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Abstract In this paper, the differential quadrature (DQ) method is employed to solve some nonlinear
chaotic systems of ordinary differential equations (ODEs). Here, the method is applied to chaotic Lorenz,
Chen, Genesio and Rössler systems. The first three chaotic systems are described by three-dimensional
systems of ODEs while the last hyperchaotic system is a four-dimensional system of ODEs. It is found
that the DQ method is unconditionally stable in solving first-order ODEs. But, care should be taken to
choose a time stepwhen applying the DQmethod to nonlinear chaotic systems. Similar to all conventional
unconditionally stable time integration schemes, the unconditionally stable DQ time integration scheme
may also be possible to produce inaccurate results for nonlinear chaotic systems with an inappropriately
too large time step sizes. Numerical comparisons are made between the DQmethod and the conventional
fourth-order Runge–Kutta method (RK4). It is revealed that the DQ method can produce better accuracy
than the RK4 using larger time step sizes.

© 2012 Sharif University of Technology. Production and hosting by Elsevier B.V.
Open access under CC BY-NC-ND license.
1. Introduction

It is well known that many physical and engineering phe-
nomena can be modeled by chaotic or non-chaotic systems of
ODEs. In brief, dynamical systems that exhibit chaotic behav-
ior are sensitive to initial conditions. Although these systems
are deterministic through some description by mathematical
rules, the behavior of chaotic systems appears to be random
due to their sensitivity to initial conditions. Chaotic behavior
can be observed in a variety of systems such as electrical cir-
cuits, lasers, fluid dynamics,mechanical devices, time evolution
of the magnetic field of celestial bodies, population growth in
ecology, the dynamics of molecular vibrations and not forget-
ting the weather. One of the many chaotic systems discovered
in the past is the Lorenz system. It was developed by Lorenz [1]
who observes unpredictable chaotic behavior. The Lorenz
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dynamical system is defined as follows [1]:

dx
dt

= σ(y − x), (1)

dy
dt

= Rx − y − xz, (2)

dz
dt

= xy + γ z, (3)

where x, y, and z are dynamical variables of the Lorenz system,
and σ , R, and γ are the related constants. The Lorenz system
can exhibit both chaotic and non-chaotic behavior for distinct
parameter values. Bifurcation studies show that with the pa-
rameters σ = 10 and γ = −8/3 chaos sets in around the crit-
ical parameter value R = Rcr = 27.74 [1–3]. In other words,
Eqs. (1)–(3) exhibits non-chaotic behavior when R < Rcr and
does chaotic behavior when R > Rcr . It is also noted that the
Lorenz equations govern, at lower order, the dynamics of con-
vection in a fluid layer (or a fluid saturated porous layer) heated
from below [1,2] and presents particular challenges due to its
high sensitivity to small variations of the initial conditions on
the threshold of transition from steady convection to weak-
turbulence (chaos).

Another important chaotic dynamical system is the Chen
dynamical system, which was first introduced by Chen and
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Ueta [4]. This system is defined as

dx
dt

= a(y − x), (4)

dy
dt

= (c − a)x − xz + cy, (5)

dz
dt

= xy − bz, (6)

where a, b, and c are positive constants. Bifurcation studies
for the dynamical Chen system show that with the parameters
a = 35 and c = 28, Eqs. (4)–(6) exhibits non-chaotic behavior
and chaotic behavior when b = 12 and b = 3 respectively [5,6].
For other important aspects of this dynamical system, see, for
example [7–11]. It is noted that both the Lorenz and Chen sys-
tems have nonlinear terms in the form of products of two of the
dependent variables (i.e., quadratic nonlinearities). Although
both systems seem to be identical and equivalent, they are not
topologically equivalent [4]. In fact, the Chen system has been
proved to be dual to the Lorenz system [12]. Many theoreti-
cal analysis and numerical simulation results suggest that the
Chen attractor has different topological structures from those
of Lorenz system [4,13,14]. It is also interesting to note that
the (positive) Lyapunov exponent for the Chen system is about
2.0272, while the corresponding exponent for the Lorenz sys-
tem is about 0.9056 [15,16]. In other words, the Chen system is
more sensitive to initial conditions than the Lorenz system.

