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Abstract

In this paper we study self-improving properties in the scale of Lebesgue spaces of generalized Poincaré
inequalities in spaces of homogeneous type. In contrast with the classical situation, the oscillations involve
approximation of the identities or semigroups whose kernels decay fast enough and the resulting estimates
take into account their lack of localization. The techniques used do not involve any classical Poincaré or
Sobolev–Poincaré inequalities and therefore they can be used in general settings where these estimates do
not hold or are unknown. We apply our results to the case of Riemannian manifolds with doubling volume
form and assuming Gaussian upper bounds for the heat kernel of the semigroup e−t� with � being the
Laplace–Beltrami operator. We obtain generalized Poincaré inequalities with oscillations that involve the
semigroup e−t� and with right hand sides containing either ∇ or �1/2.
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1. Introduction

In analysis and PDEs we can find various estimates that encode self-improving properties of
the integrability of the functions involved. For instance, the John–Nirenberg inequality estab-
lishes that a function in BMO, which is a priori in L1

loc(R
n), is indeed exponentially integrable

which in turn implies that it is in L
p

loc(R
n) for any 1 � p < ∞. Another situation where functions

self-improve their integrability comes from the classical (p,p)-Poincaré inequality in Rn, n � 2,
1 � p < n,

−
∫
Q

|f − fQ|p dx � C�(Q) −
∫
Q

|∇f |p dx.

It is well known that this estimate yields that for any function f ∈ L
p

loc(R
n) with ∇f ∈ L

p

loc(R
n),

(
−
∫
Q

|f − fQ|p∗
dx

)1/p∗

� C�(Q)

(
−
∫
Q

|∇f |p dx

)1/p

where p∗ = pn
n−p

. Thus, f ∈ L
p∗
loc(R

n) and f has self-improved its integrability. Both situations
have something in common: they involve the oscillation of the functions on some cube Q via
f − fQ. In [16], general versions of these estimates are considered. They start with inequalities
of the form

−
∫
Q

|f − fQ|dx � a(Q,f ), (1.1)

where a is a functional depending on the cube Q, and sometimes on the function f . There, the
authors present a general method based on the Calderón–Zygmund theory and the good-λ in-
equalities introduced by Burkholder and Gundy [7] that allows them to establish that under mild
geometric conditions on the functional a, inequality (1.1) encodes an intrinsic self-improvement
on Lp for p > 1.

On the other hand, in [27] a new sharp maximal operator associated with an approximation of
the identity {St }t>0 is introduced:

M#
Sf (x) = sup

Q�x

−
∫
Q

|f − StQf |dy,

where tQ is a parameter depending on the side-length of the cube Q. This operator allows one
to define the space BMOS , for which the John–Nirenberg inequality also holds (see [15]). In this
way, starting with an estimate as (1.1) where the oscillation f −fQ is replaced by f −StQf , and
a(Q,f ) = C, a self-improving property is obtained. This new way of measuring the oscillation
allows one to define new function spaces as the just mentioned BMOS of [15] and the Morrey–
Campanato associated with an approximation of the identity of [14,34].
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In [23] and [24] self-improving properties related to this new way of measuring oscillation
are under study. The starting estimate is as follows

−
∫
Q

|f − StQf |dx � a(Q,f ), (1.2)

with St being a family of operators (e.g., semigroup) with fast decay kernel. By analogy to (1.1),
we will refer to these estimates as generalized Poincaré inequalities. The case a increasing, con-
sidered in [23] both in the Euclidean setting and also in spaces of homogeneous type, yields local
exponential integrability of the new oscillation f − Stf . In [24] functionals satisfying a weaker
�r -summability condition (see Dr below) are studied in the Euclidean setting and Lr,∞ local
integrability of the oscillation is obtained.

Taking [24] as a model and motivation, in this paper we consider (1.2) in the setting of
the spaces of homogeneous type for functionals satisfying some summability conditions. The
proofs of this paper and [24] are built upon the same ideas. However, the easier-to-handle Eu-
clidean setting in [24] gives cleaner arguments that help to understand the present paper, and
also that could be of interest to those readers that do not want to get into the technicalities that
involve this less friendly setting of the spaces of homogeneous type. We present extensions of
the Poincaré–Sobolev inequalities for the oscillations f − StQf in Q that are valid in settings
where the classical Poincaré–Sobolev inequalities (for the oscillations f − fQ) do not hold or
are unknown — this should be compared with the Euclidean setting where classical Poincaré–
Sobolev inequalities are always at our disposal. That is the case of some Riemannian manifolds
assuming only doubling volume form and Gaussian upper bounds for the heat kernel associated
to the semigroup generated by the Laplace–Beltrami operator. As a consequence of the (local)
Poincaré–Sobolev inequalities just mentioned we also obtain global pseudo-Poincaré (see Sec-
tion 4 below), e.g., ‖f − Stf ‖Lp(X) � t1/m‖h‖Lp(X) where m is some scaling parameter and h

plays the role of the gradient of f .
In order to present the applications on Riemannian manifolds, which are the main motivation

of the general results presented here, we need to introduce some notation, see Section 4.4 for
more details. Let M be a complete non-compact connected Riemannian manifold with d its
geodesic distance. Assume that volume form μ is doubling and let n be its doubling order (see
(2.1) below). Then M equipped with the geodesic distance and the volume form μ is a space of
homogeneous type. Let � be the positive Laplace–Beltrami operator on M given by

〈�f,g〉 =
∫
M

∇f · ∇g dμ

where ∇ is the Riemannian gradient on M and · is an inner product on T M . We assume that
the heat kernel pt(x, y) of the semigroup e−t� has Gaussian upper bounds if for some constants
c,C > 0 and all t > 0, x, y ∈ M ,

pt(x, y) � C

μ(B(x,
√

t ))
e−c

d2(x,y)
t . (UE)

We define q̃+ as the supremum of those p ∈ (1,∞) such that for all t > 0,∥∥∣∣∇e−t�f
∣∣∥∥

p � Ct−1/2‖f ‖Lp . (Gp)

L
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If the Riesz transform |∇�−1/2| is bounded in Lp , by analyticity of the heat semigroup, then
(Gp) holds. Therefore, q̃+ is greater than the supremum on the exponents p for which the Riesz
transform is bounded on Lp . In particular q̃+ � 2 by [11].

As a consequence of our main results and in the absence of Poincaré inequalities we obtain
the following (see Corollary 4.6 below for the precise statement):

Theorem 1.1. Let M be complete non-compact connected Riemannian manifold satisfying the
doubling volume property and (UE). Given 1 � p < ∞ we set p∗ = np/(n − p) if 1 � p < n

and p∗ = ∞ otherwise.

(a) Given N � 1 (N is taken large enough when 1 < p < n), let SN
t = I − (I − e−t�)N and

1 < q < p∗. Then, for any smooth function with compact support f we have

(
−
∫
B

∣∣f − SN
tB

f
∣∣q dμ

)1/q

� C
∑
k�1

φ(k)r
(
σkB

)( −
∫

σkB

∣∣�1/2f
∣∣p dμ

)1/p

,

where φ(k) = σ−kθ and θ depends on m, n and p.
(b) For any p ∈ ((q̃+)′,∞) ∪ [2,∞), any 1 < q < p∗ and any smooth function with compact

support f we have

(
−
∫
B

∣∣f − e−tB�f
∣∣q dμ

)1/q

� C
∑
k�1

e−cσ k

r
(
σkB

)( −
∫

σkB

|∇f |p dμ

)1/p

.

In this result σ is a large constant depending on the doubling condition (see Section 2 below).
The plan of the paper is as follows. In Section 2 we give some preliminaries and definitions.

The main result and its different extensions are in Section 3. Applications are considered in
Section 4. In particular, we devote Sections 4.1 and 4.3 to study various Poincaré type inequalities
in general spaces of homogeneous type. In the former we start from an estimate whose right hand
side is localized to a given ball B , in the latter we take into account the lack of localization of the
approximation of the identity or the semigroup and the right hand side contains a series of terms
as in the applications to manifolds stated above. As a consequence, in Section 4.2 we obtain some
global pseudo-Poincaré inequalities. In Section 4.4 we consider the application above and obtain
generalized Poincaré inequalities in Riemannian manifolds. The subsequent sections contain the
proofs of our results.

2. Preliminaries

2.1. Spaces of homogeneous type

For full details and references we refer the reader to [10] and [9]. Let (X,d,μ) be a space
of homogeneous type: X is a set equipped with a quasi-metric d and a non-negative Borel mea-
sure μ satisfying the doubling condition

μ
(
B(x,2r)

)
� cμμ

(
B(x, r)

)
< ∞,
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for some cμ � 1, uniformly for all x ∈ X and r > 0, and where B(x, r) = {y ∈ X: d(y, x) < r}.
We note that, in general, different centers and radii can define the same ball. Therefore, given a
ball B we implicitly assume that a center and a radius are specified: B = B(xB, r(B)) where xB

is the center and r(B) is the radius. The doubling property implies

μ
(
B(x,λr)

)
� cμλnμ

(
B(x, r)

)
and

μ(B2)

μ(B1)
� cμ

(
r(B2)

r(B1)

)n

, (2.1)

for some cμ,n > 0 and for all x, y ∈ X, r > 0 and λ � 1, and for all balls B1 and B2 with
B1 � B2.

Let us recall that d being a quasi-metric on X means that d is a function from X × X to
[0,+∞) satisfying the same conditions as a metric, except for the triangle inequality that is
weakened to

d(x, y) � D0
(
d(x, z) + d(z, y)

)
, (2.2)

for all x, y, z ∈ X and where 1 � D0 < ∞ is a constant independent of x, y, z. Unfortunately,
when D0 > 1 it does not follow, in general, that the balls are open. However, Macías and Segovia
[26] proved that given any quasi-metric d , there exists another quasi-metric d ′ equivalent to d

such that the metric balls defined with respect to d ′ are open. Thus, without loss of generality,
from now on we assume that the metric balls are open sets. Also, in order to simply the compu-
tations, we assume that X is unbounded and therefore μ(X) = ∞, see for instance [28].

We make some conventions: A � B means that the ratio A/B is bounded by a constant that
does not depend on the relevant variables in A and B . Throughout this paper, the letter C denotes
a constant that is independent of the essential variables and that may vary from line to line.
Given a ball B = B(xB, r(B)) and λ > 0, we write λB = B(xB,λr(B)). For any set E we write
diam(E) = supx,y∈E d(x, y). The average of f ∈ L1

loc in B is denoted by

fB = −
∫
B

f (x)dμ(x) = 1

μ(B)

∫
B

f (x)dμ(x)

and the localized and normalized norm of a Banach or a quasi-Banach function space A by
‖f ‖A,B = ‖f ‖A(B,μ/μ(B)). Examples of spaces A are Lp,∞, Lp or more general Marcinkiewicz
and Orlicz spaces.

2.2. Dyadic sets

We take the dyadic structure given in [9] (here we use the notation in [23]).

Theorem 2.1. (See [9].) There exist σ > 4D3
0 > 1 large enough, 0 < c1,C1,C2 < ∞ and D =⋃

k∈Z
Dk a countable collection of open sets Q with the following properties:

(i) Dk is a countable collection of disjoint sets such that X = ⋃
Q∈Dk

Q μ-a.e.

(ii) If Q ∈ Dk , then diam(Q) � C1σ
k .

(iii) If Q ∈ Dk , then there exist xQ ∈ Q and balls BQ = B(xQ, c1σ
k) and B̂Q = B(xQ,C1σ

k)

such that BQ ⊂ Q ⊂ B̂Q.
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(iv) If Q1 ∈ Dk1 and Q2 ∈ Dk2 with k1 � k2, then either Q1 ∩ Q2 = ∅ or Q1 ⊂ Q2.

We will refer to Q as dyadic cubes and to Dk as the k-th generation of D.

In what follows, we fix σ > 4D3
0 large enough and consider the dyadic structure given by

Theorem 2.1. We will use the following decomposition of X in dyadic annuli: given Q ∈ D, we
write X = ⋃

k�1 Ck(Q) with C1(Q) = σB̂Q and Ck(Q) = σkB̂Q \ σk−1B̂Q, k � 2. Also, given

a ball B , we write X = ⋃
k�1 Ck(B) with C1(B) = σB and Ck(B) = σkB \ σk−1B , k � 2.

2.3. Muckenhoupt weights

A weight w is a non-negative locally integrable function. For any measurable set E, we write
w(E) = ∫

E
w(x)dμ(x). Also, we set

−
∫
B

f dw = −
∫
B

f (x)dw(x) = 1

w(B)

∫
B

f (x)w(x)dμ(x).

As before, we write ‖f ‖A(w),B = ‖f ‖A(B,w/w(B)) to denote the localized and normalized
weighted norm of a Banach or a quasi-Banach function space A.

We say that a weight w ∈ Ap(μ), 1 < p < ∞, if there exists a positive constant C such that
for every ball B

(
−
∫
B

w dμ

)(
−
∫
B

w1−p′
dμ

)p−1

� C.

