC for f̂0n+1 is upper-bounded by
⌈log(n+ 1)⌉.

Proof. Note that
γ : Tf→0n+1(A

[1,n])→ [0, n[ ∪ {+∞}
z ′ →min

z′t=a
t is injective, with inverse γ−1(t) = ātan−t if t < n, ān if t = +∞.

Hence Tf→0n+1(A
[1,n]) ≤ n+ 1, and we conclude thanks to Proposition 6. �

Intuitively, if Bob has the word v, then it is sufficient for him to send to Alice the first generation when some a appears in
Tf→0n+1(v) and+∞ if a never appears. Indeed, Alice will then know entirely this word, and be able to compute the result.

Similarly, if ∃a ∈ {0, 1}, f (0a0) = f (1a0) = a, then the left CC for f̂0n+1 is at most logarithmic. Note that the previous
case includes that, already seen, of CA having stagnating 0, or stagnating 1, and more generally any elementary CA whose
number in base 2 can be written a7a6a5a4a3a2a0a0 or a7a6a5a4a2a2a1a0 (Fig. 9).

3.3. Entropy

The next notions come from topological dynamics, but we emphasize here the point of view based on the trace of
configurations as finite words. Even though it is not crucial, the logarithms will be assumed binary.

The entropy of the trace over cells [i, j[ ⊂ Z is the limit

hj−i = lim
n→∞

log
T [i,j[

f (A[−n,n])


n

.
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Fig. 9. Matrix of the rule 105.

Thanks to the parallelism of the rule application, it only depends on the difference j− i (and on the CA). The entropy of the CA
f is the supremum h of the entropies of the traces over [i, j[, when j− i grows. This notion represents somehow the degree
of ‘‘disorder’’ in the apparent evolution of the CA.

Proposition 7 gives us the following rough upper bound on the CC of f̂z :

log

T {1}f (A[−n,n])

+ 1


. This allows us to

state that null-entropy CA have sublinear one-round CC for f̂z . On the contrary, for CA of entropy h > 0, it is known that the
entropy hj−i of any nontrivial trace over [i, j[ is also strictly positive, and in that case the one-round CC for f̂z and for a large
n is at most h1n+ o(1) which itself is at most hn+ o(1).

The inequality hj−in ≤ hn corresponds to an interesting open problem on the structure of CA computations: whether
there exists a computable bound on [i, j] (maybe width 2) such that hj−i = h (see for instance [3]). The inequality
c ≤ hj−in+ o(1) is more specific to our problem. It is not tight at all because the entropy gives intuition about the disorder
visible in a finite window of the computation, without distinguishing whether the disorder comes from one single side
or both, which is our purpose. For instance, onesided CA could give rise to a complex trace – like the shift CA, for which
Tf (A[−n,n]) is the whole An+1 – but we have already seen that their CC is simple.

3.4. Equicontinuity

A CA f is equicontinuous if for any [i, j] ⊂ Z, the cardinality of T [i,j]
f (A[−n,n]), with n ≥ max(|i| , |j|), is bounded by a

constant. From [8], this notion corresponds to ultimately periodic CA, or equivalently to those for which the width-1 trace
Tf (A[−n,n]) has bounded cardinality for n ∈ N. This notion represents an extreme stability of the system, since distant cells
cannot influence each other. Such CA were proved to have simple classical CC in [7]. Here too, thanks to Proposition 7, we
can see that equicontinuous CA have a constant one-round CC for f̂z .

4. Expansivity

We now deal with CA presenting some kind of complexity, which will give us high CC. At the extreme opposite of
equicontinuity, we say that a CA f is (positively) right-expansive if there exists some time step t→f ∈ N \ {0} such that

any two words w, w′ ∈ A

−t→f ,t→f


with the same trace T [−1,0]

f (w) = T [−1,0]
f (w′) have the same letter w1 = w′1 just on the

right. In other words, being given the trace, we can rebuild – in a unique way – the right part of the initial finite word.
The simplest right-expansive CA are the right-permutive ones, i.e. the rules f : A3

→ A such that ∀a, b, c, d ∈ A, c ≠
d⇒ f (abc) ≠ f (abd). It can be noted that they correspond to t→f = 1. In particular, for any u ∈ A[−n,−1], the restriction of
Tf over the set uA[0,n] is a bijection onto An+1. A well-known example is rule 90, which acts as an exclusive-or gate over the
two extreme neighbors.