In this study, we also consider the chaotic Genesio system,
which was first introduced by Genesio and Tesi [17]. The dy-
namical equations describe an uncomplicated square element
and three straightforward ordinary differential equations that
are dependent on three positive real parameters, as such:

dx
dt

= y, (7)

dy
dt

= z, (8)

dz
dt

= −cx − by − az + x2, (9)

subjected to the initial conditions:

x(0) = 0.2, y(0) = −0.3, z(0) = 0.1, (10)

where a, b and c are positive constants satisfying ab < c.
In this paper, we are also interested in the accuracy tests of

the DQ method for the solution of nonlinear systems of ODEs
capable of exhibiting hyperchaotic behavior. The system, which
is of interest to us, is the hyperchaotic Rössler system [18]

dx
dt

= −y − z, (11)

dy
dt

= x + ay + w, (12)

dz
dt

= b + xz, (13)

dw
dt

= −cz + dw, (14)

where x, y, z and w are the state variables and a, b, c and d are
positive constants. This system exhibits a hyperchaotic behav-
ior when a = 0.25, b = 3, c = 0.5 and d = 0.05. This system is
similar to the Lorenz system in the sense that both have nonlin-
ear terms in the form of products of the two of the dependent
variables (i.e., quadratic nonlinearities). Nevertheless, it is dif-
ferent from the Lorenz system as it has two positive Lyapunov
exponents [19,20], λ1 = 0.109 and λ2 = 0.024. It is noted that
the Lyapunov exponent for the Lorenz system is 0.9056.

Since analytical solutions cannot be found for the chaotic
systems given in Eqs. (1)–(3), Eqs. (4)–(6), Eqs. (7)–(9) and
Eqs. (11)–(14), there has been a considerable effort to solve
these systems numerically. But numerical methods provide the
solutions only at the discrete time points and their accuracy
on long-term solutions is sometimes questionable. Besides,
they often need very small time step sizes to ensure the
convergence and to arrive at an accurate solution. Thus, much
attention has been paid to analytical asymptotic (i.e., semi-
analytic) techniques, such as the Adomian decomposition
method (ADM) [15,16,20–24], Homotopy analysis method
(HAM) [25], variational iteration method [26], multistage
homotopy-perturbation method (MHPM) [27,28], and more
recently the differential transformation method (DTM) [29].
These semi-analytic methods give some promising results, but
each of these methods has its own drawbacks and weaknesses.
For example, when we use the ADM or the HAM, we should
then calculate some polynomials (say ADM/HAM polynomials).
This procedure is often so cumbersome or the ‘formula’
obtained is often too complicated to understand and display
clearly the principle features of the solution. VIM is relatively
simple and straightforward to use but one may face longer
computational time due to possible exponential coefficients in
its iterations [29]. Moreover, the results of VIM are only valid
for very short time spans. In the literature, some researchers
have also used the HPM to handle the nonlinear dynamical
systems [30,31]. However, as pointed out by Chowdhury
et al. [27], this technique is only suitable for calculation of
very short-term solutions. In fact, the approximate solutions
obtained through using HPM, are generally not valid for long
time durations [27]. For example, in [27,28], it was shown that
the HPM solutions for Lorenz and Chen systems are only valid
for t ≪ 1. To overcome the difficulties of the HPM, Chowdhury
et al. [27,28] proposed a multistage HPM. In this technique, the
time domain of interest is first divided into some time intervals
(i.e., time elements/steps/spans). Then the HPM is applied to
each time interval independently. It was shown that he MHPM
works very well on highly chaotic systems such as the Chen
and Lorenz systems. But care has to be taken with the choice of
time span, time step and the number of terms used. Although
this technique produces high-accurate solutions for the chaotic
systems considered,many calculations should be done to obtain
the required polynomial coefficients. Thus, the major difficulty
is not to overcome using this technique.

The above-mentioned difficulties can be overcome by using
the differential quadrature method (DQM). The DQ method,
which was first introduced by Bellman and his associates
[32,33] in the early 1970s, is an alternative method for directly
solving the differential equations in engineering, mathematics
and physics. The DQ method is basically based on the
interpolation and derivation. It was also initiated from the
idea of conventional and integral quadrature. The DQ method
approximates the derivative of a function at a certain discrete
point by means of a weighted linear sum of the function values
at all discrete points in the domain of that variable. Since its
introduction, the DQ method has been successfully applied
by many researchers to a variety of problems in engineering,
mathematics and physics and is gradually emerging as a distinct
numerical technique. Compared to the low-order methods
such as the finite element and finite difference methods, the
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DQ method can achieve very accurate solutions by using a
considerably small number of sample points and therefore
requiring relatively little computational cost [34]. Another
particular advantage of the DQ method lies in its ease of use
and implementation. Due to the above-mentioned favorable
features, the DQmethod has been applied extensively. Majority
of these applications are related to statics and/or free vibrations.
More recently, the DQ method has been successfully applied
to initial-value problems in structural dynamics [35–49]. It has
been found that the DQ time integration scheme is reliable,
computationally efficient and also suitable for time integration
over long time duration.

