Note

The hyper-Wiener index of the generalized hierarchical product of graphs

Mehdi Eliasi, Ali Iranmanesh*
Department of Pure Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, P.O. Box: 14115-137, Tehran, Iran

ARTICLE INFO

Article history:

Received 16 April 2010
Received in revised form 5 November 2010
Accepted 29 December 2010
Available online 20 January 2011

Keywords:

Hyper Wiener index
Distance
Generalized hierarchical product
F-sum
Path

1. Introduction

A topological index is a numerical value associated with the chemical constitution purporting for the correlation of the chemical structure with various physical properties, chemical reactivity or biological activity. The Wiener index [18] is one of the oldest molecular-graph-based structure-descriptors. In fact let G be an undirected connected graph without loops or multiple edges. The set of vertices and edges of G are denoted by $V(G)$ and $E(G)$ respectively. For vertices x and y in $V(G)$, we denote by $d(x, y)$ (or $d_{G}(x, y)$ when we deal with more than one graph) the topological distance i.e., the number of edges on the shortest path, joining the two vertices of G. The Wiener index of G is the half sum of all distances in the graph G :

$$
W(G)=\sum_{\{u, v\} \subseteq V(G)} d(u, v)
$$

Mathematical properties and chemical applications of the Wiener index have been intensively studied over the past thirty years. For more information about the Wiener index in chemistry and mathematics see [1,5,6,8,10-12], respectively. Motivated by the Wiener index Randić in [16] introduced an extension of the Wiener index for trees, and this has come to be known as the hyper-Wiener index. Klein et al. [15] generalized this extension to cyclic structures as:

$$
W W(G)=\frac{1}{2} W(G)+\frac{1}{2} \sum_{\{u, v\} \subseteq V(G)} d(u, v)^{2} .
$$

$W W(G)$ has seen widespread use in correlations; references may be found in [9]. For information about the hyper-Wiener index in mathematics see [4,9,14]. Recently topological indices of many of composite graphs have been studied [7,13,17,20,21]. In particular Ashrafi et al. computed the hyper-Wiener index of Cartesian product, joint and other graph operations [13]. Here we compute the hyper-Wiener index of a generalized hierarchical product. Also we give some applications of this operation to compute the hyper-Wiener index of well-known graphs such as F-sum [7].

[^0]
2. Generalized hierarchical product

The Cartesian product $G \square H$ of graphs G and H has the vertex set $V(G \square H)=V(G) \times V(H)$ and two vertices $\left(g_{1}, h_{1}\right)$ and (g_{2}, h_{2}) adjoint by an edge if and only if

$$
\left(g_{1}, h_{1}\right) \sim\left(g_{2}, h_{2}\right) \Leftrightarrow\left\{\begin{array}{lll}
g_{1}=g_{2} & \text { and } & h_{1} \sim h_{2} \\
\text { or } & \text { in } H \\
h_{1}=h_{2} & \text { and } & g_{1} \sim g_{2}
\end{array} \quad \text { in } G .\right.
$$

Barriére et al. [2,3], defined a new product of graphs, namely the generalized hierarchical product, as follows.
Definition 1. Let G and H be two graphs with nonempty vertex subset $U \subseteq V(G)$. Then the generalized hierarchical product $G(U) \sqcap H$ is the graph with the vertex set $V(G) \times V(H)$ and two vertices (g, h) and $\left(g^{\prime}, h^{\prime}\right)$ adjoint by an edge if and only if

$$
(g, h) \sim\left(g^{\prime}, h^{\prime}\right) \Leftrightarrow\left\{\begin{array}{l}
g=g^{\prime} \in U \text { and } h \sim h^{\prime} \text { in } H \\
\text { or } \\
h=h^{\prime} \quad \text { and } g \sim g^{\prime} \quad \text { in } G .
\end{array}\right.
$$

The following lemma gives some basic properties of the generalized hierarchical product of graphs.
Lemma 1 (See [3]). Let G and H be graphs with $U \subseteq V(G)$. Then we have
(a) If $U=V(G)$, then the generalized hierarchical product $G(U) \sqcap H$ is the Cartesian product of G and H,
(b) $|V(G(U) \sqcap H)|=|V(G)||V(H)|,|E(G(U) \sqcap H)|=|E(G)||V(H)|+|E(H)||U|$,
(c) $G(U) \sqcap H$ is connected if and only if G and H are connected,
(d) $d_{G(U) \sqcap H}\left((g, h),\left(g^{\prime}, h^{\prime}\right)\right)= \begin{cases}d_{G(U)}\left(g, g^{\prime}\right)+d_{H}\left(h, h^{\prime}\right) & \text { if } h \neq h^{\prime} \\ d_{G}\left(g, g^{\prime}\right) & \text { if } h=h^{\prime} .\end{cases}$