For p = 1, we say that w ∈ A1(μ) if there is a positive constant C such that for every ball B ,

−
∫
B

w dμ � Cw(y), for μ-a.e. y ∈ B.

We write A∞(μ) = ⋃
p�1 Ap(μ). See [33] for more details and properties.

2.4. Functionals

Let a : B × F −→ [0,+∞), where B is the family of all balls in X and F is some family of
functions. When the dependence on the functions is not of our interest, we simply write a(B).
We say that a is doubling if there exists some constant Ca > 0 such that for every ball B ,

a(σB) � Caa(B).

We recall the definition of the classes Dr introduced in [16]: given a Borel measure ν and 1 �
r < ∞, a satisfies the Dr(ν) condition (we simply write a ∈ Dr(ν)), if there exists 1 � Ca < ∞
such that for each ball B and any family of pairwise disjoint balls {Bi}i ⊂ B , the following holds

∑
a(Bi)

rν(Bi) � Cr
aa(B)rν(B).
i
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We write ‖a‖Dr(ν) for the infimum of the constants Ca . By simplicity, we write Dr or Dr(w),
when ν = μ or w is a weight. Note that, by Hölder’s inequality, the Dr(ν) conditions are de-
creasing: Dr(ν) ⊂ Ds(ν) and ‖a‖Ds(ν) � ‖a‖Dr(ν), for 1 � s < r < ∞. On the other hand, if a

is quasi-increasing (that is, a(B1) � Caa(B2), for all B1 ⊂ B2) then, a ∈ Dr(ν) for any Borel
measure ν and 1 � r < ∞.

2.5. Approximations of the identity and semigroups

We work with families of linear operators {St }t>0 that play the role of generalized approxi-
mations of the identity. The reader may find convenient to think of {St }t>0 as being a semigroup
since this is our main motivation. We assume from now on that these operators commute (that
is, St ◦ Ss = Ss ◦ St for every s, t > 0). Families of operators that form a semigroup (that is,
SsSt = Ss+t for all s, t > 0) satisfy this property. We assume that these operators admit an inte-
gral representation:

Stf (x) =
∫
X

st (x, y)f (y) dμ(y),

where st (x, y) is a measurable function such that

∣∣st (x, y)
∣∣ � 1

μ(B(x, t1/m))
g

(
d(x, y)m

t

)
, (2.3)

for some positive constant m and a positive, bounded and non-increasing function g. Observe
that (2.3) leads to a rescaling between the parameter t and the space variables. Thus, given a
ball B , we write tB = r(B)m in such a way that the parameter t and St are “adapted” or “scaled”
to B .

We also assume that for all N � 0,

lim
r→∞ rNg(r) = 0.

We can relax the decay on g by fixing N > 0 large enough (in such a way that the estimates
obtained below are not trivial). Further details are left to the reader. Let us note that the decay
of g yields that the integral representation of St makes sense for all functions f ∈ Lp(X) and that
the operators St are uniformly bounded on Lp(X) for all 1 � p � ∞. As in [15], we consider a
wider class of functions for which St is well defined: M = ⋃

x∈X

⋃
β>0 M(x,β), where M(x,β)

is the set of measurable functions f such that

‖f ‖M(x,β)
=

∫
X

|f (y)|
(1 + d(x, y))2n+βμ(B(x,1 + d(x, y)))

dμ(y) < ∞.

It is shown in [15] that (M(x,β),‖ · ‖M(x,β)
) is a Banach space, and if f ∈ M then, Stf and Ss

(Stf ) are well defined and finite almost everywhere for all t, s > 0.
As examples of semigroups we can consider second order elliptic form operators in Rn, Lf =

−div(A∇f ), with A being an elliptic n × n matrix with complex L∞-valued coefficients. The
operator −L generates a C0-semigroup {e−tL}t>0 of contractions on L2(Rn). Under further
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assumptions (for instance, real A in any dimension; complex A in dimensions n = 1 or n = 2,
etc.) the heat kernel has Gaussian bounds, that is, the above estimates hold with m = 2 and g(t) =
ce−ct2

. In this way we can take St = e−tL or St = I − (I − e−tL)N for some fixed N � 1. Note
that for the latter we lose the semigroup property, however, we still have the commutation rule
and the Gaussian decay. Thus we can apply our results to that families. In some applications it is
interesting to have N large enough so that one obtains extra decay in the resulting estimates (see
[22,1,4] and the references therein). Similar examples could be considered in smooth domains
of Rn since these are spaces of homogeneous type.

Another examples of interest are the Riemannian manifolds X with the doubling property.
In such a situation we can consider the Laplace–Beltrami operator �. We assume that the heat
kernel pt(x, y) of the semigroup e−t� has Gaussian upper bounds (UE). As before, this allows
us to use our results both for St = e−t� or St = I − (I − e−t�)N for some fixed N � 1. Note
that the Gaussian upper bounds imply (2.3) with m = 2 and g(t) = ce−ct2

. See Section 4.4 for
applications of our main results to this setting.

3. Main results

Theorem 3.1. Let {St }t>0 be as above, 1 < r < ∞ and a ∈ Dr(μ). Let f ∈ M be such that

−
∫
B

|f − StB f |dμ � a(B), (3.1)

for all balls B and where tB = r(B)m. Then for any ball B , we have

‖f − StB f ‖Lr,∞,B � C
∑
k�0

σ 2nkg
(
cσmk

)
a
(
σkB

)
(3.2)

with C � 1 and 0 < c < 1. Furthermore, if a is doubling, then

‖f − StB f ‖Lr,∞,B � a(B).

The previous theorem can be extended to spaces with A∞(μ) weights as follows:

Theorem 3.2. Let {St }t>0 be as above, w ∈ A∞(μ), 1 � r < ∞ and a ∈ Dr(w) ∩ D1(μ). If
f ∈ M satisfies (3.1) then,

‖f − StB f ‖Lr,∞(w),B � C
∑
k�0

σ 2nkg
(
cσmk

)
a
(
σkB

)

for all balls B with C � 1 and 0 < c < 1. Further, if a is doubling, we can write Ca(B) in the
right hand side.

Remark 3.3. We would like to call attention to the fact that (3.1) is an unweighted estimate and
that from it we obtain a weighted estimate for the oscillation f − StB f .
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Remark 3.4. We notice that we have imposed the mild condition D1(μ), since in the proof we
are going to use Lemma 5.1 and Proposition 5.3 below. Observe that if we assume w ∈ Ar(μ),
then a ∈ Dr(w) implies a ∈ D1(μ), see [24].

We would like to point out that one could have removed the condition a ∈ D1(μ) in the
particular case where St is a semigroup. The argument of the proof is somehow different and
more technical as one needs an alternative proof for Lemma 5.1 and Proposition 5.3. We leave
the details to the reader.

As in [16,24], we extend Theorems 3.1 and 3.2. We change the hypothesis on the functional a

so that the Dr(μ) condition allows a different functional in the right hand side.

Theorem 3.5. Let {St }t>0 be as above and f ∈ M be such that (3.1) holds. Given 1 < r < ∞,
and functionals a and ā we assume the following Dr(μ) type condition:

∑
i

a(Bi)
rμ(Bi) � ā(B)rμ(B), (3.3)

for each ball B and any family of pairwise disjoint balls {Bi}i ⊂ B . Then, we have

‖f − StB f ‖Lr,∞,B � C
∑
k�0

σ 2nkg
(
cσmk

)
ā
(
σkB

)
(3.4)

for all balls B with C � 1 and 0 < c < 1. Furthermore, if ā is doubling, we can write Cā(B) in
the right hand side.

Remark 3.6. Given two functionals a and ā, abusing the notation, we say that (a, ā) ∈ Dr(μ) if
(3.3) holds. As in Theorem 3.2 we can consider a weighted extension of the previous result: we
assume that (a, ā) ∈ Dr(w)∩D1(μ) and obtain the corresponding Lr,∞(w) estimate. Details are
left to the reader.

4. Applications

We present some applications to the main results in the previous section. Some of the ap-
plications considered are analogous to those from [24] in the Euclidean setting. We would like
to point out that although the underlying measure of the given space of homogeneous might be
non-isotropic (i.e., we lose the property |Q| = �(Q)n), we will have at our disposal estimates
(4.3) and (4.4). Examples 1, 2, 3, 4, 6 are essentially contained in [24] and therefore we sill skip
some details. Examples 5, 7, 8 are new.

We recall that Kolmogorov’s inequality implies that for any 0 < q < r < ∞

‖f ‖Lq,B �
(

r

r − q

)1/q

‖f ‖Lr,∞,B . (4.1)

This means that whenever we apply the previous results, we can replace Lr,∞ by Lq for every
0 < q < r . Note that the same occurs in the weighted situations.
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Example 1 (BMO and Morrey–Campanato spaces). We set a(B) = Cμ(B)α , α � 0, and note
that a is clearly increasing and doubling (because so is μ). Thus, a ∈ Dr(μ) for every 1 � r < ∞.
Consequently if f ∈ M is such that

1

μ(B)α
−
∫
B

|f − StB f |dμ � C, (4.2)

we can conclude by Theorem 3.1 and Kolmogorov’s inequality (4.1),

‖f − StB f ‖Lr ,B � μ(B)α,

for every 1 < r < ∞ and for all balls B . Also all these estimates hold in Lr(w) with w ∈ A∞(μ).
Under the additional assumption that {St }t > 0 is a semigroup, (4.2) defines the spaces BMOS

for α = 0 (see [15]) and the Morrey–Campanato LS(α) for α > 0 (see [34]). The reader is re-
ferred to those references for the corresponding self-improvement results (see also [14,23,24]).
A unified approach to these examples is given in [23] where exponential self-improvement is
obtained for general quasi-increasing functionals (and this is stronger than what ones obtained
here).

Analogously, one can consider the spaces BMOϕ,S(μ) that generalize those defined by
S. Spanne [32] in Rn (see [24] and [23] for further details).

For the following examples we assume that all annuli are non-empty, i.e., B(x,R) \
B(x, r) �= ∅ for all 0 < r < R < ∞. This implies that r(B) ≈ diam(B) and also that B1 ⊂ B2
clearly yields r(B1) � 2D0r(B2) — we notice that these two properties fail to hold in general.
In particular,

μ(B2)

μ(B1)
� cμ

(
r(B2)

r(B1)

)n

, (4.3)

for every B1 ⊂ B2. Also, in the examples below, r(B) can be replaced by diam(B) which is
univocally determined (we however keep r(B) to emphasize the analogy with the Euclidean
case). The non-empty annuli property implies that μ satisfies the reverse doubling condition (see
[35]): there exist n̄ > 0 and c̄μ > 0 such that

μ(B1)

μ(B2)
� c̄μ

(
r(B1)

r(B2)

)n̄

, (4.4)

for all balls B1 and B2 with B1 ⊂ B2.

Example 2 (Fractional averages). Given λ � 1, 0 < α < n, 1 � p < n/α and a weight u, we set

a(B) = r(B)α
(

u(λB)

μ(B)

)1/p

.

This functional is connected to the concept of higher gradient in [20,21]. Note that if p � n/α,
by (4.3) a is increasing; therefore, a ∈ Dr(μ) ∩ Dr(w), for every r � 1 and w ∈ A∞(μ). Thus,
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Theorem 3.1 together with (4.1) give self-improvement in all the range 1 � r < ∞ for Lr(μ)

and Lr(w) with w ∈ A∞(μ).
By [16] (see also [24]), we have that a ∈ Dr(μ) for 1 < r < pn/(n − αp). Thus, if f ∈ M

satisfies

−
∫
B

|f − StB f |dμ � r(B)α
(

u(λB)

μ(B)

)1/p

for all balls B , then

(
−
∫
B

|f − StB f |r dx

)1/r

�
∑
k�0

σ 2nkg
(
cσmk

)
r
(
σkB

)α
(

u(σ kλB)

μ(σ kB)

)1/p

,

for every 1 < r < pn/(n − αp). If in addition we assume that u ∈ A∞(μ), [16] shows that
a ∈ D pn

n−αp
+ε(μ) (ε > 0 depends on u ∈ A∞(μ)). Also we trivially have a doubling since so

is u (and then we can take λ = 1). Therefore, in the previous estimate we reach the end-point
r = pn/(n − αp) and furthermore on the right hand side we can write a(Q). See [24] for more
details.

4.1. Reduced Poincaré type inequalities

As in the previous examples and motivated by the classical (1,1)-Poincaré inequality, one
could consider estimates as follows: let f ∈ M be such that

−
∫
B

|f − StB f |dμ � r(B) −
∫
B

hdμ, (4.5)

for all balls B and where h is some non-negative measurable function: Typically h depends on f .
For instance, in Rn one can take h = C|∇f |. However, in the computations below we can work
with any given function h. We call this estimate a reduced Poincaré type inequality, in contrast
with the expanded estimates (4.18) that we consider in Section 4.3 below. In this context it is
more natural to relax (4.5) and take as an initial estimate

−
∫
B

|f − StB f |dμ � r(B)

(
−
∫
B

hp dμ

)1/p

, (4.6)

with 1 � p < ∞. We would like to apply our results to obtain self-improvement from (4.6).