In this paper, we apply the DQ method to solve some
nonlinear chaotic systems of ODEs. To the authors’ best
knowledge, this is the first attempt in applying the DQ method
to nonlinear systems of ODEs having chaotic behaviors such
as the Lorenz, Chen, Genesio and Rössler systems. Since for
the systems under investigation, closed form of the analytic
solutions cannot be found, the accuracy of the DQ method is
tested against conventional fourth-order Runge–Kutta method
(RK4). The aim of this study is to compare the effectiveness of
the DQ time integration method against the classical RK4 in
producing solutions for the chaotic Lorenz, Chen, Genesio and
Rössler systems. It is shown that theDQmethod producesmuch
better accuracy than the RK4 using much larger time step sizes.
Another particular advantage of the DQ method is its ability in
providing us a continuous representation of the approximate
solution, which allows better information of the solution over
the time interval of interest (note that the DQ method is
basically based on the interpolation (Lagrange interpolation,
here) and differentiation). This characteristic distinguishes the
DQ time integration scheme from the conventional single
step methods. Note that the RK4 only provides solutions in
discretized form (i.e., only gives the solutions at some discrete
time points), thereby making it complicated in achieving a
continuous representation of the approximate solution.

2. Differential quadrature method

As pointed out earlier, the DQ method is basically based
on the interpolation and derivation. Let x(t) be a function
which is approximated by the Lagrange interpolation functions
Lj(t), j = 1, 2, . . . ,m, that is:

x(t) =

m
j=1

x(tj)Lj(t), (15)

where m is the number of sample time points in the time
domain (also the order of Lagrange interpolation functions),
x(tj) are the function values at these points. Differentiating Eq.
(15) with respect to time, we obtain:

ẋ(t) =
dx
dt

=

m
j=1

x(tj)
dLj
dt

=

n
j=1

x(tj)L̇j(t). (16)

FromEq. (16), the first-order derivative of the function x(t)with
respect to time at a time point, ti can be expressed as:

ẋ(ti) =

m
j=1

x(tj)L̇j(ti). (17)

Eq. (17) is, in fact, the quadrature rule

ẋ(ti) =

m
j=1

Aijx(tj) or ẋi =

m
j=1

Aijxj (18)
which gives the first-order DQ weighting coefficients, Aij,
as [50]:

A(1)
ik =


M(1)(ti)

(ti − tk)M(1)(tk)
i ≠ k, i, k = 1, 2, . . . ,m

−

m
j=1,j≠i

A(1)
ij i = k, i = 1, 2, . . . ,m

(19)

whereM(1)(t) is defined as:

M(1)(ti) =

m
j=1,j≠i

(ti − tj). (20)

One of the key factors in the accuracy, stability, and rate of
convergence of the DQ solutions is the choice of sample time
points. It is well known that the equally spaced sampling points
are not very desirable [51]. It has been suggested that non-
uniformly spaced sample points perform consistently better
than the equally spaced sample points [51]. The zeros of some
orthogonal polynomials are commonly adopted as the sampling
points. In this work, the Chebyshev–Gauss–Lobatto sample
points are used for the calculation of weighting coefficients.
These points are given by:

ti = T/2

1 − cos


(i − 1)π
m − 1


, i = 1, 2, . . . ,m (21)

where T is the time span.

3. Numerical solutions by the DQ method

For the DQ solution of chaotic dynamical Lorenz, Chen,
Genesio and Rössler systems (see systems of ODEs given in
Eqs. (1)–(3), Eqs. (4)–(6), Eqs. (7)–(9) and Eqs. (11)–(14)), first
the required quadrature rules for the first-order derivative
of the functions x(t), y(t), z(t) and w(t) are written from
Eq. (18) as:

ẋi =

m
j=1

Aijxj, ẏi =

m
j=1

Aijyj,

żi =

m
j=1

Aijzj, ẇi =

m
j=1

Aijwj.

