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Abstract

In this paper we study self-improving properties in the scale of Lebesgue spaces of generalized Poincaré
inequalities in spaces of homogeneous type. In contrast with the classical situation, the oscillations involve
approximation of the identities or semigroups whose kernels decay fast enough and the resulting estimates
take into account their lack of localization. The techniques used do not involve any classical Poincaré or
Sobolev—Poincaré inequalities and therefore they can be used in general settings where these estimates do
not hold or are unknown. We apply our results to the case of Riemannian manifolds with doubling volume
form and assuming Gaussian upper bounds for the heat kernel of the semigroup e™! A with A being the
Laplace-Beltrami operator. We obtain generalized Poincaré inequalities with oscillations that involve the
semigroup e 2 and with right hand sides containing either V or A2,
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1. Introduction

In analysis and PDEs we can find various estimates that encode self-improving properties of
the integrability of the functions involved. For instance, the John—Nirenberg inequality estab-
lishes that a function in BMO, which is a priori in LlOC (R™), is indeed exponentially integrable
which in turn implies that it is in L‘" -(R") forany 1 < p < co. Another situation where functions
self-improve their integrability comes from the classical (p, p)-Poincaré inequality in R", n > 2,
1<p<n,

][ \f = folPdx < caQ)][ V17 dx.

It is well known that this estimate yields that for any function f € Ll (R withV f e LP

. 1/p* 1/p
(][ \f — fol? dx) < caQ)(][ IVfI”dx)
0 0

where p* = p " Thus, f € Lp -(R") and f has self-improved its integrability. Both situations
have somethmg in common: they involve the oscillation of the functions on some cube Q via
f — fo.In[16], general versions of these estimates are considered. They start with inequalities
of the form

R,

loc

][If—fQIdX<a(Q,f), (1.1)

where a is a functional depending on the cube Q, and sometimes on the function f. There, the
authors present a general method based on the Calderén—Zygmund theory and the good-A in-
equalities introduced by Burkholder and Gundy [7] that allows them to establish that under mild
geometric conditions on the functional a, inequality (1.1) encodes an intrinsic self-improvement
on L? for p > 1.

On the other hand, in [27] a new sharp maximal operator associated with an approximation of
the identity {S;};~¢ is introduced:

MEF ) = s ][ 1f = Sip fldy,

where ¢ is a parameter depending on the side-length of the cube Q. This operator allows one
to define the space BMOg, for which the John—Nirenberg inequality also holds (see [15]). In this
way, starting with an estimate as (1.1) where the oscillation f — fo is replaced by f — S, f, and
a(Q, f) = C, a self-improving property is obtained. This new way of measuring the oscillation
allows one to define new function spaces as the just mentioned BMOg of [15] and the Morrey—
Campanato associated with an approximation of the identity of [14,34].
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In [23] and [24] self-improving properties related to this new way of measuring oscillation
are under study. The starting estimate is as follows

][If—SfoldX<a(Q,f), (1.2)
Q

with S; being a family of operators (e.g., semigroup) with fast decay kernel. By analogy to (1.1),
we will refer to these estimates as generalized Poincaré inequalities. The case a increasing, con-
sidered in [23] both in the Euclidean setting and also in spaces of homogeneous type, yields local
exponential integrability of the new oscillation f — S; f. In [24] functionals satisfying a weaker
¢"-summability condition (see D, below) are studied in the Euclidean setting and L™ local
integrability of the oscillation is obtained.

Taking [24] as a model and motivation, in this paper we consider (1.2) in the setting of
the spaces of homogeneous type for functionals satisfying some summability conditions. The
proofs of this paper and [24] are built upon the same ideas. However, the easier-to-handle Eu-
clidean setting in [24] gives cleaner arguments that help to understand the present paper, and
also that could be of interest to those readers that do not want to get into the technicalities that
involve this less friendly setting of the spaces of homogeneous type. We present extensions of
the Poincaré-Sobolev inequalities for the oscillations f — Sy, f in Q that are valid in settings
where the classical Poincaré-Sobolev inequalities (for the oscillations f — fp) do not hold or
are unknown — this should be compared with the Euclidean setting where classical Poincaré—
Sobolev inequalities are always at our disposal. That is the case of some Riemannian manifolds
assuming only doubling volume form and Gaussian upper bounds for the heat kernel associated
to the semigroup generated by the Laplace—Beltrami operator. As a consequence of the (local)
Poincaré—Sobolev inequalities just mentioned we also obtain global pseudo-Poincaré (see Sec-
tion 4 below), e.g., | f — S; fllLrx) < tl/m||h||Lp(X) where m is some scaling parameter and &
plays the role of the gradient of f.