The notion of expansivity is rather precise, but we can generalize it to some kind of subsystems of CA, in order for our
lower bounds of CC to concern more CA, since it is intuitive that a system is at least as complex as its subsystems. Let us
then define, in our setting, what corresponds to the symbolic notion of subshift of finite type. If F ⊂ A∗ is a finite language
of forbidden patterns and [i, j] ⊂ Z, we note

Σ[i,j] = ΣF
[i,j] =


wi . . . wj ∈ A[i,j]

∀ 
i′, j′


⊂ [i, j] , w[i′,j′] /∈ F


.

Consider the restriction f|Σ of the extended rule of the CA f to


[i,j]⊂Z Σ[i,j]. It is called a subautomaton if this set is stable,
i.e. f does not create forbidden patterns: ∀ [i, j] ⊂ Z, f (ΣF

[i−1,j+1]) ⊆ ΣF
[i,j].

The subautomaton f|Σ is right-expansive if there exists some time t→f ∈ N \ {0} such that any two words w, w′ ∈

Σ
−t→f ,t→f

 with the same trace T [−1,0]
f (w) = T [−1,0]

f (w′) have the same letter w1 = w′1 just on the right.

If we iterate this with a growing trace size, we can rebuild all letters of the right half of the initial word: for any n ∈ N
and any y ∈ T [−1,0]

f (Σ[−n,n]), there exists a unique v ∈ Σ
1,


n/t→f

 such that any w ∈ Σ[−n,n] with T [−1,0]
f (w) = y satisfies

w
1,


n/t→f

 = v. This bijection gives in particular that the entropy of an expansive CA f (with Σ[−k,k] = A[−k,k]) is at

least log|A|
t→f

.
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Intuitively, if we consider some computation triangle where both the right part w[0,n] of the initial configuration and the
trace Tf (w) are fixed, then it is clear that there is always at most one way to complete the right part of the triangle. In the
right-expansive case, there is also at most one way to complete a portion w

−


n/t→f


,0

 of the left part.

We say that the subautomaton of some CA is right-permutive if it is the subautomaton of some (possibly different) right-
permutive CA. This implies that it is right-expansive. Symmetrically, we can define left-expansive CA or subautomata, with
some particular time step t←f , and left-permutive CA or subautomata with t←f = 1. A CA or subautomaton is expansive if it is
both left- and right-expansive. It is bipermutive if it is both left-permutive and right-permutive.

Now the definition of t→f helps us build large fooling sets.

Lemma 11. Let f|Σ be an expansive subautomaton of some CA, z ∈ An+1, and

Wz =


w ∈ Σ[

−


n

t←f


,


n

t→f

]
 ∃x, y, xwy ∈ Σ[−n,n], Tf (xwy) = z


.

Then the multi-round CC of f̂z is lower-bounded by log |Wz |.

Proof. For any w ∈ Wz , let us define γ (w) = (xww
−


n/t←f


,−1

, w
1,


n/t→f

yw), where xw and yw are fixed words such that

Tf (xwwyw) = z. Note that γ is injective, with γ−1(u, v) = u
−


n/t←f


,−1

z0v
1,


n/t→f

. Moreover, let us show that γ (Wz) is a

fooling set for f̂z . By construction, if w ∈ Wz , then f̂z(γ (w)) = 1. Now let w′ ∈ Wz such that Tf (xww
−


n/t←f


,0

w′
1,


n/t→f


yw′) = z = Tf (xwwyw). Right expansivity will give that the initial configurations w

1,

n/t→f

yw and w′
1,


n/t→f

yw′ of the

two triangles begin equally: w
1,


n/t→f

 = w′
1,


n/t→f

. If besides Tf (xw′w
′
−


n/t←f


,−1

w
0,


n/t→f

yw) = z, then symmetri-

cally, left expansivity gives that w
−


n/t←f


,−1

 = w′
−


n/t←f


,−1

. We globally obtain that w = w′, hence γ (w) = γ (w′), i.e.

γ (Wz) is a fooling set. Thanks to Proposition 1, the CC is at least log |γ (Wz)| = log |Wz |. �

Our interest will be that when Wz is sufficiently large, the CC is linear. If we study combinatorially the set of all possible
traces, we will see conditions for it to be large.

Lemma 12. Let f|Σ be an expansive subautomaton of some CA and k ∈

1,

Σ[1,n]
. If p is the number of words z ∈ An+1 such

that the multi-round CC of f̂z is more than log k, then:

p ≥

Σ
−


n/t←f


,

n/t→f

− |A|n+1 kΣ[1,n]
− k

.