Let $G=(V, E)$ be a graph and $\emptyset \neq U \subseteq V$. A path between vertices $u, v \in V$ through U is a $u-v$ path in G containing some vertex $z \in U$ (vertex z could be the vertex u or v). The distance between u and v in through $U, d_{G(U)}(u, v)$, is the length of a shortest path between u and v through U. Note that, if one of the vertices u and v belongs to U, then $d_{G(U)}(u, v)=d_{G}(u, v)$. We define

$$
\begin{aligned}
& W(G(U))=\frac{1}{2} \sum_{(u, v)} d_{G(U)}(u, v) \\
& W W(G(U))=\frac{1}{4} \sum_{(u, v)}\left[d_{G(U)}(u, v)^{2}+d_{G(U)}(u, v)\right]
\end{aligned}
$$

Using this notation, in the following theorem, we compute the Wiener index of the generalized hierarchical product.
Theorem 1. Let G and H be graphs with $U \subseteq V(G)$. Then we have

$$
\begin{aligned}
W W(G(U) \sqcap H)= & |V(H)| W W(G)+|V(G)|^{2} W W(H) \\
& +|V(H)|(|V(H)|-1) W W(G(U))+2 W(H) W(G(U))
\end{aligned}
$$

Proof. Set $V(G)=\left\{g_{1}, g_{2}, \ldots, g_{n}\right\}$ and $V(H)=\left\{h_{1}, h_{2}, \ldots, h_{m}\right\}$, we have

$$
\begin{aligned}
W W(G(U) \sqcap H)= & \frac{1}{4} \sum_{(u, v) \in V(G(U) \sqcap H)}\left(d_{G(U) \sqcap H}(u, v)+d_{G(U) \sqcap H}(u, v)^{2}\right) \\
= & \frac{1}{4} \sum_{\left(g_{j}, h_{l}\right)} \sum_{\left(g_{i}, h_{k}\right)}\left(d_{G(U) \sqcap H}\left(\left(g_{i}, h_{k}\right),\left(g_{j}, h_{l}\right)\right)+d_{G(U) \sqcap H}\left(\left(g_{i}, h_{k}\right),\left(g_{j}, h_{l}\right)\right)^{2}\right) \\
= & \frac{1}{4}\left[\sum_{k=1}^{m} \sum_{i, j=1}^{n}\left(d_{G(U) \sqcap H}\left(\left(g_{i}, h_{k}\right),\left(g_{j}, h_{k}\right)\right)+d_{G(U) \sqcap H}\left(\left(g_{i}, h_{k}\right),\left(g_{j}, h_{k}\right)\right)^{2}\right)\right. \\
& \left.+\sum_{k \neq l=1}^{m} \sum_{i, j=1}^{n}\left(d_{G(U) \sqcap H}\left(\left(g_{i}, h_{k}\right),\left(g_{j}, h_{l}\right)\right)+d_{G(U) \sqcap H}\left(\left(g_{i}, h_{k}\right),\left(g_{j}, h_{l}\right)\right)^{2}\right)\right] \\
= & \frac{1}{4}\left[\sum_{k=1}^{m} \sum_{i, j=1}^{n}\left(d_{G}\left(g_{i}, g_{j}\right)+d_{G}\left(g_{i}, g_{j}\right)^{2}\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\sum_{k \neq l=1}^{m} \sum_{i, j=1}^{n}\left(\left[d_{G(U)}\left(g_{i}, g_{j}\right)+d_{H}\left(h_{k}, h_{l}\right)\right]+\left[d_{G(U)}\left(g_{i}, g_{j}\right)+d_{H}\left(h_{k}, h_{l}\right)\right]^{2}\right)\right] \\
= & \frac{1}{4}\left[\sum_{k=1}^{m} \sum_{i, j=1}^{n}\left(d_{G}\left(g_{i}, g_{j}\right)+d_{G}\left(g_{i}, g_{j}\right)^{2}\right)+\sum_{k \neq l=1}^{m} \sum_{i, j=1}^{n}\left(d_{G(U)}\left(g_{i}, g_{j}\right)+d_{G(U)}\left(g_{i}, g_{j}\right)^{2}\right)\right. \\
& \left.+\sum_{i, j=1}^{n} \sum_{k \neq l=1}^{m}\left(d_{H}\left(h_{k}, h_{l}\right)+d_{H}\left(h_{k}, h_{l}\right)^{2}\right)+2 \sum_{i, j=1}^{n} \sum_{k \neq l=1}^{m}\left(d_{G(U)}\left(g_{i}, g_{j}\right) d_{H}\left(h_{k}, h_{l}\right)\right)\right] \\
= & |V(H)| W W(G)+|V(G)|^{2} W W(H)+|V(H)|(|V(H)|-1) W W(G(U))+2 W(H) W(G(U))
\end{aligned}
$$