Example 3 (Poincaré–Sobolev inequality). If 1 � p < n we show that (4.6) yields

‖f − StB f ‖Lp∗,∞,B �
∑
k�0

φ(k)r
(
σkB

)( −
∫
k

hp dμ

)1/p

, (4.7)
σ B
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for all balls B , for some sequence {φ(k)}k�0 and where p∗ = np
n−p

. By Kolmogorov’s inequal-
ity (4.1), we get strong-type estimates on Lr for every 1 < r < p∗.

We set a(B) = r(B)(−
∫
B

hp dμ)
1/p . Note that when p � n, by (4.3) it follows that a is quasi-

increasing. Thus we have strong-type estimates for all 1 < r < ∞. This case is studied in [23]
and a stronger exponential integrability is proved.

In our case, 1 < p < n, it suffices to see that a ∈ Dp∗(μ) and to apply Theorem 3.1. Let B be
a ball and {Bi}i ⊂ B a family of pairwise disjoint balls. Then, we use (4.3) (let us notice that in
the Euclidean setting it suffices to use that |Bi | = cnr(Bi)

n) and the fact that p∗ > p:

∑
i

a(Bi)
p∗

μ(Bi) =
∑

i

(
r(Bi)

n

μ(Bi)

)p∗/n(∫
Bi

hp dμ

)p∗/p

�
(

r(B)n

μ(B)

)p∗/n(∑
i

∫
Bi

hp dμ

)p∗/p

�
(

r(B)n

μ(B)

)p∗/n(∫
B

hp dμ

)p∗/p

= a(B)p
∗
μ(B). (4.8)

Example 4 (Poincaré–Sobolev inequality for A1(μ) weights). Given w ∈ A1(μ) and 1 � p < n,
(4.6) implies

‖f − StB f ‖Lp∗,∞(w),B �
∑
k�0

φ(k)r
(
σkB

)( −
∫

σkB

hp dw

)1/p

. (4.9)

As a consequence of the previous inequality and the weighted version of Kolmogorov’s inequal-
ity, we get the strong norm Lr(w,B) for every 1 < r < p∗.

In order to show (4.9) we use Theorem 3.2. First, using that w ∈ A1(μ), we have that (4.6)
gives

−
∫
B

|f − StB f |dμ � r(B)

(
−
∫
B

hp dw

)1/p

= a(B).

Let us recall the notation introduced above −
∫
B

· · · dw = 1
w(B)

∫
B

· · ·w dμ.
To show that a ∈ Dp∗(w) we proceed as in (4.8) replacing everywhere μ by w and using that

w(B)

w(Bi)
� μ(B)

μ(Bi)
�

(
r(B)

r(Bi)

)n

,

where the first estimate follows from the left hand side of inequality (5.14) and the fact that w ∈
A1(μ), and the second inequality is (4.3). On the other hand, notice that w ∈ A1(μ) ⊂ Ap∗(μ)

and therefore a ∈ D1(μ) (see Remark 3.4). Thus, applying Theorem 3.2, we obtain (4.9).
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As before, when p � n, we can obtain exponential type self-improvement since the functional
is increasing (see [23]).

Example 5 (Poincaré–Sobolev inequality for Ar(μ) weights, r > 1). We show that (4.6) with
1 � p < n implies that for every r > 1 and w ∈ Ar(μ), there exists q >

nrp
n−p

(depending on p,
n, w) such that the following holds

‖f − StB f ‖Lq(w),B �
∑
k�0

φ(k)r
(
σkB

)( −
∫

σkB

hrp dw

)1/(rp)

. (4.10)

To check (4.10), we first see that (4.6) and w ∈ Ar(μ) give

−
∫
B

|f − StB f |dμ � r(B)

(
−
∫
B

hrp dw

)1/(rp)

= a(B).

The openness property of the Ar(μ) class gives that w ∈ Aτr(μ) for some 0 < τ < 1. Without
loss of generality, τ can be chosen so that p

n
< τ < 1. Hence, for any Bi ⊂ B we have, by (5.14)

below and (4.3),

w(B)

w(Bi)
�

(
μ(B)

μ(Bi)

)τr

�
(

r(B)

r(Bi)

)nτr

.

We pick q0 = (nτrp)/(nτ − p) and observe that q0 >
nrp
n−p

. Using this and proceeding as in
the two previous examples we can easily see that a ∈ Dq0(w) which by using Theorem 3.2
and Remark 3.4 (since q0 > r) leads to an estimate in Lq0,∞(w). Next taking nrp

n−p
< q < q0,

Kolmogorov’s inequality gives (4.10).

Example 6 (Two-weight Poincaré inequality). Given 1 � p � q � r < ∞, let (w,v) be a pair of
weights with w ∈ Ar(μ), v ∈ Aq/p(μ) such that the following balance condition holds

r(B1)

r(B2)

(
w(B1)

w(B2)

)1/r

�
(

v(B1)

v(B2)

)1/q

, for all B1,B2 with B1 ⊂ B2. (4.11)

Then, (4.6) allows us to obtain

‖f − StB f ‖Lr,∞(w),B �
∑
k�0

φ(k)r
(
σkB

)( −
∫

σkB

hq dv

)1/q

. (4.12)

Consequently by Kolmogorov’s inequality, we obtain strong type estimates in the range 1 <

s < r .
In order to obtain (4.12), note that by (4.6) and using that v ∈ Aq/p(μ), we get

−
∫

|f − StB f |dμ � r(B)

(
−
∫

hq dv

)1/q

= a(B).
B B
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Using the balance condition together with r/q � 1, it is not difficult to see that a ∈ Dr(w).
Hence, applying Remark 3.4 and Theorem 3.2, we obtain the desired inequality.

Example 7 (Generalized Hardy inequality). We take 1 < p < n̄ (where n̄ is the exponent given
in (4.4)) and fix x0 ∈ X. Let us consider wx0(x) = d(x, x0)

−p . Then from (4.6) we obtain

‖f − StB f ‖Lp,∞(wx0 ,B) �
∑
k�0

φ(k)

(
1

wx0(σ
kB)

∫
σkB

hp dμ

)1/p

. (4.13)

As a consequence of (4.1), we automatically obtain strong type estimates in the range 1 < r < p.
Note that the claimed estimate implies

sup
λ>0

λwx0

{
x ∈ B:

∣∣f (x) − StB f (x)
∣∣ > λ

}1/p �
∑
k�0

φ̃(k)

( ∫
σkB

hp dμ

)1/p

and this should be compared with the classical Hardy inequality∫
B

∣∣f (x) − fB

∣∣2 dx

|x|2 �
∫
B

∣∣∇f (x)
∣∣2

dx.

To obtain (4.13) we first observe that it is easy to see that for every ball B = B(xB, r(B))

−
∫
B

d(x, x0)
α dμ(x) ≈ d(x0, xB)α, x0 /∈ 2D0B, α ∈ R, (4.14)

and

−
∫
B

d(x, x0)
α dμ(x) ≈ r(B)α, x0 ∈ 2D0B, α > −n̄. (4.15)

Using these estimates it follows that wx0 ∈ A1(μ) and r(B)(wx0(B)/μ(B))1/p � 1. Then we
readily obtain that (4.6) yields

−
∫
B

|f − StB f |dμ �
(

1

wx0(B)

∫
B

hp dμ

)1/p

= a(B). (4.16)

It is trivial to show that a ∈ Dp(wx0) and also that a ∈ D1(μ) by Remark 3.4 and the fact that
wx0 ∈ Ap(μ). Thus Theorem 3.2 gives as desired (4.13).

Example 8 (Generalized two weights Hardy inequality). We take 1 < p < n̄ and 0 � q � p.
Fixed x0 ∈ X we set wx0(x) = d(x, x0)

−p and w̄x0(x) = d(x, x0)
−q . Then from (4.6) we obtain

‖f − StB f ‖Lp,∞(w̄x0 ),B �
∑
k�0

φ(k)

(
1

wx0(σ
kB)

∫
k

hp dμ

)1/p

. (4.17)
σ B
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As a consequence of the weighted version of (4.1), we automatically prove estimates in Lr(w̄x0)

for every 1 � r < p.
Taking the functional from the previous example, we have already shown (4.16) and a ∈

D1(μ). Using (4.14) and (4.15) we obtain the following balance condition

w̄x0(B1)

w̄x0(B2)

wx0(B2)

wx0(B1)
� 1, B1 ⊂ B2.

This easily gives a ∈ Dp(w̄x0). Note also that w̄x0 ∈ A1(μ). Thus, Theorem 3.2 yields (4.17).

4.2. Global pseudo-Poincaré inequalities

As a consequence of our results and using some ideas from [24], we are going to obtain
the following generalized global pseudo-Poincaré inequalities, see [31]. These are of interest to
obtain interpolation and Gagliardo–Nirenberg inequalities, see [31,6,25,29]. Assume that f ∈ M
satisfies (4.6) with 1 � p < n. Then for all t > 0:

• Global pseudo-Poincaré inequalities:

‖f − Stf ‖Lp(X) � t1/m‖h‖Lp(X).

• Global weighted pseudo-Poincaré inequalities: for every w ∈ Ar(μ), 1 � r < ∞,

‖f − Stf ‖Lpr (w) � t1/m‖h‖Lpr (w).

• Global pseudo-Hardy inequalities: let 1 < p < n̄ and take wx0(x) = d(x, x0)
−p , x0 ∈ X,

then

‖f − Stf ‖Lp,∞(wx0 ) � ‖h‖Lp(X),

Let us show the first estimate. We fix t > 0 and take k0 ∈ Z such that C1σ
k0 � t1/m <

C1σ
k0+1. Then, we write X = ⋃

Q∈Dk0
Q a.e. Note that for each Q ∈ Dk0 , there exists τ with

1 � τ < σm such that t = τ t
B̂Q

. As in Lemma 5.5, we fix Q0 ∈ Dk0 and consider the fam-

ily Jk = {Q ∈ Dk0 : σk+1B̂Q ∩ σk+1B̂Q0 �= ∅}. It is easy to see that each Q ∈ Jk satisfies
Q ⊂ σk+2B̂Q0 ⊂ σk+3B̂Q. This and the fact that μ is doubling imply #Jk � cμ(C1/c1)

nσn(k+3).
On the other hand, Example 3 easily gives Lp strong-type estimates. Then, Minkowski’s inequal-
ity and Lemma 5.4 imply

‖f − Stf ‖Lp(X) =
( ∑

Q∈Dk0

∫
Q

|f − Stf |p dμ

)1/p

�
( ∑

Q∈Dk0

∫
τ 1/mB̂

|f − Sτt
B̂Q

f |p dμ

)1/p
Q
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�
( ∑

Q∈Dk0

μ
(
τ 1/mB̂Q

)(∑
k�0

φ(k)r
(
σkτ 1/mB̂Q

)( −
∫

σkτ 1/mB̂Q

hp dμ

)1/p)p)1/p

� t1/m
∑
k�0

φ(k)σ k(1−n̄/p)

( ∑
Q∈Dk0

∫
σk+1B̂Q

hp dμ

)1/p

� t1/m
∑
k�0

φ(k)σ k(1+n/p−n̄/p)

(∫
X

hp dμ

)1/p

� t1/m‖h‖Lp(X),

where we have used that {φ(k)}k�0 (given in Theorem 3.1) is a fast decay sequence by the decay
of g.

In the weighted case with w ∈ Ar(μ), we use Example 4 for r = 1 and Example 5 for r > 1.
For r = 1 we have p∗ > p, and if r > 1 we observe that nrp

n−p
> rp. Thus, in both cases we obtain

(
−
∫
B

|f − StB f |rp dw

)1/(rp)

�
∑
k�0

φ(k)r
(
σkB

)( −
∫

σkB

hrp dw

)1/(rp)

.

Proceeding as before and using that the w dμ is doubling we obtain the desired inequality.
For the pseudo-Hardy inequalities one uses the same ideas with the weak-type norm in the

left hand side.

4.3. Expanded Poincaré type inequalities

We introduce some notation: given 1 � p,q < ∞ we say that f ∈ M satisfies an expanded
Lq − Lp Poincaré inequality if for all balls B ⊂ X

(
−
∫
B

|f − StB f |q dμ

)1/q

�
∑
k�0

α(k)r
(
σkB

)( −
∫

σkB

hp dμ

)1/p

,

where {α(k)}k�0 is a sequence of non-negative numbers and h is some non-negative measurable
function.

In this section we start with an expanded L1 − Lp Poincaré inequality and show that it self-
improves to an expanded Lq −Lp Poincaré inequality for q in the range (1,p∗). More precisely,
our starting estimate is the following: let p � 1 and f ∈ M be such that

−
∫
B

|f − StB f |dμ �
∑
k�0

α(k)r
(
σkB

)( −
∫

σkB

hp dμ

)1/p

, (4.18)

for all balls B ⊂ X and where {α(k)}k�0 is a sequence of non-negative numbers and h is some
non-negative measurable function.