Proof. For z ∈ An+1, considerWz as defined in Lemma 11, and forw ∈ Wz , π(w) = w[1,n]. Note that if π(w) = π(w′), since
Tf (w) = Tf (w′) = z and f is left-expansive, then we have w = w′. It results that |Wz | = |π(Wz)| ≤

Σ[1,n]
. Moreover,

consider the number q of words z ∈ An+1 such thatWz admits more than k elements. Then we can distinguish between the
sets Wz these q bigger ones (which have cardinality at most

Σ[1,n]
 as stated above), with the other, smaller, ones (which

have cardinality at most k):−
z∈An+1

|Wz | =
−
|Wz |>k

|Wz | +
−
|Wz |≤k

|Wz | ≤
−
|Wz |>k

Σ[1,n]
+ −

|Wz |≤k

k .

We obtain:−
z∈An+1

|Wz | ≤ q
Σ[1,n]

+ (|A|n+1 − q)k .

On the other hand, we have


z∈An+1 Wz = Σ
−


n/t←f


,

n/t→f

 (since every word has a trace), hence:

−
z∈An+1

|Wz | ≥

Σ
−


n/t←f


,

n/t→f

 .

Putting the two inequalities together, we get:

q
Σ[1,n]

+ (|A|n+1 − q)k ≥
Σ
−


n/t←f


,

n/t→f

 .
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Fig. 10. Matrix of the rule 90.

As a result,

q ≥

Σ
−


n/t←f


,

n/t→f

− |A|n+1 kΣ[1,n]
− k

.

By Lemma 11, for any of the qwords with |Wz | ≥ k, the multi-round CC of f̂z is at least log k. �

By symmetry, Σ[−n,−1] may replace Σ[1,n] in the previous formula.
Let us first see the case of a CA (without forbidden patterns).

Proposition 13. If f is an expansive CA with m = 1/t→f + 1/t←f − 1 > 0 and n > 0, then there exists some word z ∈ An+1

such that the multi-round CC of f̂z is lower-bounded by ⌊mn− 1⌋ log |A|.

Proof. We just use Lemma 12 with
Σ
−


n/t←f


,

n/t→f

 = |A|n/t←f 
+


n/t→f


+1,

Σ[1,n]
 = A[1,n]

 = |A|n and k =

|A|⌊mn−1⌋
− 1. We obtain that the number p of words z ∈ An+1 such that the multi-round CC of f̂z is more than k is

p ≥

 |A|

n/t←f


+


n/t→f


+1
−|A|n+1(|A|⌊mn−1⌋

−1)
|A|n−|A|⌊mn−1⌋+1

 > 0. �

The previous result cannot hold for all possible words z ∈ An+1, since there are expansive (not bipermutive) CA for which
some of these words do not appear in Tf (A[−n,n]), and hence correspond to a trivial CC. In other words, in the case of a large
expansivity speed on both sides, the CC is linear for somewords; if we allow an arbitrarily low linearity constant, Lemma 12
can actually give rather large families: if 0 ≤ s < m, then the multi-round CC of f̂z is more than ns log |A| for at least
|A|n+1 |A|

nm
−|A|ns

|A|n−|A|ns words. The same inequalities hold when the CA is permutive on one side and expansive on the other one.
In the particular case of bipermutivity, we have a linear traced CC associated to any word.

Proposition 14. For any bipermutive CA and any word z ∈ An+1, the multi-round CC of f̂z is equal to n log A.
Proof. Just apply Lemma 12 with Σ full as in the previous proof, t→f = t←f = 1 (i.e. m = 1), and k = |A|n − 1. We get that

the number p of words z ∈ An+1 such that the multi-round CC of f̂z is more than log k is p ≥ |A|n+1 |A|
nm
−k

|A|n−k = |A|
n+1, i.e. all

words of An+1 have a CC of at least n log |A|. The converse inequality is obvious. �

The expansive elementary CA are exactly the four bipermutive ones (90, 150, 105, 165) and have thus the maximal possible
traced CC for all words.

Proposition 13 involves only CA which have an expansivity speed of more than a half; we will now see that it actually
represents the best limit of expensiveness speed we could get for this result (Fig. 10).

It is not difficult to observe that the 2-grouped of some expansive CA f is still expansive, with t←
f<2> = 2t←f and

t→f<2> = 2t→f . Hence we have the following example of expansive CA which is simple with respect to traced CC.

Example 15. Consider the CA on alphabet [0, 3] defined by the local rule (where / is the quotient of the Euclidean division):

f : [0, 3]3→ [0, 3]
(a, b, c) → 2((a+ b) mod 2)+ ((b/2+ c/2) mod 2) .