which completes the proof.
Corollary 2. Let G and H be two connected graphs. Then

$$
W W(G \square H)=|V(H)|^{2} W(G)+|V(G)|^{2} W(H)+2 W(H) W(G) .
$$

Proof. Let $U:=V(G)$. Then $W W(G(U))=W W(G)$ and $W(G(U))=W(G)$ and the desired result obtains from Theorem 1.

Let G be a graph and u be a vertex of G. We denote the summation of distances between u and all vertices in the G by $d_{G}(u)$. Also we let $d d_{G}(u)=\sum_{x \in V(G)}\left[d_{G}(u, x)+d_{G}(u, x)^{2}\right]$.

Proposition 1. Let G be a graph and $U=\{u\}$ be a singleton vertex of G. Then $W(G(U))=|V(G)| d_{G}(u)$ and $W W(G(U))=$ $\frac{|V(G)|}{2} d d_{G}(u)+\frac{1}{2} d_{G}(u)^{2}$.
Proof. We have

$$
\begin{aligned}
W(G(U))= & \frac{1}{2} \sum_{(x, y)} d_{G(U)}(x, y)=\frac{1}{2} \sum_{(x, y)}\left(d_{G}(x, u)+d_{G}(u, y)\right)=|V(G)| d_{G}(u), \\
W W(G(U)) & =\frac{1}{4} \sum_{(x, y)}\left[d_{G(U)}(x, y)+d_{G(U)}(x, y)^{2}\right] \\
& =\frac{1}{4} \sum_{(x, y)}\left[d_{G}(x, u)+d_{G}(u, y)+\left(d_{G}(x, u)+d_{G}(u, y)\right)^{2}\right] \\
& =\frac{1}{4}\left[\sum_{(x, y)}\left[d_{G}(x, u)+d_{G}(x, u)^{2}\right]+\sum_{(x, y)}\left[d_{G}(y, u)+d_{G}(y, u)^{2}\right]+\sum_{(x, y)} 2 d_{G}(x, u) d_{G}(u, y)\right] \\
& =\frac{|V(G G)|}{2} d d_{G}(u)+\frac{1}{2} d_{G}(u)^{2},
\end{aligned}
$$

which gives the result.
By Theorem 1 and Proposition 1, we have the following corollary:
Corollary 3. If G and H are two graphs and $U=\{u\}$ is a singleton vertex of G, then

$$
\begin{aligned}
W W(G(U) \sqcap H)= & |V(H)| W W(G)+|V(G)|^{2}+2 W(H)|V(G)| d_{G}(u) W W(H) \\
& +|V(H)|(|V(H)|-1)\left(\frac{|V(G)|}{2} d d_{G}(u)+\frac{1}{2} d_{G}(u)^{2}\right)
\end{aligned}
$$

3. Hyper-Wiener index of F-sum of graphs

As an application of Theorem 1, we give a new method to compute the hyper-Wiener index of graphs which was introduced in [7]. First we recall some definitions and notations (See [19]). Let G be a connected graph.
(a) $S(G)$ is obtained from G by replacing each edge of G by a path of length two.
(b) $R(G)$ is obtained from G by adding a new vertex corresponding to each edge of G, then joining each new vertex to the end vertices of the corresponding edge.
(c) $Q(G)$ is obtained from G by inserting a new vertex into each edge of G, then joining with edges those pairs of new vertices on adjacent edges of G.
(d) $T(G)$ has as its vertices the edges and vertices of G. Adjacency in $T(G)$ is defined as adjacency or incidence for the corresponding elements of G. (This graph is called total graph of G).