In the classical situation, replacing StB f by fB and taking h = C|∇f | and α(k) = 0 for k � 1,
this inequality is nothing but the L1 − Lp Poincaré–Sobolev inequality. Let us also observe that
if α(k) = 0 for k � 1, we get back to (4.5) in the previous section. On the other hand, if hp is
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doubling and {α(k)}k�0 decays fast enough, then (4.18) leads us again to (4.6). As mentioned
in [24] and [23], we believe that the estimates (4.18) are more natural than (4.5) or (4.6) in the
sense that they take into account the tail effects of the semigroup in place of looking only at a
somehow local term.

As done in [24], (4.18) with h = |Df |, where D is some (differential) operator, can be ob-
tained if we further assume that St1 ≡ 1 a.e. in X and for all t > 0, and the following L1 − Lp

Poincaré–Sobolev inequality

−
∫
B

|f − fB |dμ � Cr(B)

(
−
∫
B

|Df |p dμ

)1/p

.

As we show below, under some conditions on a Riemannian manifold we can obtain (4.18)
without any kind of Poincaré–Sobolev inequality, thus our results are applicable in situations
where such estimates do not hold or are unknown.

Starting with (4.18) we are going to apply our main results to obtain a self-improvement on
the integrability of the left hand side. For the sake of simplicity, we are going to treat only the
unweighted Poincaré–Sobolev inequality analogous to those in Example 3. We notice that the
same ideas can be used to consider Example 4 and obtain (4.9) with Lr(w), 1 < r < p∗, in place
of Lp∗,∞(w) (here one can show that a ∈ Dp∗−ε(w)); Example 5 and obtain (4.10) for some
q >

nrp
n−p

(here one can show that a ∈ Dq0−ε(w) and this allows us to pick such value of q);
and Example 6 for which we can show (4.12) with Ls(w), 1 < s < r , in place of Lr,∞(w) if we
further assume that 1 � p � q < r (here one can show that a ∈ Dr−ε(w)). Further details are left
to the interested reader.

We borrow some ideas from [24, Section 4.2]. We fix 1 � p < n and define

a(B) =
∑
k�0

α(k)a0
(
σkB

)
with a0(B) = r(B)

(
−
∫
B

hp dμ

)1/p

.

We are going to find another functional ā with a similar expression so that (a, ā) satisfies a Dq

condition as in Theorem 3.5.

Proposition 4.1. Given a as above, let 1 � p < n and 1 < q < p∗. There exists a sequence of
non-negative numbers {ᾱ(k)}k�0, so that if we set

ā(B) =
∑
k�0

ᾱ(k)a0
(
σkB

)
,

we have that (a, ā) ∈ Dq .

The proof of this result is postponed until Section 5.4. From the proof we obtain that ᾱ(0) =
Cα(0) and ᾱ(l) = Cσ ln̄/q̃

∑
k�max{l−2,0} σ

k( n
p

− n̄
q̃
)
α(k) for l � 1 with q̃ = max{q,p}.

This result, Theorem 3.5, and Kolmogorov’s inequality (4.1) readily lead to the following
corollary:
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Corollary 4.2. Given 1 � p < n, let f ∈ M satisfy (4.18). Then, for all 1 < q < p∗ there exists
another sequence of non-negative numbers {α̃(k)}k�0 so that

(
−
∫
Q

|f − StQf |q dμ

)1/q

�
∑
k�0

α̃(k)�
(
σkQ

)( −
∫

σkQ

hp dμ

)1/p

.

It is straightforward to show that α̃(k) = C
∑k

j=0 σ 2nj g(cσmj )ᾱ(k − j).

Remark 4.3. We would like to call the reader’s attention to the fact that in the case p � n, the
functional a defined above is increasing since so it is a0. Therefore the previous estimate holds
for all 1 < q < ∞ with a sequence α̃ defined as before and where ᾱ = α.

As in [24, Section 4.2] one can consider generalized Poincaré inequalities at the scale p∗.
More precisely, one can push the exponent q to p∗ and obtain an estimate in the Marcinkiewicz
space associated with ϕ(t) ≈ t1/p∗

(1 + log+ 1/t)−(1+ε)/p∗
, ε > 0. Notice that ϕ is the fun-

damental function of the Orlicz space Lp∗
(logL)−(1+ε), and the Marcinkiewicz space is the

corresponding weak-type space (as Lq,∞ is for Lq ). Further details are left to the reader,
see [24].

Given 1 � p < ∞, by Corollary 4.2 and Remark 4.3 both particularized to q = p, we imme-
diately get that f ∈ M satisfies an expanded L1 − Lp Poincaré inequality (4.18) (with a fast
decay sequence) if and only if it satisfies an expanded Lp − Lp Poincaré inequality. Notice also
that an expanded L1 − Lp Poincaré inequality implies trivially an expanded L1 − Lq (equiv-
alently Lq − Lq ) Poincaré inequality for every q � p. As a consequence of this and repeating
the argument in the previous section we obtain the following global pseudo-Poincaré inequali-
ties:

Corollary 4.4. Assume that (4.18) holds with a fast decay sequence {α(k)}k�0. Then, for all
q � p and all t > 0

‖f − Stf ‖Lq(X) � t1/m‖h‖Lq(X).

4.4. Expanded Poincaré type inequalities on manifolds

In this section we show that on Riemannian manifolds we can obtain expanded Poincaré
type inequalities as (4.6) with different functions h on the right hand side. As observed before
(see [24]), assuming that St1 = 1 μ-a.e., classical Poincaré–Sobolev inequalities imply (4.18).
There are situations where such Poincaré inequalities do not hold or are unknown. However the
arguments below lead us to obtain generalized expanded Poincaré type inequalities to whom the
self-improving results are applicable.

We refer the reader to [3] and the references therein for a complete account of this topic. Let
M be a complete non-compact connected Riemannian manifold with d its geodesic distance. As-
sume that the volume form μ is doubling. Then M equipped with the geodesic distance and the
volume form μ is a space of homogeneous type. Non-compactness of M implies infinite diame-
ter, which together with the doubling volume property yields μ(M) = ∞ (see for instance [28]).
Notice that connectedness implies that M has the non-empty annuli property, therefore we are in
a setting where we can apply all the previous applications.
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Let � be the positive Laplace–Beltrami operator on M given by

〈�f,g〉 =
∫
M

∇f · ∇g dμ

where ∇ is the Riemannian gradient on M and · is an inner product on TM. The Riesz transform is
the tangent space valued operator ∇�−1/2 and it is bounded from L2(M,μ) into L2(M;TM,μ)

by construction.
One says that the heat kernel pt (x, y) of the semigroup e−t� has Gaussian upper bounds if

for some constants c,C > 0 and all t > 0, x, y ∈ M ,

pt (x, y) � C

μ(B(x,
√

t ))
e−c

d2(x,y)
t . (UE)

It is known that under doubling it is a consequence of the same inequality only at y = x

[18, Theorem 1.1]. Notice that (UE) implies that pt (x, y) satisfies (2.3) with m = 2 (therefore
tB = r(B)2) and g(t) = ce−ct2

. Thus our results are applicable to the semigroup St = e−t� and
to the family of commuting operators St = I − (I − e−t�)N with N � 1 — expanding the latter
one trivially sees that its kernel satisfies (UE).

Under doubling and (UE), [11] shows that

∥∥∣∣∇�−1/2f
∣∣∥∥

Lp � Cp‖f ‖Lp (Rp)

holds for 1 < p < 2 and all f bounded with compact support. Here, | · | is the norm on TM
associated with the inner product. We define

q+ = sup
{
p ∈ (1,∞): (Rp) holds

}
which satisfies q+ � 2 under doubling and (UE). It can be equal to 2 [11]. It is bigger than 2
assuming further the stronger L2-Poincaré inequalities [2] and in some situations q+ = ∞.

We also define q̃+ as the supremum of those p ∈ (1,∞) such that for all t > 0,

∥∥∣∣∇e−t�f
∣∣∥∥

Lp � Ct−1/2‖f ‖Lp . (Gp)

By analyticity of the heat semigroup, one always has q̃+ � q+; indeed (Rp) implies (Gp):

∥∥∣∣∇e−t�f
∣∣∥∥

Lp � Cp

∥∥�1/2e−t�f
∥∥

Lp � C′
pt−1/2‖f ‖Lp .

As we always have (R2) then this estimate implies (G2). Under the doubling volume property
and L2-Poincaré inequalities, q+ = q̃+, see [3, Theorem 1.3]. It is not known if the equality holds
or not under doubling and Gaussian upper bounds.

Proposition 4.5. Let M be complete non-compact connected Riemannian manifold satisfying the
doubling volume property and (UE).
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(a) Given N � 1, let SN
t = I − (I − e−t�)N . For any smooth function with compact support f

we have

−
∫
B

∣∣f − SN
tB

f
∣∣dμ � C

∑
k�1

σ−k(2N−n)r
(
σkB

) −
∫

σkB

∣∣�1/2f
∣∣dμ.

(b) For any p ∈ ((q̃+)′,∞) ∪ [2,∞) and any smooth function with compact support f we have

(
−
∫
B

∣∣f − e−tB�f
∣∣p dμ

) 1
p

� C
∑
k�1

e−cσ 2k

r
(
σkB

)( −
∫

σkB

|∇f |p dμ

)1/p

.

As a consequence of this result (whose proof is given below) and by Corollary 4.2 and Re-
mark 4.3 we obtain Theorem 1.1 whose precise statement is given next:

Corollary 4.6. Let M be complete non-compact connected Riemannian manifold satisfying the
doubling volume property and (UE). Given 1 � p < ∞ we set p∗ = np/(n − p) if 1 � p < n

and p∗ = ∞ otherwise.

(a) Given N � 1, let SN
t = I − (I − e−t�)N and 1 < q < p∗. Assume that N > (n + n/p −

n̄/max{q,p})/2 if 1 < p < n. Then, for any smooth function with compact support f we
have (

−
∫
B

∣∣f − SN
tB

f
∣∣q dμ

)1/q

� C
∑
k�1

φ(k)r
(
σkB

)( −
∫

σkB

∣∣�1/2f
∣∣p dμ

)1/p

,

where φ(k) = σ−k(2N−D−n/p) if 1 < p < n and φ(k) = σ−k(2N−D) if p � n.
(b) For any p ∈ ((q̃+)′,∞) ∪ [2,∞), any 1 < q < p∗ and any smooth function with compact

support f we have

(
−
∫
B

∣∣f − e−tB�f
∣∣q dμ

)1/q

� C
∑
k�1

e−cσ k

r
(
σkB

)( −
∫

σkB

|∇f |p dμ

)1/p

.

Remark 4.7. As mentioned before we can also get similar estimates assuming further local
Poincaré–Sobolev inequalities. Notice that our assumptions guarantee that e−t�1 ≡ 1. Let us
suppose that M satisfies the L1 − Lp Poincaré inequality, 1 � p < ∞, that is, for every ball B

and every f ∈ L1
loc(M), |∇f | ∈ L

p

loc(M)

−
∫
B

|f − fB |dμ � r(B)

(
−
∫
B

|∇f |p dμ

)1/p

.

Then,

−
∫

|f − Stf |dμ � C
∑
k�1

e−cσ k

r
(
σkB

)( −
∫
k

|∇f |p dμ

)1/p
B σ B
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with either St = e−t� or St = I − (I − e−t�)m. Notice that Proposition 4.5 establishes this
estimate for some values p, and for the first choice of St , without assuming any kind of Poincaré
inequalities.

We would like to call the reader’s attention to the fact that, as mentioned before, one could
prove similar estimates in the spirit of Examples 4, 5 and 6. Besides, global pseudo-Poincaré
inequalities can be derived in the same manner.

We finish this section exhibiting some examples of manifolds where the previous results
can be applied. The most interesting example, where our results seem to be new is the follow-
ing:

Consider two copies of Rn minus the unit ball glued smoothly along their unit circles with
n � 2. It is shown in [11] that this manifold has doubling volume form and Gaussian upper
bounds. L2 −L2 Poincaré does not hold: in fact, it satisfies Lp −Lp Poincaré if and only if p > n

(see [19] in the case of a double-sided cone in Rn, which is the same). If n = 2, (Rp) holds if and
only if p � 2 [11]. If n > 2, (Rp) holds if and only if p < n [8]. In any case, we have q+ = n,
hence q̃+ � n. We can apply Corollary 4.6 and obtain (a) and (b). Notice that although classical
Lp −Lp Poincaré holds if and only if p > n, (b) yields in particular expanded Lp −Lp Poincaré
estimates for all n′ < p < ∞.

There are many examples of manifolds or submanifolds satisfying the doubling property and
the classical L1 − L1 Poincaré. Since doubling and L1 − L1 Poincaré imply (UE), we can apply
Proposition 4.5 and Corollary 4.6 on such manifolds. Note that in this case, (b) of Proposition 4.5
and (b) of Corollary 4.6 are not new since, as mentioned before, Poincaré inequalities are stronger
than expanded Poincaré inequalities. However, (a) yields new expanded Poincaré inequalities
involving the square root of the Laplace–Beltrami operator on the right hand side. From these
manifolds, we would like to mention the following:

• Complete Riemannian manifolds M that are quasi-isometric to a Riemannian manifold with
non-negative Ricci curvature (in particular every Riemannian manifold with non-negative
Ricci curvature) have doubling volume form and admit classical L1 − L1 Poincaré.