(22)

The initial conditions are assumed to be:

x(t = 0) = x(t1) = x1 = x0, y1 = y0,
z1 = z0, w1 = w0.

(23)

Substituting Eqs. (22) in systems of ODEs given in Eqs. (1)–
(3), Eqs. (4)–(6), Eqs. (7)–(9) and Eqs. (11)–(14), and applying
the corresponding initial conditions results in the following
nonlinear systems of algebraic equations:

(I) The Lorenz system

m
j=2

Aijxj + Ai1x0 = σ(yi − xi)

m
j=2

Aijyj + Ai1y0 = Rxi − yi − xizi

m
j=2

Aijzj + Ai1z0 = xiyi + γ zi

,

i = 2, 3, . . . ,m. (24)
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(II) The Chen system

m
j=2

Aijxj + Ai1x0 = a(yi − xi)

m
j=2

Aijyj + Ai1y0 = (c − a)xi − xizi

m
j=2

Aijzj + Ai1z0 = xiyi − bzi

+ cyi,

i = 2, 3, . . . ,m. (25)

(III) The Genesio system

m
j=2

Aijxj + Ai1x0 = yi

m
j=2

Aijyj + Ai1y0 = zi

m
j=2

Aijzj + Ai1z0 = −cxi − byi − azi + x2i

,

i = 2, 3, . . . ,m. (26)

(IV) The hyperchaotic Rössler system

m
j=2

Aijxj + Ai1x0 = −yi − zi

m
j=2

Aijyi + Ai1y0 = xi + ayi + wi

m
j=2

Aijzj + Ai1z0 = b + xizi

m
j=2

Aijwj + Ai1w0 = −czi + dwi

,

i = 2, 3, . . . ,m. (27)

The resulting nonlinear systems of algebraic equations,
given in Eqs. (24)–(27), can be easily and efficiently solved
by using various iterative methods. In this work, we use
the Newton–Raphson method to solve systems (24)–(27). Our
numerical experiment for the present problems shows that the
Newton method with only 3–5 iterations produces accurate
solutions.

4. A step-by-step DQ in time

If the whole time domain of interest is discretized simul-
taneously, the size of systems (25)–(28) then becomes large
andmany unknowns have to be solved simultaneously. This in-
creases the CPU time, especially when the size of resultant sys-
tem is too large. This problem also becomes a crucial one when
very long-term solutions are required. As a result, it is more
convenient to apply the DQ method as a step-by-step time in-
tegration scheme to advance the solutions progressively over
the time domain of interest [45–48]. In this technique, the time
domain of interest is first divided into several time elements
(i.e., time steps). Since the time domain in not bounded, the
DQ method can then be applied to each time element indepen-
dently. The solutions at the end of each DQM time element will
be used as the initial conditions for the next time element. This
Figure 1: Stability of the DQ time integration scheme for the solution of first-
order ODEs.

technique reduces considerably the computational cost, since
the DQ method is applied to each time element independently,
and a smaller systemof nonlinear algebraic equations should be
solved at each step. Note that each step in this technique itself
consists of several sub-steps.

5. Numerical accuracy

Consider a function f (t) which is approximated by the
Lagrange interpolation polynomial of degree (m− 1). The error
for the first- order derivative approximation of this function at
point ti can be obtained as [34]:

E [f (ti)] =
KM(1)(ti)

m!
, i = 1, 2, . . . ,m, (28)

where K is a positive constant and:

M(1)(ti) =

m
j=1,j≠i

(ti − tj). (29)

It may be seen that very high accuracy can be achieved even
if the number of sample points, m, is not too large. Also the
accuracy of DQ method is proportional tom or its power.

6. Numerical stability

In addition to accuracy, another important aspect to be con-
sidered for the integration of ODEs is stability. One can loosely
define stability as the property of an integrationmethod to keep
the errors resulting in the integration process of a given equa-
tion bounded at subsequent time steps. An unstable method
will make the integration errors increase exponentially, and an
arithmetic overflow can be expected even after just a few time
steps. Since stability depends not only on the given method but
also on the type of problem, the test equation ẋ(t) = λx(t),
where λ is a complex valued constant, is customarily used to
characterize the stability properties of a given method. This
characterization is performed by defining the set of values of λ
and 1t for which the corresponding method is stable. An algo-
rithm is said to be A-stable if the solution to ẋ(t) = λx(t) tends
to zero as λ1t → ∞ when Re(λ) < 0, which means that the
numerical solution decays to zero whenever the corresponding
exact solution decays to zero. Themost important consequence
of the A-stability property is that there is no limitation on the
size of λ1t for the stability of the integration process. A-stable
algorithms have also been called unconditionally stable in the
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Figure 2: Convergence and accuracy of DQ time integration method for the solution of non-chaotic Lorenz system (R = 23.5).
linear setting. It is apparent that this property is very important
and generally desired in the integration of nonlinear systems of
ODEs, since the analyst would only have to be concerned with
the step size for accuracy purposes and not for stability.