Some graph operations have been defined in [7] as follows.
Definition 2. Let F be one of the symbols S, R, Q or T. The F-sum $G_{1}+{ }_{F} G_{2}$ is a graph with the set of vertices $V\left(G_{1}+{ }_{F} G_{2}\right)=$ $\left(V\left(G_{1}\right) \cup E\left(G_{1}\right)\right) \times V\left(G_{2}\right)$ and two vertices $\left(g_{1}, g_{2}\right)$ and $\left(g_{1}^{\prime}, g_{2}^{\prime}\right)$ of $G_{1}+_{F} G_{2}$ are adjacent if and only if $\left[g_{1}=g_{1}^{\prime}\right.$ and $g_{2} \sim$ g_{2}^{\prime} in $\left.G_{2}\right]$ or $\left[g_{2}=g_{2}^{\prime}\right.$ and $g_{1} \sim g_{1}^{\prime}$ in $\left.F\left(G_{1}\right)\right]$.

The Wiener index of $G+_{F} H$ has been computed in [7]. Note that if we set $U=V(G) \subseteq V(F(G))$, then $G+{ }_{F} H=$ $F(G)(U) \sqcap H$. Thus we have a new and short method in computing the Wiener index of $G+{ }_{F} H$.

Theorem 2. Let $G=\left(V_{1}, E_{1}\right)$ and $H=\left(V_{2}, E_{2}\right)$ be two connected graphs. Suppose that $U=V(G) \subseteq V(F(G))$. Then $W W\left(G+{ }_{F} H\right)=$

$$
\left\{\begin{array}{l}
|V(H)| W W(F(G))+|V(F(G))|^{2} W W(H)+|V(H)|(|V(H)|-1)(W W(F(G)) \\
\left.\quad+W(L(G))+\frac{1}{4}\left[\left|E_{1}\right|^{2}+6\left|E_{1}\right|\right]\right)+2 W(H)\left(W(F(G))+W(L(G))+\left|E_{1}\right|+\left|E_{1}\right|^{2}\right) \quad F=Q, T \\
|V(H)| W W(F(G))+|V(F(G))|^{2} W W(H) \\
\quad+|V(H)|(|V(H)|-1)\left(W W(F(G))+\frac{3}{2}\left|E_{1}\right|\right)+2 W(H)\left(W(F(G))+\left|E_{1}\right|\right) \quad F=S, R .
\end{array}\right.
$$

Proof. Let $F=S, R$. Then for every $y \neq x \in V(F(G))$, we have: $d_{F(G)(U)}(x, y)=d_{F(G)}(x, y)$. Also for every $x \in V(F(G)) \backslash U$, $d_{F(G)(U)}(x, x)=2$. So we obtain

$$
\begin{align*}
W W(F(G)(U))= & \frac{1}{4}\left(\sum_{y \in V(F(G))} \sum_{y \neq x \in V(F(G))}\left[d_{F(G)(U)}(x, y)+d_{F(G)(U)}(x, y)^{2}\right]+\sum_{x \in V(F(G)) \backslash U}\left[d_{F(G)(U)}(x, x)\right.\right. \\
& \left.\left.+d_{F(G)(U)}(x, x)^{2}\right]+\sum_{x \in U}\left[d_{F(G)(U)}(x, x)+d_{F(G)(U)}(x, x)^{2}\right]\right) \\
= & \frac{1}{4}\left(\sum_{y \in V(F(G))} \sum_{y \neq x \in V(F(G))}\left[d_{F(G)}(x, y)+d_{F(G)}(x, y)^{2}\right]\right)+\frac{1}{4} \sum_{x \in V(F(G)) \backslash U}\left[d_{F(G)(U)}(x, x)+d_{F(G)(U)}(x, x)^{2}\right] \\
& +\frac{1}{4} \sum_{x \in U}\left[d_{F(G)(U)}(x, x)+d_{F(G)(U)}(x, x)^{2}\right] \\
= & \frac{1}{4}(4 W W(F(G))+6|V(F(G)) \backslash U|+0) \\
= & W W(F(G))+\frac{3}{2}\left|E_{1}\right| . \tag{1}
\end{align*}
$$