• Singular conical manifolds with closed basis admit classical L2 − L2 Poincaré inequalities
for C∞ functions (see [12]). Using the methods of [17] one can also see that classical L1 −L1

Poincaré holds. Such manifolds do not necessarily satisfy the doubling property, but they do,
if for instance, one assumes that the basis is compact.

• Co-compact covering manifolds with polynomial growth deck transformation group satisfy
the doubling property and the classical L1 − L1 Poincaré (see [30]).

• Nilpotent Lie groups have polynomial growth, then they satisfy the doubling property and
the classical L1 − L1 Poincaré inequality. Among the important nilpotent Lie groups we
mention the Carnot groups.

5. Proofs of the main results

In this section we give the proof of the main results. For ease of reference we recall the
meaning of some geometric constants that will appear several times in the proofs: cμ and n refer
to the doubling constants for μ in (2.1); D0 is the constant in the quasi-distance condition (2.2);
and σ , C1, c1 are taken from Chirst’s dyadic construction in Theorem 2.1.
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5.1. Proof of Theorem 3.1

We split the proof in two parts.

5.1.1. Step I : Dyadic case
We use some ideas from [24]. First, we fix σ > 4D3

0 large enough and take the dyadic structure
given by Theorem 2.1. In this part of the proof, we show that for every 1 � τ < σm and for every
Q ∈ D,

‖f − Sτt
B̂Q

f ‖
Lr,∞,Q

�
∑
k�0

σ 2nkg
(
σm(k−8)

)
a
(
σkB̂Q

)
.

In order to get it, we define a functional ã : B × F −→ [0,+∞) given by

ã(B) =
∑
k�0

σ 2nkg
(
σm(k−8)

)
a
(
σkB

)
.

Fix Q ∈ D and assume that ã(B̂Q) < ∞, otherwise, there is nothing to prove. Let G(x) =
|f (x) − Sτt

B̂Q
f (x)|χ

σ 2B̂Q
(x). The Lebesgue differentiation theorem implies that it sufficies to

estimate ‖MG‖Lr,∞,Q. Thus, we study the level sets Ωt = {x ∈ X: MG(x) > t}, t > 0. We split
the proof in two cases. When t is large, we use the Whitney covering lemma (Theorem 5.2
below). When t is small, the estimate is straightforward.

The following auxiliary result will be very useful. Its proof is postponed until Section 5.1.3.

Lemma 5.1. Assume that a ∈ D1 and (3.1). For every 1 � τ < σm, k � 0 and R ∈ D, we have

−
∫

σkB̂R

|f − Sτt
B̂R

f |dμ � ‖a‖D1(μ)c
2
μσ 5n(C1/c1)

na
(
σk+2B̂R

)
.

Take c0 = cM‖a‖D1(μ)c
3
μ(C1/c1)

2ng(1)−1, where cM is the constant of the weak-type (1,1)

of M . Then, using the previous lemma, (2.1) and Theorem 2.1 we have

‖G‖L1(X) =
∫

σ 2B̂Q

|f − Sτt
B̂Q

f |dμ � ‖a‖D1(μ)c
2
μσ 5n

(
C1

c1

)n

a
(
σ 4B̂Q

)
μ

(
σ 2B̂Q

)

� c0

cM

σ 7ng(1)a
(
σ 4B̂Q

)
μ(Q) � c0

cM

ã(B̂Q)μ(Q). (5.1)

Then G ∈ L1(X) since ã(B̂Q) < ∞. Also, M is of weak type (1,1) with constant cM , and then
we obtain

μ(Ωt) � cM ‖G‖L1(X) � c0
ã(B̂Q)μ(Q). (5.2)
t t
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Next, let q > 1 be large enough, to be chosen. Our goal is to show the following good-λ
inequality: given 0 < λ < 1, for all t > 0

μ(Ωqt ∩ Q) � λμ(Ωt ∩ Q) +
(

ã(B̂Q)

λt

)r

μ(Q). (5.3)

If 0 < t � c0cμ(C1/c1)
nσ 2nã(B̂Q) and 0 < λ < 1 then (5.3) is trivial:

μ(Ωqt ∩ Q) � μ(Q) �
(

ã(B̂Q)

λt

)r

μ(Q) � λμ(Ωt ∩ Q) +
(

ã(B̂Q)

λt

)r

μ(Q).

In order to consider the other case, we need to state the following version of the Whitney
covering lemma whose proof is given in Section 5.1.3 below.

Theorem 5.2. Let t > 0 and G ∈ L1(X). Let Ωt = {x ∈ X: MG(x) > t} be a proper subset of X.
Then, there is a family of Whitney cubes {Qt

i}i such that

(a) Ωt = ⋃
i Q

t
i μ-almost everywhere.

(b) {Qt
i}i ⊂ D, these cubes are maximal with respect to the inclusion and therefore they are

pairwise disjoint.
(c) 0 < (C1/c1)σ

6r(B̂Qt
i
) < d(Qt

i,Ω
c
t ) � (1/2)(C1/c1)σ

8r(B̂Qt
i
) and as a consequence

σ 9(C1/c1)
2BQt

i
∩ Ωc

t �= ∅.

(d) −
∫
σkB̂

Qt
i

Gdμ � t , for all k � 1.

(e) M(Gχ
(σB̂

Qt
i
)
c )(x) � t , for all x ∈ Qt

i .

Suppose that t > c0cμ(C1/c1)
nσ 2nã(B̂Q). Note that Ωt is a level set of the lower semicontin-

uous function MG. Moreover, as we have already seen, G ∈ L1(X) and μ(Ωt) < ∞. Thus, Ωt

is an open proper subset of X. Therefore, the set Ωt can be covered by the family of Whitney
cubes {Qt

i}i , by applying Theorem 5.2. From now on we restrict our attention to those cubes Qt
i

with Qt
i ∩ Q �= ∅. Notice that as a consequence of (5.2) and t > c0cμ(C1/c1)

nσ 2nã(B̂Q), we
have μ(Ωt) < μ(Q) and therefore Qt

i � Q for every Qt
i ∩ Q �= ∅. Also for such cubes, by (5.2),

(2.1) and Theorem 2.1 we obtain

μ
(
Qt

i

)
� μ(Ωt) � c0

t
ã(B̂Q)μ(Q)

� c0

t
ã(B̂Q)cμ

(
r(B̂Q)

r(BQt
i
)

)n

μ
(
Qt

i

)
� σ−2n

(
r(B̂Q)

r(B̂Qt
i
)

)n

μ
(
Qt

i

)

and therefore

r(B̂Qt
i
) � σ−2r(B̂Q) and σ 2B̂Qt

i
⊂ σB̂Q. (5.4)

We have the following estimate, its proof is given in Section 5.1.3.
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Proposition 5.3. For every x ∈ Qt
i ,

MG(x) � M
(|f − Sτt

B̂
Qt

i

f |χ
σB̂

Qt
i

)
(x) + c1t + c2ã(B̂Q).

Using this and the fact that ã(Q) � t we conclude that

MG(x) � M
(|f − Sτt

B̂
Qt

i

f |χ
σB̂

Qt
i

)
(x) + C0t.

We choose q large enough so that q > C0 and take 0 < λ < 1. Using that the level sets are nested,
we write

μ(Ωqt ∩ Q) =
∑

i: Qt
i⊂Q

μ
({

x ∈ Qt
i : MG(x) > qt

})

�
∑

i: Qt
i⊂Q

μ
({

x ∈ Qt
i : M

(|f − Sτt
B̂

Qt
i

f |χ
σB̂

Qt
i

)
(x) > (q − C0)t

})

=
∑
Γ1

· · · +
∑
Γ2

· · · = I + II, (5.5)

where

Γ1 =
{
Qt

i ⊂ Q: −
∫

σ B̂
Qt

i

|f − Sτt
B̂

Qt
i

f |dμ � λt

}
,

Γ2 =
{
Qt

i ⊂ Q: −
∫

σ B̂
Qt

i

|f − Sτt
B̂

Qt
i

f |dμ > λt

}
.

Applying that M is of weak type (1,1), μ doubling, and Theorems 2.1 and 5.2, we estimate I :

I � 1

t

∑
Γ1

∫
σ B̂

Qt
i

|f − Sτt
B̂

Qt
i

f |dμ � λ
∑

i: Qt
i⊂Q

μ
(
Qt

i

)
� λμ(Ωt ∩ Q).

In order to estimate II, we first observe that if Qt
i ∈ Γ2 (by Lemma 5.1), we have

λt < −
∫

σ B̂
Qt

i

|f − Sτt
B̂

Qt
i

f |dμ � a
(
σ 3B̂Qt

i

)
.

Thus,

II �
∑
Γ2

μ
(
Qt

i

)
�

(
1

λt

)r ∑
i: Qt⊂Q

a
(
σ 3B̂Qt

i

)r
μ

(
Qt

i

)
.

i
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In principle, it is not possible to apply the condition Dr(μ) since the balls of the family {σ 3B̂Qt
i
}
i

may not be pairwise disjoint. Note that by (5.4) we have {σ 3B̂Qt
i
}
i
⊂ σ 2B̂Q. Next, we claim that

{σ 3B̂Qt
i
}
i

splits in N families {Ej }Nj=1 of pairwise disjoint balls with N � cμ(C1/c1)
3nσ 13n.

Assuming this, we use that a ∈ Dr(μ) over each Ej , the fact that μ is doubling and Theorem 2.1
to obtain

II �
(

1

λt

)r N∑
j=1

∑
i: Qt

i∈Ej

a
(
σ 3B̂Qt

i

)r
μ

(
σ 3B̂Qt

i

)
�

(
1

λt

)r

a
(
σ 2B̂Q

)r
μ

(
σ 2B̂Q

)

�
(

1

λt

)r

ã(B̂Q)rμ(Q).

Plugging the estimates for I and II into (5.5), we conclude

μ(Ωqt ∩ Q) � λμ(Ωt ∩ Q) +
(

1

λt

)r

ã(B̂Q)rμ(Q),

for all t > c0cμ(C1/c1)
nσ 2nã(B̂Q) provided we check the previous claim. Note that by

Lemma 5.4 below it suffices to fix Qt
j and show that

#Ej := #
{
Qt

i : σ 3B̂Qt
i
∩ σ 3B̂Qt

j
�= ∅}

� cμ(C1/c1)
3nσ 13n.

As a consequence of Theorems 2.1 and 5.2, for any Qt
i ∈ Ej we have

0 < σ 5r(B̂Qt
i
) < d

(
σ 3B̂Qt

i
,Ωc

t

)
� σ 8(C1/c1)r(B̂Qt

i
).

Then it is easy to see that

σ−4(C1/c1)r(B̂Qt
i
) � r(B̂Qt

j
) � σ 4(C1/c1)r(B̂Qt

i
)

and

Qt
i ⊂ σ 8(C1/c1)B̂Qt

j
⊂ σ 13(C1/c1)

2B̂Qt
i
.

Using these estimates, (2.1) and Theorem 2.1 we obtain

μ
(
σ 8(C1/c1)B̂Qt

j

)
#Ej �

∑
Qt

i∈Ej

μ
(
σ 13(C1/c1)

2B̂Qt
i

)
� cμσ 13n(C1/c1)

3n
∑

Qt
i∈Ej

μ
(
Qt

i

)

� cμσ 13n(C1/c1)
3nμ

( ⋃
Qt

i∈Ej

Qt
i

)

� cμσ 13n(C1/c1)
3nμ

(
σ 8(C1/c1)B̂Qt

j

)
and this readily leads to the desired bound for #Ej .
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Next, we fix N > 0. Note that the good-λ inequality (5.3) implies

sup
0<t�N/q

tr
μ(Ωqt ∩ Q)

μ(Q)
� cλ sup

0<t�N/q

tr
μ(Ωt ∩ Q)

μ(Q)
+ c

(
ã(B̂Q)

λ

)r

� cλ sup
0<t�N

tr
μ(Ωt ∩ Q)

μ(Q)
+ c

(
ã(B̂Q)

λ

)r

.

Hence, we have

sup
0<t�N

tr
μ(Ωt ∩ Q)

μ(Q)
� cλqr sup

0<t�N

tr
μ(Ωt ∩ Q)

μ(Q)
+ cqr

(
ã(B̂Q)

λ

)r

. (5.6)

We observe that

sup
0<t�N

tr
μ(Ωt ∩ Q)

μ(Q)
� Nr < ∞.

Thus, if we take λ > 0 small enough, we can hide the first term in the right side of (5.6) and get

sup
0<t�N

tr
μ(Ωt ∩ Q)

μ(Q)
� ã(B̂Q)r .

Taking limits as N → ∞, we conclude

‖MG‖Lr,∞,Q � ã(B̂Q).