If we identify [0, 3] with {0, 1}2, this CA is the 2-grouped of the bipermutive CA 90. Hence it has t←f = t→f = 1/2. On the
other hand the traced CC of any word is 1, by Proposition 8 (the converse inequality is rather obvious).

4.1. Legal rules

We now see another little application of Lemma 11, in the case of binary alphabet.
For [i, j] ⊂ Z and u ∈ A[i,j], let us denoteu ∈ A[−j,−i] the mirror of u, i.e. the word such thatu−k = uk for any k ∈ [i, j]. If

V ⊂ A[i,j], we noteV ⊂ A[−j,−i] the set of all mirrors of words of V . The subautomaton f|Σ of some CA is 0-legal, with 0 ∈ A,
if for any u ∈ Σ[−1,1],u ∈ Σ[−1,1] and f (u) = f (u), and for any a ∈ A such that a0a ∈ Σ[−1,1], f (a0a) = 0.
Lemma 16. For any 0-legal subautomaton f|Σ of some CA, any u such thatu0u ∈ Σ[−n,n], and any t ≤ n, f t(u0u)0 = 0.
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Fig. 11. Matrix of the rule 146.

Proof. This comes from an immediate recurrence: if n > 0, then f (u0u) = f (u0)f (u00u0)f (0u) =f (0u)0f (0u), which still
has the same form. �

The previous lemma allows in this context to establish an equivalence between the problem of the traced CC and the
classical equality test of binary words, which is known to have linear CC.
Proposition 17. Let f|Σ be a 0-legal bipermutive subautomaton of some CA f such that Σ[−n,n] contains some sublanguage of
the formV0V . Then the multi-round CC of f̂0n+1 is at least log |V |.

Proof. Just apply Lemma 11, with W0n+1 ⊃
V0V thanks to Lemma 16. We get a traced CC of at least log

W0n+1
 =

log
V0V

 = log |V |. �

Corollary 18. The CA 18, 26, 146, 154, 218 have a multi-round CC in Ω(n).

Proof. Note that these rules are equal to the bipermutive rule 90 except on neighborhoods 011, 110, 111. DefineΣ as the set
of words avoiding the pattern 11 and the patterns 102k1, for k ∈ N. It can be easily seen that Σ is stable by the synchronous
application of CA 90, hence by any of these CA.

Let m ∈ N and V = (0100 + 0001)m (standard notation for languages, seen as words indexed in A[1,4m]). Note thatV0V ⊂ Σ[−4m,4m]. From Proposition 17, the multi-round traced CC corresponding to f|Σ and z = 04m+1 is greater than
log |V | = m. �

Unfortunately, we do not know similar practical subsystems for the three other bipermutive elementary CA (Fig. 11).

5. Conclusion

In this paper, we have addressed a new problem of communication complexity to get some clues about the information
streams present in the evolution of CA. This can help understand their behaviors by exhibiting how much communication
is needed to achieve their computation.

Wehave treated a largenumber of elementary cellular automata; someof the remaining ones look experimentally simple,
other ones rather mysterious, such as 22, which nearly has a bipermutive subautomaton, or as some of the CA for which 1
is weakly but not semi-strongly spreading.

Unlike the classical CC of CA, this notion of complexity does not a priori present links with cellular simulation (see
Proposition 8). This could be overpassed by defining amore general problem, where Alice and Bobwould need to determine
whether the trace belongs to some given subset of An+1 or not. This extends both classical (at least in the binary case) and
traced CC, and one should carefully consider what kind of subsets would imply a good notion of complexity for CA.

On the contrary, our approach allows more links with topological dynamics than classical CC. In [8], Petr Kůrka classified
the CA into four classes: equicontinuous, almost equicontinuous (and not equicontinuous), sensitive (and not expansive)
and expansive. We have proved that the first one implies a trivial CC and a strong version of the last one a very complex
one. In the construction of the fooling sets of Section 4, the ability to reconstruct the initial word is crucial; maybe if we ask
f̂z to be complex for any word z, it would imply something close to expansivity (our condition being then nearly necessary).
When fixing the word z, a high complexity for the problem is not possible without a large set of initial words on the right
and on the left, independent from each other, and which together can give z in the trace.

Kůrka’s intermediary classes do not imply anything on this kind of complexity. Nevertheless, almost equicontinuity may
be related to a simple average CC, since in that case ergodic theorists know that almost the whole system behaves as an
equicontinuous system. Understanding this distinct complexity measure could be a track for future research.
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