A similar argument shows that

$$
\begin{equation*}
W(F(G)(U))=W(F(G))+\left|E_{1}\right| \tag{2}
\end{equation*}
$$

Combining (1), (2) and Theorem 1, we obtain the desired result when $F=S, R$.
Now let $F=Q, T$. Then clearly for every $y \neq x$ where $\{x, y\} \subset(V(F(G)) \backslash U)=E(G)$, we have: $d_{F(G)(U)}(x, y)=d_{F(G)}(x, y)$ $+1=d_{L(G)}(x, y)+1$ and for other pair vertices of $F(G), d_{F(G)(U)}(x, y)=d_{F(G)}(x, y)$. Also note that for every $x \in$ $V(F(G)) \backslash U, d_{F(G)(U)}(x, x)=2$. So by using these facts, we obtain

$$
\begin{aligned}
W W(F(G)(U))= & \frac{1}{4}\left[\sum_{y \in V(F(G)) \backslash U} \sum_{y \neq x \in V(F(G)) \backslash U}\left[d_{F(G)(U)}(x, y)+d_{F(G)(U)}(x, y)^{2}\right]\right. \\
& +\sum_{y \in V(F(G))} \sum_{y \neq x \in U}\left[d_{F(G)(U)}(x, y)+d_{F(G)(U)}(x, y)^{2}\right] \\
& \left.+\sum_{x \in V(F(G)) \backslash U}\left[d_{F(G)(U)}(x, x)+d_{F(G)(U)}(x, x)^{2}\right]+\sum_{x \in U}\left[d_{F(G)(U)}(x, x)+d_{F(G)(U)}(x, x)^{2}\right]\right] \\
= & \frac{1}{4}\left[\sum_{y \in V(F(G)) \backslash U} \sum_{y \neq x \in V(F(G)) \backslash U}\left[d_{F(G)}(x, y)+1+\left(d_{F(G)}(x, y)+1\right)^{2}\right]\right.
\end{aligned}
$$

Fig. 1. $\operatorname{TUHC}_{6}[2 n, 2]$ zig-zag polyhex nanotube.

Fig. 2. The hexagonal chain L_{n}.

$$
\begin{align*}
& \left.+\sum_{y \in V(F(G))} \sum_{y \neq x \in U}\left[d_{F(G)}(x, y)+d_{F(G)}(x, y)^{2}\right]+\sum_{x \in V(F(G)) \backslash U} 6+\sum_{x \in U} 0\right] \\
= & \frac{1}{4}\left[4 W W(F(G))+2 \sum_{y \in E(G)} \sum_{y \neq x \in E(G)} d_{L(G)}(x, y)+|E(G)|^{2}+6|E(G)|\right] \\
= & W W(F(G))+W(L(G))+\frac{1}{4}\left[\left|E_{1}\right|^{2}+6\left|E_{1}\right|\right] . \tag{3}
\end{align*}
$$

A similar argument shows that

$$
\begin{equation*}
W(F(G)(U))=W(F(G))+W(L(G))+\left|E_{1}\right|+\left|E_{1}\right|^{2} . \tag{4}
\end{equation*}
$$

Again by Theorem 1, (4) and (3) we obtain the result.
Let C_{n} and P_{n} be cycle and path with n vertices, respectively.
Example 1. If $G^{\prime}=S\left(C_{n}\right)(U) \sqcap P_{2}$, the zig-zag polyhex nanotube $T U H C_{6}[2 n, 2]$ (See Fig. 1), then

$$
W W\left(G^{\prime}\right)=\frac{1}{3} n\left(4 n^{3}+15+14 n+12 n^{2}\right)
$$

Proof. It is easy to see $W\left(P_{n}\right)=\frac{n\left(n^{2}-1\right)}{6}$ and $W W\left(P_{n}\right)=\frac{1}{24}\left(n^{4}+2 n^{3}-n^{2}-2 n\right)$. Also $W\left(C_{n}\right)=\left\{\begin{array}{ll}\frac{n^{3}}{8} & 2 \mid n \\ \frac{n\left(n^{2}-1\right)}{8} & 2 \nmid n .\end{array}\right.$ and $W W\left(C_{n}\right)=\left\{\begin{array}{ll}\frac{n^{2}(n+1)(n+2)}{48} & 2 \mid n \\ \frac{n\left(n^{2}-1\right)(n+3)}{48} & 2 \nmid n .\end{array}\right.$.