This estimate and the Lebesgue differentiation theorem yield the desired inequality, as observed
at the beginning of the proof.

5.1.2. Step II: General case
Fix a ball B . Let k0 ∈ Z be such that C1σ

k0 � r(B) < C1σ
k0+1 and I = {Q ∈ Dk0 : Q ∩

B �= ∅}. For every Q ∈ I it is easy to see that B̂Q ⊂ σB ⊂ σ 3B̂Q. Then, (2.1) and Theorem 2.1
yield

μ(σB)#I �
∑
Q∈I

μ
(
σ 3B̂Q

)
� cμσ 3n(C1/c1)

nμ

( ⋃
Q∈I

Q

)
� cμσ 3n(C1/c1)

nμ(σB)

which leads to #I � cμσ 3n(C1/c1)
n. Note that μ(B) ≈ μ(Q) and also tB = τ t

B̂Q
with 1 �

τ < σm. Then, the first part of the proof yields

‖f − StB f ‖Lr,∞,B �
∑
Q∈I

‖f − StB f ‖Lr,∞,Q

�
∑ ∑

σ 2nkg
(
σm(k−8)

)
a
(
σkB̂Q

)

Q∈I k�0
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�
∑
k�0

σ 2nkg
(
σm(k−9)

)
a
(
σkB

)
.

In the last estimate we have used that a(σ kB̂Q) � a(σ k+1B) which is obtained as follows. First,
notice that σkB̂Q ⊂ σk+1B ⊂ σk+3B̂Q. This, (2.1), and a ∈ D1 yield

a
(
σkB̂Q

)
μ

(
σkB̂Q

)
� ‖a‖D1a

(
σk+1B

)
μ

(
σk+1B

)
� ‖a‖D1cμσ 3na

(
σk+1B

)
μ

(
σkB̂Q

)
.

5.1.3. Proofs of the auxiliary results
In this section we prove Lemma 5.1, Theorem 5.2 and Proposition 5.3. Before doing that we

need two auxiliary results.

Lemma 5.4. Let N � 2 and let E = {Ej }j be a sequence of sets such that its overlapping is at
most N , that is,

sup
j

#{Ek: Ek ∩ Ej �= ∅} � N.

Then, there exist Ñ pairwise disjoint (non-empty) subfamilies Ek ⊂ E comprised of disjoint sets

so that E = ⋃Ñ
k=1 Ek and Ñ � N .

Proof. By the axiom of choice we first take any set in E . Then, we select another set among
those that do not meet the one just chosen. We continue until there is no set to be chosen. All
these selected sets define E1. We repeat this on E \ E1 and obtain E2. Iterating this procedure we

have a collection of families {Ek}Ñk=1, each of them non-empty and being comprised of disjoint
sets from E . We want to show that Ñ � N . Let us suppose that Ñ � N + 1 and we are going to
get into a contradiction. In such a case there exists EN+1 ∈ EN+1. Since EN+1 /∈ Ek , 1 � k � N ,
for every 1 � k � N there exists Ek ∈ Ek such that EN+1 ∩ Ek �= ∅. Therefore,

#{Ej : Ej ∩ EN+1 �= ∅} � #{E1, . . . ,EN+1} = N + 1

which violates our hypothesis. This shows that Ñ � N . �
Lemma 5.5. Let R ∈ Dk0 for some k0 ∈ Z, and set Jk = {Q ∈ Dk0 : Q ∩ σkB̂R �= ∅} with k � 0.
Then

σkB̂R ⊂
⋃

Q∈Jk

Q ⊂
⋃

Q∈Jk

B̂Q ⊂ σk+1B̂R, μ-a.e., (5.7)

and

#Jk � cμσ (k+2)n(C1/c1)
n. (5.8)

Also, given 1 � τ � σm, for each fixed Q0 ∈ Jk , we have

#Ik = #
{
Q ∈ Jk: τ 1/mB̂Q ∩ τ 1/mB̂Q0 �= ∅}

� cμσ 3n(C1/c1)
n. (5.9)
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Proof. Note that (5.7) follows easily from Theorem 2.1. It is easy to see that for every Q ∈ Jk

we have σk+1B̂R ⊂ σk+2B̂Q. Then, all these give

μ
(
σk+1B̂R

)
#Jk �

∑
Q∈Jk

μ
(
σk+2B̂Q

)
� cμσ (k+2)n(C1/c1)

n
∑

Q∈Jk

μ(Q)

� cμσ (k+2)n(C1/c1)
nμ

( ⋃
Q∈Jk

Q

)
� cμσ (k+2)n(C1/c1)

nμ
(
σk+1B̂R

)
,

and this readily implies (5.8).
Next we observe that for every Q ∈ Ik we have Q ⊂ σ 2B̂Q0 ⊂ σ 3B̂Q. Then, proceeding as

before we conclude (5.9):

μ
(
σ 2B̂Q0

)
#Ik �

∑
Q∈Ik

μ
(
σ 3B̂Q

)
� cμσ 3n(C1/c1)

n
∑

Q∈Ik

μ(Q)

� cμσ 3n(C1/c1)
nμ

( ⋃
Q∈Ik

Q

)
� cμσ 3n(C1/c1)

nμ
(
σ 2B̂Q0

)
. �

Proof of Lemma 5.1. Fix R ∈ Dk0 for some k0 ∈ Z, k � 0 and 1 � τ < σm. We apply
Lemma 5.5 to cover σkB̂R by the family {τ 1/mB̂Q}Q∈Jk

. Note that all these balls are contained
in σk+2B̂R and also that we have control on their overlapping (5.9). Thus Lemma 5.4 allows us
to split this family into N � cμσ 3n(C1/c1)

n subfamilies of pairwise disjoint sets. We apply (3.1),
use a ∈ D1(μ) in each subfamily and the doubling property to conclude as desired

∫
σkB̂R

|f − Sτt
B̂R

f |dμ �
∑

Q∈Jk

∫
τ 1/mB̂Q

|f − St
τ1/mB̂Q

f |dμ

�
∑

Q∈Jk

a
(
τ 1/mB̂Q

)
μ

(
τ 1/mB̂Q

)

� ‖a‖D1(μ)cμσ 3n(C1/c1)
na

(
σk+2B̂R

)
μ

(
σk+2B̂R

)
� ‖a‖D1(μ)c

2
μσ 5n(C1/c1)

na
(
σk+2B̂R

)
μ

(
σkB̂R

)
. �

Remark 5.6. From the proof it follows that if B̃ is any ball such that σkB̂R ⊂ B̃ then we conclude
that ∫

σkB̂R

|f − Sτt
B̂R

f |dμ � ‖a‖D1(μ)cμσ 3n(C1/c1)
na

(
σ 2B̃

)
μ

(
σ 2B̃

)
.

This follows easily using that {τ 1/mB̂Q}Q∈Jk
⊂ σk+2B̂R ⊂ σ 2B̃ and therefore we think of this

family as a collection of balls contained in σ 2B̃ . The rest of the argument is the same.
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Proof of Theorem 5.2. Items (a)–(d) follow as in the proof of Whitney covering lemma of
[23, Theorem 5.3, Lemma 5.4] with the difference that now, for every k ∈ Z, we take

Ωk =
{
x ∈ Ω: C1

C1

c1
σk+6 < d

(
x,Ωc

)
� C1

C1

c1
σk+7

}
.

On the other hand, (e) follows from (c): Fix Qt
i and x ∈ Qt

i , by (c) we can take z ∈
σ 9(C1/c1)

2BQt
i
∩ Ωc

t . Let B � x be such that B ∩ (σ B̂Qt
i
)c �= ∅. Thus, z ∈ (C1/c1)

2σ 10B and
using that μ is doubling, we have

−
∫
B

Gχ
(σB̂

Qt
i
)
c dμ � cμ(C1/c1)

2nσ 10n −
∫

(C1/c1)
2σ 10B

Gdμ � MG(z) � t,

since z ∈ Ωc
t . Observe that this inequality holds for any ball B such that B � x and B ∩

(σ B̂Qt
i
)c �= ∅. Taking the supremum over these balls, the desired estimate is proved. �

Proof of Proposition 5.3. We claim that for every x ∈ σB̂Qt
i
,

∣∣S
τB̂t

Qt
i

f (x) − Sτt
B̂Q

f (x)
∣∣ � t + ã(B̂Q).

Then, (e) in Theorem 5.2 leads us to the desired estimate: for every x ∈ Qt
i ,

MG(x) � M(Gχ
(σB̂

Qt
i
)c
)(x) + M(Gχ

σB̂
Qt

i

)(x) � t + ã(B̂Q) + M
(|f − Sτt

B̂
Qt

i

f |χ
σB̂

Qt
i

)
(x).

We show our claim. Note that the commutation rule implies

∣∣Sτt
B̂

Qt
i

f (x) − Sτt
B̂Q

f (x)
∣∣ �

∣∣Sτt
B̂

Qt
i

(f − Sτt
B̂Q

f )(x)
∣∣ + ∣∣Sτt

B̂Q
(f − Sτt

B̂
Qt

i

f )(x)
∣∣

= I + II.

We study each term in turn. Fix x ∈ σB̂Qt
i

and pick ki ∈ Z such that

σki r(B̂Qt
i
) � r(B̂Q) < σki+1r(B̂Qt

i
). (5.10)

Using (5.4), we have

ki � 2 and σki B̂Qt
i
⊂ σB̂Q. (5.11)

This implies that |f (y) − Sτt
B̂Q

f (y)| = G(y), when y ∈ σki B̂Qt
i
. Therefore, since 1 � τ < σm,

we can write



3176 N. Badr et al. / Journal of Functional Analysis 260 (2011) 3147–3188
I � 1

μ(B(x, r(B̂Qt
i
)))

∫
X

g

(
d(x, y)m

τ t
B̂

Qt
i

)∣∣f (y) − Sτt
B̂Q

f (y)
∣∣dμ(y)

� 1

μ(B(x, r(B̂Qt
i
)))

∫
X

g

(
d(x, y)m

τ t
B̂

Qt
i

)
G(y)dμ(y)

+ 1

μ(B(x, r(B̂Qt
i
)))

∫
(σ ki B̂

Qt
i
)c

g

(
d(x, y)m

τ t
B̂

Qt
i

)∣∣f (y) − Sτt
B̂Q

f (y)
∣∣dμ(y)

= I1 + I2. (5.12)

To take advantage of the decay of g we decompose X as the union of dyadic annuli {Ck(Q
t
i)}k�2.

Thus, if x ∈ σB̂Qt
i

and y ∈ Ck(Q
t
i), we have

d(x, y)m

τ t
B̂

Qt
i

� λk where λk =
{

0, if k = 2,

σm(k−3), if k � 3.

Also for every k � 2, we have σkB̂Qt
i
⊂ σk+1B(x, r(B̂Qt

i
)). Then, using that μ is doubling, the

decay of g and applying (d) in Theorem 5.2, we obtain

I1 �
∑
k�2

σnkg(λk) −
∫

σkB̂
Qt

i

Gdμ � t
∑
k�2

g(λk)σ
nk � t.

To estimate I2 we note that Qt
i ⊂ Q, (5.10) and (5.11) imply the following: for every k � ki + 1

Ck

(
Qt

i

) ⊂ σkB̂Qt
i
⊂ σk−ki+1B̂Q ⊂ σk−1B̂Q ⊂ σk+ki+1B

(
x, r(B̂Qt

i
)
)
, (5.13)

with x ∈ σB̂Qt
i
. Therefore, arguing as in Lemma 5.1 and Remark 5.6, using that a ∈ D1(μ) and

μ doubling, we get

I2 � 1

μ(B(x, r(B̂Qt
i
)))

∑
k�ki+1

g(λk)

∫
σk−ki+1B̂Q

|f − Sτt
B̂Q

f |dμ

�
∑

k�ki+1

σn(k+ki )g
(
σm(k−3)

)
a
(
σk+1B̂Q

)
�

∑
k�3

σ 2nkg
(
σm(k−3)

)
a
(
σk+1B̂Q

)
� ã(B̂Q).

Collecting all the estimates, we obtain I � t + ã(B̂Q).
Next, let us show that II � ã(B̂Q). Notice that by (5.13), σkB̂Qt

i
⊂ σk−ki+1B̂Q ⊂

σk−ki+2B(x, r(B̂Q)), k � ki + 1, and then, proceeding as in Lemma 5.1 and Remark 5.6, and
using that μ is doubling, we obtain
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II � 1

μ(B(x, r(B̂Q)))

∫
X

g

(
d(x, y)m

τ t
B̂Q

)∣∣f (y) − Sτt
B̂

Qt
i

f (y)
∣∣dμ(y)

� g(0)

μ(B(x, r(B̂Q)))

∫
σki+1B̂

Qt
i

|f − Sτt
B̂

Qt
i

f |dμ

+ 1

μ(B(x, r(B̂Q)))

∑
k�ki+2

g

(λktB̂
Qt

i

τ t
B̂Q

) ∫
σkB̂

Qt
i

|f − Sτt
B̂

Qt
i

f |dμ

� a
(
σ 4B̂Q

) +
∑

k�ki+2

g
(
σm(k−ki−5)

)
σn(k−ki )a

(
σk−ki+3B̂Q

)

�
∑
k�2

σnkg
(
σm(k−8)

)
a
(
σkB̂Q

)
� ã(B̂Q). �

5.2. Proof of Theorem 3.2

We follow the steps of the proof of Theorem 3.1. So, we only detail those points where both
proofs are different. We recall that w ∈ A∞(μ) implies that there exist 1 < p, s < ∞ such that
w ∈ Ap(μ) ∩ RHs(μ). In particular, for any ball B and any measurable set S ⊂ B ,

(
μ(S)

μ(B)

)p

� w(S)

w(B)
�

(
μ(S)

μ(B)

)1/s′

. (5.14)

The first inequality follows from w ∈ Ap(μ) and the second one from w ∈ RHs(μ) (see [33]).
Note that in particular, this yields that w is doubling.