To investigate the stability property of the DQ time integra-
tion scheme, we consider the following differential equation

ẋ(t) = λx(t), (30)

with initial condition x(t = 0) = x0. Eq. (30) can be normalized
as:

ẋ(τ ) = λ1tx(τ ), τ = t/1t. (31)

The stability is evaluated by calculating the amplification factor
which relates the final state at the end of a time interval to the
given initial condition at the beginning of the time interval, i.e.,

x(t = 1t) = A(λ1t)x0. (32)
The algorithm is said to be A-stable if the amplification fac-
tor |A(λ1t)| → 0 as λ1t → ∞. The amplification factor is
evaluated for different number of DQ sampling time points (m)
and λ1t values. Figure 1 illustrates the variation of amplifica-
tion factor versus λ1t for different number of DQ sample time
points (m). The converging trend of DQ solutions with increas-
ing number of sample time points is obvious in Figure 1. It can
be observed that the amplification factor |A(λ1t)| tends to zero
as λ1t → ∞. Therefore, the DQ time integration scheme is un-
conditionally stable (i.e., A-stable) in solving first-order ODEs.

7. Numerical results and discussion

In this section, the accuracy of the DQ method is tested
against the traditional fourth-order Runge–Kutta (RK4) tech-
nique for the solution of the dynamical Lorenz, Chen, Gene-
sio and Rössler systems. To accurately obtain the long-term



1304 S.A. Eftekhari, A.A. Jafari / Scientia Iranica, Transactions B: Mechanical Engineering 19 (2012) 1299–1315
Figure 3: Phase portraits of the non-chaotic Lorenz system obtained using DQM and RK4 (R = 23.5).
solutions, the DQmethod is employed as a step-by-step scheme
(say DQEM: differential quadrature element method, see
Section 4). To do so, the time domain of interest is divided into n
equal DQM time element with m sample time points (per each
DQM time element). The total number of sample time points
and the average time step can be obtained as:

Mtot = n(m − 1) + 1 (33)
1t = T/(Mtot − 1) = T/(n(m − 1)). (34)

Respectively, where T is the time domain of interest (i.e., time
span). It is noted that the time step given in Eq. (34) is an average
time step since the sample time points are taken non-uniformly
spaced in the time domain (see Eq. (21)).
7.1. Numerical results for the dynamical Lorenz system

To test the accuracy and efficiency of theDQ time integration
method and to provide a comparison of the results with those
previously obtained by Guellal et al. [21], Hashim et al. [24]
and Chowdhury et al. [27], the parameters of the problem are
chosen as: σ = 10 and b = −8/3. The initial conditions of
the problem are also considered as x0 = −15.8, y0 = −17.48
and z0 = 35.64. Similar to the analysis done in [24,27], we also
demonstrate the accuracy and convergence of the DQ method
for the solutions of both non-chaotic and chaotic systems. For
the purpose of comparison, we will consider two cases: R =

23.5 where the system is non-chaotic and R = 28 where the
system exhibits chaotic behavior. In addition to the above cases,
we also consider two cases R = 50 and R = 100, corresponding
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Figure 4: Convergence and accuracy of DQ time integration method for the solution of chaotic Lorenz system (R = 28).
to chaotic systems, in our attempt to show the applicability of
DQ time integrationmethod in prediction of behavior of chaotic
systems.

7.1.1. Non-chaotic solutions
First, we consider the non-chaotic case where σ = 10, b =

−8/3 and R = 23.5. Figure 2 presents the convergence of
DQ solutions for this case. The use of Lagrange interpolation
polynomials (in each DQM time element) enables us to reach
a continuous representation of the approximate solutions. A
good convergence trend of solutions can be observed. However,
when the total number of sample time points is too small
(i.e., when the size of time steps are too large), a visible phase
shift can be observed. On the other hand, the accuracy of
solutions can be controlled by choosing the proper values of
n and m. In other words, the accuracy of solutions can be
improved by increasing n and/or m. Figure 3 presents the
phase planes obtained using the DQ method and the RK4. The
numerical simulations are done in the time interval 0 ≤ t ≤

5. By comparing the DQ solutions with those of RK4, one can
conclude that the DQ method gives more accurate solutions
than the RK4 using a considerably larger time step sizes.