So by Theorem 1, we obtain the desired result.
Example 2. Let L_{n} be a hexagonal chains with n hexagonal, Fig. 2. Then

$$
W W\left(L_{n}\right)=\frac{8 n^{4}+32 n^{3}+46 n^{2}+37+3}{3}
$$

Proof. Since $L_{n}=S\left(P_{n+1}\right)(U) \sqcap P_{2}$, where $U=V\left(P_{n+1}\right)$, so by Theorem 1, we obtain the result.

Acknowledgements

The authors would like to thank the referees for the valuable comments.

References

[1] I. Althöfer, Average distance in undirected graphs and the removal of vertices, J. Combin. Theory Ser. B 48 (1990) 140-142.
[2] L. Barriére, F. Comellas, C. Dalfó, M.A. Fiol, The hierarchical product of graphs, Discrete Appl. Math. 157 (2009) 36-48.
[3] L. Barriére, C. Dalfó, M.A. Fiol, M. Mitjana, The generalized hierarchical product of graphs, Discrete Math. 309 (2009) 3871-3881
[4] G.G. Cash, Relationship between the Hosoya polynomial and the hyper-Wiener index, Appl. Math. Lett. 15 (2002) $893-895$.
[5] P. Dankelmann, Average distance and independence numbers, Discrete Appl. Math. 51 (1994) 75-83.
[6] A.A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees: theory and applications, Acta Appl. Math. 66 (2001) 211-249.
[7] M. Eliasi, B. Taeri, Four new sums of graphs and their Wiener indices, Discrete Appl. Math. 157 (2009) 794-803.
[8] R.C. Entringer, D.E. Jackson, D.A. Snyder, Distance in graphs, Czechoslovak Math. J. 26 (1976) 283-296.
[9] I. Gutman, Relation between hyper-Wiener and Wiener index, Chem. Phys. Lett. 364 (2002) 352-356.
[10] I. Gutman, J.C. Chen, Yeong-Nan Yeh, On the sum of all distances in graphs, Tamkang J. Math. 25 (1993) 83-86.
11] I. Gutman, S.L. Lee, Y.L. Luo, Yeong-Nan Yeh, Recent results in the theory of the Wiener number, Indian J. Chem. 32A (1993) 651-661.
[12] I. Gutman, O.E. Polansky, Mathematical Concepts in Organic Chemistry, Springer, Berlin, 1986.
[13] M.H. Khalifeh, H. Yousefi-Azari, A.R. Ashrafi, The hyper-Wiener index of graph operations, Comput. Math. Appl. 56 (2008) $1402-1407$.
[14] S. Klavzar, P. Zigert, I. Gutman, An algorithm for the calculation of the hyper-Wiener index of benzenoid hydrocarbons, Comput. Chem. 24 (2000) 229-233.
[15] D.J. Klein, I. Lukovits, I. Gutman, On the definition of the hyper-Wiener index for cycle-containing structures, J. Chem. Inf. Comput. Sci. 35 (1995) 50-52.
[16] M. Randić, Novel molecular descriptor for structure-property studies, Chem. Phys. Lett. 211 (1993) 478-483.
[17] D. Stevanović, Hosoya polynomial of composite graphs, Discrete Math. 235 (2001) 237-244.
[18] H. Wiener, Structural determination of the paraffin boiling points, J. Amer. Chem. Soc. 69 (1947) 17-20.
[19] W. Yan, B. Yang, Y. Yeh, The behavior of Wiener indices and polynomials of graphs under five graph decorations, Appl. Math. Lett. 20 (2007) $290-295$.
[20] Y.N. Yeh, I. Gutman, On the sum of all distances in composite graphs, Discrete Math. 135 (1994) 359-365.
[21] H. Yousefi-Azari, B. Manoochehrian, A.R. Ashrafi, The PI index of product graphs, Appl. Math. Lett. 21 (2008) 624-627.

[^0]: * Corresponding author. Fax: +98 2188006544.

 E-mail addresses: m.eliasi@modares.ac.ir (M. Eliasi), iranmanesh@modares.ac.ir (A. Iranmanesh).