We fix Q ∈ D and suppose that ã(B̂Q) < ∞ where

ã(B̂Q) =
∑
k�0

σ 2nkg
(
σm(k−9)

)
a
(
σkB̂Q

)
.

Set G and Ωt as before. Then, since we have assumed that a ∈ D1(μ), we have (5.1) and (5.2).
Taking q > 1 large enough, we show the following weighted version of (5.3): given 0 < λ < 1,
for all t > 0,

w(Ωqt ∩ Q) � λ1/s′
w(Ωt ∩ Q) +

(
ã(B̂Q)

λt

)r

w(Q). (5.15)

With this in hand, the proof follows the steps of Theorem 3.1. We explain how to obtain (5.15).
If 0 < t � ã(B̂Q) this estimate is trivial, since

w(Ωqt ∩ Q) � w(Q) �
(

ã(B̂Q)
)r

w(Q).

λt
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Let us consider the case t � ã(Q). Notice that G ∈ L1(X) and μ(Ωt) < ∞, by (5.2). Then, by
Theorem 5.2, we write Ωt as the μ-a.e. union of Whitney cubes {Qt

i}i . Arguing as before, we
obtain

w(Ωqt ∩ Q) �
∑

i: Qt
i⊂Q

w
({

x ∈ Qt
i : M

(|f − Sτt
B̂

Qt
i

f |χ
σB̂

Qt
i

)
(x) > (q − C0)t

})

=
∑
Γ1

· · · +
∑
Γ2

· · · = I + II,

where Γ1 and Γ2 are defined as before. To estimate I we use (5.14), that M is of weak type
(1,1), μ is doubling and Theorem 5.2:

I �
∑
Γ1

(μ({x ∈ Qt
i : M(|f − Sτt

B̂
Qt

i

f |χ
σB̂

Qt
i

)(x) > (q − C0)t})
μ(Qt

i)

)1/s′

w
(
Qt

i

)

� 1

t1/s′
∑
Γ1

(
−
∫

σ B̂
Qt

i

|f − Sτt
B̂

Qt
i

f |dμ

)1/s′

w
(
Qt

i

)

� λ1/s′ ∑
i: Qt

i⊂Q

w
(
Qt

i

)
� λ1/s′

w(Ωt ∩ Q).

On the other hand, following the computations to estimate II in the proof of Theorem 3.1 (re-
placing the Lebesgue measure by w) and using Lemma 5.1, we conclude that

II �
(

a(B̂Q)

λt

)r

w(Q) �
(

ã(B̂Q)

λt

)r

w(Q).

Note that we have used that w is doubling and that a ∈ Dr(w) ∩ D1(μ). Collecting the obtained
estimates for I and II, we obtain (5.15) and therefore the proof is complete. �
5.3. Proof of Theorem 3.5

We have to modify the previous argument: when passing from the dyadic case to the general
case we used that a ∈ D1 — indeed a ∈ D1 implies a(B1) � a(B2) if B1 ⊂ B2 ⊂ σ 3B1. Here we
do not have such property (unless we assume ā ∈ D1) but we can use the following observation:
if (a, ā) ∈ Dr(μ) then for all balls B , B̃ such that B ⊂ B̃ , and for any family of pairwise disjoint
balls {Bi}i ⊂ B we have

∑
i

a(Bi)
rμ(Bi) � ā(B̃)rμ(B̃). (5.16)

We follow the lines in the proof of Theorem 3.1 pointing out the main changes. We start as in
Step II and cover B with the dyadic cubes in I . As the cardinal of I is controlled by a geometric
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constant, it suffices to get the desired estimate for a fixed cube Q ∈ I . As mentioned before for
every k � 0 we have σkB̂Q ⊂ σk+1B . We take ã given by

ã(B) =
∑
k�0

σ 2nkg
(
σm(k−9)

)
ā
(
σkB

)
.

Using that (a, ā) satisfies (3.3), we can see (as in the proof of Lemma 5.1) that for each R ∈ D,
1 � τ < σm and k � 1,

−
∫

σkB̂R

|f − Sτt
B̂R

f |dμ � ā
(
σk+2B̂R

)
. (5.17)

Furthermore, when R = Q using that σk+2B̂Q ⊂ σk+3B ⊂ σk+5B̂Q, μ(σk+3B) � μ(σkB̂Q)

and (5.16), we can analogously obtain

−
∫

σkB̂Q

|f − Sτt
B̂Q

f |dμ � ā
(
σk+3B

)
. (5.18)

This implies that G = |f − Sτt
B̂Q

f |χ
σ 2B̂Q

∈ L1(X) with ‖G‖L1(X) � ã(B)μ(Q). Also Ωt , the

t-level set of MG, satisfies μ(Ωt) � ã(B)μ(Q)/t .
Our goal is to show the following good-λ type inequality: given 0 < λ < 1, for all t > 0

μ(Ωqt ∩ Q) � λμ(Ωt ∩ Q) +
(

ã(B)

λt

)r

μ(Q). (5.19)

From here we obtain as before ‖MG‖Lr,∞,Q � ã(B) which in turn implies the desired estimate:

‖f − StB f ‖Lr,∞,B �
∑
Q∈I

‖f − StB f ‖Lr,∞,Q �
∑
Q∈I

‖MG‖Lr,∞,Q � ã(B)#I � ã(B).

Notice that (5.19) is trivial for 0 < t � ã(B). Otherwise, for t � ã(B) we proceed as before
and use the ideas that led us to (5.17), (5.18) to obtain an analog of Proposition 5.3 with ã(B) in
the right hand side, which is written in terms of ā in place of a. All these together yield (5.5). The
estimate for I is done exactly as before. For II, we use the same ideas, but in this case, we do not
want to use (5.17), because this would drive us to ā before using (3.3). By applying Lemma 5.5,
and proceeding as in Lemma 5.1, for every Qt

i ∈ Γ2 we take the family J (Qt
i) = J1(Q

t
i) and

obtain

λt < −
∫

σ B̂
Qt

i

|f − Sτt
B̂

Qt
i

f |dμ �
∑

R∈J (Qt
i )

−
∫

τ 1/mB̂R

|f − St
τ1/mB̂R

f |dμ �
∑

R∈J (Qt
i )

a
(
τ 1/mB̂R

)
.

(5.20)
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This and the fact that #J (Qt
i) � C give

II �
∑
Γ2

μ(B̂Qt
i
) �

∑
i: Qt

i⊂Q

∑
R∈J (Qt

i )

(
a(τ 1/mB̂R)

λt

)r

μ
(
τ 1/mB̂R

)
.

As before, we split the balls {σ 3B̂Qt
i
}i in K families {Ek}Kk=1 of pairwise disjoint balls. For

every Qt
i , by (5.9) and Lemma 5.4 we can split the family I (Qt

i) = {τ 1/mB̂R: R ∈ J (Qt
i)}

in {I(Qt
i)j }

J
Qt

i

j=1 disjoint families of disjoint subsets. Notice that JQt
i
� cμσ 3n(C1/c1)

n. Write

J = maxJQt
i

and set I(Qt
i)j = ∅ for JQt

i
< j � J . In this way, for every Qt

i we have split

I (Qt
i) in J pairwise disjoint families (some of them might be empty) so that for each family

the corresponding balls (if any) are pairwise disjoint. Notice that for each fixed 1 � k � K ,
1 � j � J , we have that {τ 1/mB̂R: R ∈ I(Qt

i)j , Qt
i ∈ Ek} is a disjoint family since so it is for a

fixed Qt
i , τ 1/mB̂R ⊂ σ 3B̂Qt

i
, and {σ 3B̂Qt

i
: Qt

i ∈ Ek} is also a disjoint family. Then, we use (5.16)

and the fact τ 1/mB̂R ⊂ σ 3B̂Qt
i
⊂ σ 2B̂Q ⊂ σ 3B:

II � 1

(λt)r

K∑
k=1

J∑
j=1

∑
R∈I(Qt

i )j ,Qt
i∈Ek

(
a(τ 1/mB̂R)

λt

)r

μ
(
τ 1/mB̂R

)

� J · K
(λt)r

ā
(
σ 3B

)r
μ

(
σ 3B

)
�

(
ã(B)

λt

)r

μ(Q).

From here one gets the good-lambda type inequality (5.19). Further details are left to the inter-
ested reader.

5.4. Proof of Proposition 4.1

We adapt the argument in [24] to the present situation. Fix 1 � p < n and 1 < q < p∗ where
p∗ = np/(n−p). Let us recall that Hölder’s inequality yields that the Dq conditions are decreas-
ing, thus we can assume without loss of generality that p � q < p∗. Fix a ball B and a family
{Bi}i ⊂ B of pairwise disjoint balls. Minkowski’s inequality and the fact that q � p give

(∑
i

a(Bi)
qμ(Bi)

)1/q

�
∑
k�0

α(k)

(∑
i

a0
(
σkBi

)q
μ(Bi)

)1/q

�
∑
k�0

α(k)

(∑
i

r(σ kBi)
pμ(Bi)

p/q

μ(σ kBi)

∫
2kBi

hp dμ

) 1
p

. (5.21)

We estimate the inner sum as follows. First, if k = 0 we use that p � q < p∗, (4.3) and that the
balls Bi ⊂ B are pairwise disjoint:

∑
i

r(Bi)
pμ(Bi)

p/q

μ(Bi)

∫
hp dμ � r(B)p

μ(B)1−p/q

∫
hp dμ = μ(B)p/qa0(B)p.
Bi B
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For k � 1 we arrange the balls according to their radii and give an estimate of the overlapping
whose proof is given below:

Lemma 5.7. Let B be a ball, l � 0 and El = {Bi}i be a family of pairwise disjoint balls of B with
σ−lr(B) < r(Bi) � σ−l+1r(B). Given Bi ∈ El and k � 1, we have

#Jk(Bi) = #
{
Bj ∈ El : σkBj ∩ σkBi �= ∅}

� Cμσn(k+2).

In addition, for every Bi ∈ El , and k � 1, if 0 � l � k +1, then σkBi ⊂ σk−l+2B , and if l � k +2
then σkBi ⊂ σB .

For every l � 0, we write El = {Bi : σ−lr(B) < r(Bi) � σ−l+1r(B)}. We recall that Bi ⊂ B

implies r(Bi) � 2D0r(B) � σr(B) and then

∑
i

r(σ kBi)
pμ(Bi)

p/q

μ(σ kBi)

∫
σkBi

hp dμ =
∞∑
l=0

∑
Bi∈El

r(σ kBi)
pμ(Bi)

p/q

μ(σ kBi)

∫
σkBi

hp dμ

=
k+1∑
l=0

· · · +
∞∑

l=k+2

· · · = Σ1 + Σ2.

We estimate Σ1. Using Lemma 5.7, (4.3), (4.4) and Lemma 5.4 we have

Σ1 =
k+1∑
l=0

r(σ k−l+2B)pμ(B)p/q

μ(σ k−l+2B)

∑
Bi∈El

(
r(σ kBi)

r(σ k−l+2B)

)p(
μ(Bi)

μ(B)

)p/q
μ(σ k−l+2B)

μ(σ kBi)

×
∫

σkBi

hp dμ

�
k+1∑
l=0

r(σ k−l+2B)pμ(B)p/q

μ(σ k−l+2B)
σ−ln̄p/q

∑
Bi∈El

∫
σkBi

hp dμ

�
k+1∑
l=0

r(σ k−l+2B)pμ(B)p/q

μ(σ k−l+2B)
σ−ln̄p/qσ nk

∫
σk−l+2B

hp dμ

= μ(B)p/qσnk
k+1∑
l=0

σ−ln̄p/qa0
(
σk−l+2B

)p

= μ(B)p/qσ k(n−n̄p/q)

k+2∑
l=1

σ ln̄p/qa0
(
σ lB

)p
.