7.1.2. Chaotic solutions
As pointed out earlier, the system (1)–(3) with R > 27.74,

and the other parameters given above, exhibits chaotic
behavior. For chaotic behavior of Lorenz system, we consider
three cases: R = 28, R = 50 and R = 100. When the system is
chaotic, care should be taken in choosing a time step because
the solutions are highly sensitive to time step size. Figure 4
shows the convergence of the DQ time integration method for
the solutions of chaotic Lorenz system against the number of
time elements, n, and the number of DQ sample time points per
each time element, m, when R = 28. It can be observed that
theDQmethod encounters some large attenuation of amplitude
and overshoot for long-term solutions when the time step is so
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Figure 5: Phase portraits of chaotic Lorenz system obtained using DQM and RK4 (R = 28).
large (i.e., when n or m is too small). However, by decreasing
the time step (i.e., by increasing n orm), the solutions converge
to the true solutions. In conclusion, the DQ time integration
schememay be possible to yield inaccurate solutions for chaotic
systems with an inappropriately too large time step sizes.
Figure 5 shows the phase portraits of the Lorenz system,
obtained by the RK4 and the DQmethod. It can be seen that the
results of the DQ method with 1t = 0.0357 are comparable in
accuracy to those of RK4 with 1t = 0.0125. This demonstrates
the superiority of DQ time integration method over the
conventional RK4 for the solution of chaotic Lorenz system.

Figure 6 presents the results for the chaotic Lorenz system
with R = 50. Significant differences in numerical accuracy, am-
plitude attenuation and phase shift are easily observed from
Figure 6 when using RK4 with 1t = 0.0277. It is also found
that the DQ method confront some small attenuation of ampli-
tude and overshoot for long-term solutionswhen1t = 0.0277.
However, the DQ solutions are better than those of RK4 in this
case (i.e., when 1t = 0.0277). It is observed that both the DQ
method and RK4 provide true solutions using sufficiently small
time step 1t = 0.0104. By comparing the DQ solutions shown
in Figures 2, 4 and 6, one can conclude that as the parame-
ter R increases, the size of time step required to achieve accu-
rate solutions decreases (i.e., the total number of sample time
points required to accurately obtain the solutions, increases).
This is actually due to the chaotic behavior of the Lorenz sys-
tem. As the parameter R increases, the shape of dynamic re-
sponses becomes non-smoother, and thus, a larger number
of sample time points (i.e., a smaller size of time steps) are
required to obtain accurate solutions as the DQ method is basi-
cally based on the interpolation and derivation. The phase por-
traits of the Lorenz system obtained using DQ method and RK4
are given in Figure 7. The DQ solutions are obtained using1t =

0.01786 while those of RK4 are calculated using 1t = 0.01786
and 1t = 0.0104. It can be seen that the DQ solutions with
1t = 0.01786 are comparable in accuracy to RK4 solutions
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Figure 6: Accuracy of DQ time integration method for the solution of chaotic Lorenz system and comparisons with those of RK4 (R = 50).
Figure 7: Phase portraits of chaotic Lorenz system obtained using DQM and RK4 (R = 50).
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Figure 8: Accuracy of DQ time integration method for the solution of chaotic Lorenz system and comparisons with those of RK4 (R = 100).
Figure 9: Phase portraits of chaotic Lorenz system obtained using DQM and RK4 (R = 100).
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Figure 10: Convergence of the DQ time integration method for the solution of non-chaotic Chen system.
Figure 11: Phase portraits of the non-chaotic Chen system obtained using DQM and RK4.
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Figure 12: Accuracy of DQ time integration method for the solution of chaotic Chen system and comparisons with the RK4 solutions.
with 1t = 0.0104. It can also be observed that the RK4 so-
lutions have visible phase shift when 1t = 0.01786.