On the other hand, Lemma 5.7, (4.3), (4.4), Lemma 5.4 and the fact that p � q < p∗ imply



3182 N. Badr et al. / Journal of Functional Analysis 260 (2011) 3147–3188
Σ2 = r(σB)pμ(B)p/q

μ(σB)

∞∑
l=k+2

∑
Bi∈El

(
r(σ kBi)

r(σB)

)p(
μ(Bi)

μ(σ kBi)

μ(σB)

μ(B)

)p/q

×
(

μ(σB)

μ(σ kBi)

)1−p/q ∫
σkBi

hp dμ

� r(σB)pμ(B)p/q

μ(σB)
σ

kp(1+ n−n̄
q

)
σ−kn

∞∑
l=k+2

σ−l(p+np/q−n)
∑

Bi∈El

∫
σkBi

hp dμ

� r(σB)pμ(B)p/q

μ(σB)
σ

kp(1+ n−n̄
q

)

∫
σB

hpdμ

∞∑
l=k+2

σ−l(p+np/q−n)

� μ(B)p/qσ k(n−n̄p/q)a0(σB)p.

Plugging the obtained estimates in (5.21) we conclude that

(∑
i

a(Bi)
qμ(Bi)

)1/q

� α(0)μ(B)1/qa0(B) +
∑
k�1

α(k)(Σ1 + Σ2)
1
p

� α(0)μ(B)1/qa0(B) +
∑
k�0

α(k)

(
μ(B)p/qσ k(n−n̄p/q)

k+2∑
l=1

σ ln̄p/qa0
(
σ lB

)p

) 1
p

� α(0)μ(B)1/qa0(B) + μ(B)1/q
∞∑
l=1

a0
(
σ lB

)(
σ ln̄/q

∑
k�max{l−2,0}

σ
k( n

p
− n̄

q
)
α(k)

)

= μ(B)1/q

∞∑
l=0

ᾱ(l)a0
(
σ lB

) = (
ā(B)qμ(B)

)1/q

where ᾱ(0) = Cα(0) and ᾱ(l) = σ ln̄/q
∑

k�max{l−2,0} σ
k( n

p
− n̄

q
)
α(k) for l � 1. This shows as de-

sired that (a, ā) ∈ Dq .

Remark 5.8. We would like to call the reader’s attention to the fact that, in the previous argument,
it was crucial that q < p∗. Since otherwise, the geometric sum for the terms l � k + 2 diverges.

Proof of Lemma 5.7. It is straightforward to show that for every Bj ∈ Jk(Bi),

σkBj ⊂ σk+1Bi ⊂ σk+2Bj .

This and the fact that the balls {Bj }j are pairwise disjoint imply
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μ
(
σk+1Bi

)
#Jk(Bi) �

∑
Bj ∈Jk(Bi)

μ
(
σk+2Bj

)
� cμσ (k+2)n

∑
Bj ∈Jk(Bi)

μ(Bj )

� cμσ (k+2)nμ

( ⋃
Bj ∈Jk(Bi)

Bj

)
� cμσ (k+2)nμ

(
σk+1Bi

)
.

From here the estimate for #Jk(Bi) follows at once. The rest of the proof is trivial and left to the
reader. �
5.5. Proof of Proposition 4.5

We first show (b). Fix p ∈ ((q̃+)′,∞) ∪ [2,∞). We observe that

(
−
∫
B

∣∣f − e−tB�f
∣∣dμ

)1/p

=
(

−
∫
B

∣∣∣∣∣−
tB∫

0

d

ds
e−s�f (x) ds

∣∣∣∣∣dμ(x)

)1/p

�
tB∫

0

(
−
∫
B

∣∣e−s��f (x)
∣∣pdμ(x)

)1/p

ds.

Fix 0 < s < tB , and take a smooth function ϕ supported in B with ‖ϕ‖
Lp′

,B
= 1. Then,

I = 1

μ(B)

∣∣∣∣
∫
M

e−s��f (x)ϕ(x) dμ(x)

∣∣∣∣ = 1

μ(B)

∣∣∣∣
∫
M

∇f (x) · ∇e−s�ϕ(x) dμ(x)

∣∣∣∣
�

∞∑
k=1

μ(σkB)1/p

μ(B)

(
−
∫

σkB

|∇f |p dμ

)1/p( ∫
Ck(B)

∣∣∇e−s�ϕ
∣∣p′

dμ

)1/p′

�
∞∑

k=1

σkn/p

μ(B)1/p′

(
−
∫

σkB

|∇f |p dμ

)1/p( ∫
Ck(B)

∣∣∇e−s�ϕ
∣∣p′

dμ

)1/p′

=
∞∑

k=1

σkn/p

μ(B)1/p′

(
−
∫

σkB

|∇f |p dμ

)1/p

Ik.

We estimate each Ik . For k = 1 we notice that p′ ∈ (1,2] ∪ (1, q̃+) allows us to use (Gp′)—let
us recall that q̃+ � q+ � 2, and that (G2) always holds—:

I1 �
∥∥∣∣∇e−s�ϕ

∣∣∥∥
Lp′ � Cs−1/2‖ϕ‖

Lp′ = Cs−1/2μ(B)1/p′
.

Assume that k � 2. By definition of q̃+ and the argument of [3, p. 944] we have

( ∫ ∣∣∇xps(x, y)
∣∣p′

eγ
d2(x,y)

s dμ(x)

)1/p′

� C√
sμ(B(y,

√
s ))1/p

,

M
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for all s > 0 and y ∈ M , with γ > 0 depending on p′. Using this estimate and Minkowski’s
inequality we can control Ik :

Ik =
( ∫

Ck(B)

∣∣∣∣
∫
B

∇xps(x, y)ϕ(y) dμ(y)

∣∣∣∣
p′

dμ(x)

)1/p′

� e−c
σ2kr(B)2

s

∫
B

( ∫
Ck(B)

∣∣∇xps(x, y)
∣∣p′

eγ
d2(x,y)

s dμ(x)

)1/p′ ∣∣ϕ(y)
∣∣dμ(y)

� s−1/2e−c
σ2kr(B)2

s

∫
B

1

μ(B(y,
√

s ))1/p
ϕ(y) dμ(y)

� s−1/2
(

r(B)√
s

)n/p

e−c
σ2kr(B)2

s
1

μ(B)1/p

∫
B

ϕ(y)dμ(y)

� s−1/2
(

r(B)√
s

)n/p

e−c
σ2kr(B)2

s μ(B)1/p′
,

where we have used that μ(B) ≈ μ(B(y, rB)) � cμ(rB/
√

s )nμ(B(y,
√

s )) since 0 < s < tB =
r(B)2 and y ∈ B . Then,

I � s−1/2
(

−
∫
σB

|∇f |p dμ

)1/p

+ s−1/2
∞∑

k=2

(
σkr(B)√

s

)n/p

e−c
σ2kr(B)2

s

(
−
∫

σkB

|∇f |p dμ

)1/p

.

Taking the supremum over all such functions ϕ we obtain

(
−
∫
B

∣∣f − e−tB�f
∣∣dμ

)1/p

�
(

−
∫
σB

|∇f |p dμ

)1/p
tB∫

0

s−1/2 ds

+
∞∑

k=2

(
−
∫

σkB

|∇f |p dμ

)1/p
tB∫

0

s−1/2
(

σkr(B)√
s

)n/p

e−c
σ2kr(B)2

s ds

�
∞∑

k=1

e−cσ 2k

r
(
σkB

)( −
∫

σkB

|∇f |p dμ

)1/p

.

It remains to prove (a). We write h = �1/2f and h = ∑∞
k=1 hk with hk = hχCk(B). Since

�1/2 = c
∫ ∞

0

√
te−t�� dt

t
we obtain

−
∫ ∣∣f − SN

tB
f

∣∣dμ = −
∫ ∣∣(I − e−tB�

)N
f

∣∣dμ
B B
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= −
∫
B

∣∣∣∣∣(I − e−tB�
)N−1

(
−

tB∫
0

d

ds
e−s�f (x) ds

)∣∣∣∣∣dμ

�
tB∫

0

−
∫
B

∣∣(I − e−tB�
)N−1

e−s��1/2h
∣∣dμds

�
tB∫

0

∞∫
0

−
∫
B

∣∣(I − e−tB�
)N−1

e−(s+t)��h
∣∣dμ

√
t
dt

t
ds

�
∞∑

k=1

tB∫
0

∞∫
0

−
∫
B

∣∣(I − e−tB�
)N−1

e−(s+t)��hk

∣∣dμ
√

t
dt

t
ds.

One has that t∂tpt (x, y) satisfies also (UE) (see [13, Theorem 4] or [18, Corollary 3.3]) and
this easily implies that {e−t�(t�)}t>0 satisfies L1 − L1 full off-diagonal estimates (see [5] for a
discussion of off-diagonal estimates associated to semigroups): given E, F closed sets and t > 0

∥∥e−t�(t�)(f χE)
∥∥

L1(F )
� Ce−c

d(E,F )2
t ‖f ‖L1(E). (5.22)

This and (UE) imply that e−t�(t�) and (I − e−t�)N−1 are uniformly bounded on L1. These
facts allow us to estimate the term k = 1:

tB∫
0

∞∫
0

−
∫
B

∣∣(I − e−tB�
)N−1

e−(s+t)��h1
∣∣dμ

√
t
dt

t
ds

� −
∫
σB

|h|dμ

tB∫
0

∞∫
0

√
t

t + s

dt

t
ds � r(σB) −

∫
σB

|h|dμ.

For k � 2 we split the t-variable integral in two pieces: 0 < t < NtB and t � NtB . We first fix
0 < t < NtB and 0 < s < tB . Observe that

(
I − e−tB�

)N−1
e−(s+t)�� =

N−1∑
j=0

Cj,Ne−(j tB+t+s)�

and that t + s � j tB + t + s � 2NtB . Then (5.22) implies

−
∫
B

∣∣(I − e−tB�
)N−1

e−(s+t)��hk

∣∣dμ � 1

μ(B)

N−1∑
j=0

(j tB + t + s)−1e
− σ2kr(B)2

j tB+t+s

∫
σkB

|h|dμ

� e−cσ 2k

(t + s)−1 −
∫
k

|h|dμ.
σ B
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Hence, we conclude that

tB∫
0

NtB∫
0

−
∫
B

∣∣(I − e−tB�
)N−1

e−(s+t)��hk

∣∣dμ
√

t
dt

t
ds

� e−cσ 2k −
∫

σkB

|h|dμ

tB∫
0

NtB∫
0

√
t

t + s

dt

t
ds

� e−cσ 2k

r
(
σkB

) −
∫

σkB

|h|dμ.

Next for the case t � NtB we make the changes of variables t ′ = t/(tBN) and s′ = s/tB :

I =
tB∫

0

∞∫
NtB

−
∫
B

∣∣(I − e−tB�
)N−1

e−(s+t)��hk

∣∣dμ
√

t
dt

t
ds

� r(B)

1∫
0

∞∫
1

−
∫
B

∣∣(I − e−tB�
)N−1

e−t tB (N−1)�e−(s+t)tB�(tB�)hk

∣∣dμ
√

t
dt

t
ds

� r(B)

1∫
0

∞∫
1

−
∫
B

∣∣(e−t tB� − e−(ttB+tB )�
)N−1

e−(s+t)tB�
(
(s + t)tB�

)
hk

∣∣dμ
dt

t
3
2

ds.

We need the following lemma whose proof is below.

Lemma 5.9. Given given E, F closed sets and 0 < v � u, we have

∥∥∥∥u

v

(
e−u� − e−(u+v)�

)
(f χE)

∥∥∥∥
L1(F )

� Ce−c
d(E,F )2

u ‖f ‖L1(E). (5.23)

Using this result, (5.22) and [22, Lemma 2.3] we have for every 0 < s < 1 < t < ∞

−
∫
B

∣∣(e−t tB� − e−(ttB+tB )�
)N−1

e−(s+t)tB�
(
(s + t)tB�

)
hk

∣∣dμ
dt

t
3
2

ds

� t−(N−1) 1

μ(B)
e
−c

σ2kr(B)2

max{t tB ,(s+t)tB }
∫

σkB

|h|dμ � t−(N−1)σ kne−c σ2k

t −
∫

σkB

|h|dμ.

Thus,
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I � r(B)σ kn −
∫

σkB

|h|dμ

1∫
0

∞∫
1

t−(N−1)e−c σ2k

t
dt

t
3
2

ds

� σ−k(2N−n)r
(
σkB

) −
∫

σkB

|h|dμ.

Gathering the obtained estimates the proof is complete.

Proof of Lemma 5.9. We proceed as in [22, p. 504]:

∥∥∥∥u

v

(
e−u� − e−(u+v)�

)
(f χE)

∥∥∥∥
L1(F )

=
∥∥∥∥∥−u

v

v∫
0

d

ds
e−(u+s)�(f χE)ds

∥∥∥∥∥
L1(F )

� u

v

v∫
0

∥∥e−(u+s)�
(
(u + s)�

)
(f χE)

∥∥
L1(F )

ds

u + s

� C‖f ‖L1(E)

u

v

v∫
0

e− cd(E,F )2
u+s

ds

u + s

� Ce− cd(E,F )2
u ‖f ‖L1(E),

where we have used (5.22) and that u � u + s � u + v � 2v. �
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