Figures 8 and 9 illustrate the results for the chaotic Lorenz
system with R = 100. From Figure 8, it can be observed that
the DQ solutions with a rather large time step 1t = 0.0185 are
comparable in accuracy to the RK4 solutions with a small time
step 1t = 0.00555. Again, the solutions of the RK4 encounter
a sharp drop of accuracy for the long-term responses when the
size of time step is large, i.e., when 1t = 0.0185, as seen in
Figure 8. As pointed out earlier and as it is illustrated in
Figures 2, 4, 6 and 8, as the parameter R increases a smaller
time steps should be used to ensure the convergence and to
reach accurate solutions. The phase portraits of the DQ solu-
tion with 1t = 0.0185 and the RK4 with 1t = 0.0185 and
1t = 0.00555 are given in Figure 9. It can be observed that as
compared to the RK4, the DQ method produces better results
using a much larger time step size. Note that the RK4 solutions
with 1t = 0.0185 are not acceptable in accuracy in this case.

7.2. Numerical results for the dynamical Chen system

In this sub-section, the applicability of the DQ method for
the solution of the Chen system is investigated. In this analysis,
we attempt to illustrate the accuracy and efficiency of the
DQ method for the solutions of both non-chaotic and chaotic
systems. We also fix the values of parameters a = 35 and c =

28 with b = 12 (for non-chaotic case) and b = 3 (for chaotic
case). The initial conditions are set to be x0 = −10, y0 = 0 and
z0 = 37.

Figure 10 presents the convergence of the DQ time
integration scheme for the solution of non-chaotic Chen system.
Anexcellent convergency trendwith the increase in the number
of DQM time elements (n) and DQM sample time points (m)
can be observed. It may be seen that by increasing the number
of time elements, a smaller number of sample time points per
element are required to achieve converged solutions. Figure 11
illustrates the x− y, x− z and y− z phase portraits of the non-
chaotic Chen system obtained using the DQmethod. The results
of the RK4 are also shown for comparison. It can be observed
that the results of the DQ method with 1t = 0.015625 are
comparable in accuracy to those of RK4 with 1t = 0.0025.

Figure 12 displays the solutions of the chaotic Chen system.
When a rather large time step 1t = 0.0096 is employed, it is
found fromFigure 12 that theRK4method confronts some small
attenuation of amplitude andovershoot for long-term response,
whereas the DQ method gives very accurate solutions. It is also
noted that the DQ solutions with the time step 1t = 0.0096
and those of RK4 with the time step 1t = 0.005 seem to co-
incide and overlap each other on the curves. The results for
the phase portraits of the chaotic Chen system are shown in
Figure 13. Again, one sees that the DQmethod needs larger time
steps than the RK4 to obtain accurate solutions. These results il-
lustrate the capability of the DQ method in the solution of the
chaotic Chen system and its superiority over the traditional RK4
method.

7.3. Numerical results for the dynamical Genesio system

The Genesio system, given in Eqs. (7)–(9), with the
parameters a = 1.2, b = 2.92 and c = 6 exhibits chaotic
behavior [17,26]. This case is considered in the present analysis.
Since the system is chaotic, its solutions are expected to be very
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Figure 13: Phase portraits of the chaotic Chen system obtained using DQM and RK4.
sensitive to time step sizes. The initial conditions are set to be
x0 = 0.2, y0 = −0.3 and z0 = 0.1. The simulation is done in
the time domain t ∈ [0, 12].

Goh et al. [26] also solved the present problem using the
variational iteration method (VIM) and multistage variational
iteration method (MVIM). The key element of VIM is to use
linearization for the mathematical problem in order to find its
initial approximation or trial functions. Then a well-accurate
approximation at some special point can be determined. VIM
is relatively simple and straightforward to use, but one may
face long computational time due to possible exponential
coefficients in its iterations.

Moreover, VIM is only reliable and applicable on a small
domain of time. In other words, VIM is a conditionally stable
method and the validity domain of its solution (say stability do-
main) is often an issue. For example, in solving the present prob-
lem, Goh et al. [26] has shown that the VIM solutions are only
valid for t ≪ 2. The results of the VIM tend to deviate after that.
To overcome the above-mentioned difficulty, Goh et al. [26]
proposed a multistage variational iteration method (MVIM).
MVIM can give considerably accurate results on a longer time
spans compared to VIM. However, similar to VIM, MVIM is also
a conditionally stable method (i.e, its solution is not valid for
long time duration) and an attempt should be made to obtain
its stability/validity domain. The results of Goh et al. [26] for the
present problem have shown that MVIM gives rather accurate
solutions on a longer time span of t ∈ [0, 11]. But its solutions
tend to deviate after t = 11. Therefore, the major question is
not responded using the MVIM.

Since the DQ method is a high-order method, it can easily
tackle the above-mentioned difficulty. In other words, the
DQ method can accurately obtain the long-term solutions.
Moreover, similar to analytical methods such as the VIM and
MVIM, the DQ method has the ability to provide a continuous
representation of the approximate solution. This characteristic
distinguishes the DQmethod from the conventional single time
step methods such as the RK4.

Figure 14 presents the convergence of the DQ method for
the solution of chaotic Genesio system. An excellent converging
trend of DQ solutions with increasing n (number of DQM time
element) and m (number of DQM sample time points per DQM
time element) can be observed. In Figures 15 and 16 the results
of the DQ method are compared with those of RK4. It can be
observed that the DQ method can accurately predict the long-
term solutions of the Genesio system. Again, the DQ method
gives more accurate results than the RK4 using larger time step
sizes.

7.4. Numerical results for the dynamical Rössler system

As pointed out earlier, the Rössler system exhibits a hy-
perchaotic behavior when a = 0.25, b = 3, c = 0.5 and
d = 0.05. Thus, this case is considered in the numerical sim-
ulation. The initial conditions are also set to be x0 = −20, y0 =

0, z0 = 0 and w0 = 15. To demonstrate the capability of the
DQ method for computing the long-term solutions of the hy-
perchaotic Rössler system, the numerical simulation is done in
the time domain t ∈ [0, 50].

The results of the present problem are shown in Figure 17.
The converging trend of DQ solutions with increasing m and
n is obvious in Figure 17. It can be seen that as m increases,
a larger time steps are required to achieve accurate solutions.
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Figure 14: Convergence of the DQ time integration method for the solution of chaotic Genesio system.
Figure 15: Accuracy of DQ time integration method for the solution of chaotic Genesio system and comparisons with the RK4 solutions.
Therefore, to obtain accurate results using the DQ method
with a reasonably large time steps, the number of sample time
points per DQM time element (i.e., m) should be rather large.
If m is too small, then we should use a very large number
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Figure 16: Phase portraits of the chaotic Genesio system obtained using DQM and RK4.
Figure 17: Convergence of the DQ time integration method for the solution of chaotic Rössler system.
of time elements to achieve accurate solutions and this may
increase the CPU time considerably. In Figure 18, the results
of the DQ method are compared with those of the RK4. By
comparing the present results with those of other chaotic
systems considered in this paper (see Sections 7.1–7.3), one
sees that the differences between the results of the DQ method
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Figure 18: Phase portraits of the chaotic Rössler system obtained using DQM and RK4.
and RK4 solutions for large time steps for hyperchaotic Rössler
systemare less than those for other chaotic systems (i.e., Lorenz,
Chen and Genesio systems). In other words, the RK4 for the
hyperchaotic Rössler system is much more accurate than the
RK4 for other chaotic systems. This may be due to the lower
Lyapunov exponents of the hyperchaotic Rössler system than
those of Lorenz, Chen and Genesio systems. However, the
DQ method always shows the high accuracy and efficiency.
Concluding the above four examples (given in Sections 7.1–
7.4), there are essential differences in the accuracy, amplitude
attenuation and phase shift behaviors between the DQ method
and the classical RK4 if large time step is chosen for computing
economy.

8. Conclusion

In this paper, the DQ method is used for solving some
chaotic dynamical systems, namely, Lorenz, Chen, Genesio
and Rössler systems. Based on the numerical results reported
herein, one can conclude that the DQ time integration scheme
is reliable, computationally efficient and also suitable for time
integrations over long time duration. But care should be taken
when applying the DQ method to chaotic systems. For the
dynamical Lorenz and Chen system, the numerical results are
given for both non-chaotic and chaotic cases. It is found that
the simulation of chaotic cases needs smaller time steps than
the non-chaotic cases. It is also found that the unconditionally
stable DQ time integration schememay be also possible to yield
inaccurate results for chaotic systems with an inappropriately
too large time step. Comparisons are made between the
solutions of the DQ time integrationmethod and those of RK4. It
is revealed that the DQmethod produces much better accuracy
than the RK4 using much larger time step sizes. Thus, the DQ
time integrationmethod seems to be an effective and promising
tool for handling the chaotic systems.
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