In order to present the applications on Riemannian manifolds, which are the main motivation
of the general results presented here, we need to introduce some notation, see Section 4.4 for
more details. Let M be a complete non-compact connected Riemannian manifold with d its
geodesic distance. Assume that volume form u is doubling and let n be its doubling order (see
(2.1) below). Then M equipped with the geodesic distance and the volume form w is a space of
homogeneous type. Let A be the positive Laplace—Beltrami operator on M given by

(Af.g) =/Vf Vgdp
M
where V is the Riemannian gradient on M and - is an inner product on 7M. We assume that

the heat kernel p, (x, y) of the semigroup e '* has Gaussian upper bounds if for some constants
c,C>0andallt >0,x,yeM,

_Cdz(x,,w

pr(x,y) < (UE)

< .
W(B(x. V1))

We define g as the supremum of those p € (1, oo) such that for all > 0,

[[ve 2 £l <Cr= U flee. (Gp)
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If the Riesz transform |VA~!/2| is bounded in L”, by analyticity of the heat semigroup, then
(G p) holds. Therefore, g is greater than the supremum on the exponents p for which the Riesz
transform is bounded on L?. In particular g4+ > 2 by [11].

As a consequence of our main results and in the absence of Poincaré inequalities we obtain
the following (see Corollary 4.6 below for the precise statement):

Theorem 1.1. Let M be complete non-compact connected Riemannian manifold satisfying the
doubling volume property and (UE). Given 1 < p < oo we set p* =np/(n —p)if 1< p<n
and p* = o0 otherwise.

—tA)N

(a) Given N > 1 (N is taken large enough when 1 < p < n), let S,N =1—-(U—-e and

1 < g < p*. Then, for any smooth function with compact support f we have

1/q 1/p
(][|f—S,NBf|"du) <CZ¢<k>r(akB)< ][|A1/2f|Pdu) ,
B okB

k=1

where ¢ (k) = o %% and 6 depends on m, n and p.
(b) For any p € ((g1)',00) U[2,00), any 1 < g < p* and any smooth function with compact
support f we have

1/
(][‘f—e’BAfrIdu) ' <Czewkr(g’<3)< ][lvflpdu)
B

k=1 okB

1/p

In this result o is a large constant depending on the doubling condition (see Section 2 below).

The plan of the paper is as follows. In Section 2 we give some preliminaries and definitions.
The main result and its different extensions are in Section 3. Applications are considered in
Section 4. In particular, we devote Sections 4.1 and 4.3 to study various Poincaré type inequalities
in general spaces of homogeneous type. In the former we start from an estimate whose right hand
side is localized to a given ball B, in the latter we take into account the lack of localization of the
approximation of the identity or the semigroup and the right hand side contains a series of terms
as in the applications to manifolds stated above. As a consequence, in Section 4.2 we obtain some
global pseudo-Poincaré inequalities. In Section 4.4 we consider the application above and obtain
generalized Poincaré inequalities in Riemannian manifolds. The subsequent sections contain the
proofs of our results.

2. Preliminaries
2.1. Spaces of homogeneous type
For full details and references we refer the reader to [10] and [9]. Let (X, d, u) be a space

of homogeneous type: X is a set equipped with a quasi-metric d and a non-negative Borel mea-
sure u satisfying the doubling condition

,lL(B(x, 2r)) < CM/L(B(X, r)) < 00,
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for some ¢, 2> 1, uniformly for all x € X and r > 0, and where B(x,r) ={y € X: d(y,x) <r}.
We note that, in general, different centers and radii can define the same ball. Therefore, given a
ball B we implicitly assume that a center and a radius are specified: B = B(xp, r(B)) where xp
is the center and r (B) is the radius. The doubling property implies

M(B(x, Ar)) < C”)\.n/,l/(B(x, r)) and

n(By) _ (r(&))” o

(B S\ r(By)

for some ¢;,n > 0 and for all x,y € X, r >0 and A > 1, and for all balls By and B, with
B C B».

Let us recall that d being a quasi-metric on X means that d is a function from X x X to
[0, +00) satisfying the same conditions as a metric, except for the triangle inequality that is
weakened to

d(x,y) < Do(d(x,2) +d(z,)), (2.2)

for all x, y,z € X and where 1 < Do < oo is a constant independent of x, y, z. Unfortunately,
when Dy > 1 it does not follow, in general, that the balls are open. However, Macias and Segovia
[26] proved that given any quasi-metric d, there exists another quasi-metric d’ equivalent to d
such that the metric balls defined with respect to d’ are open. Thus, without loss of generality,
from now on we assume that the metric balls are open sets. Also, in order to simply the compu-
tations, we assume that X is unbounded and therefore u(X) = 0o, see for instance [28].

We make some conventions: A < B means that the ratio A/B is bounded by a constant that
does not depend on the relevant variables in A and B. Throughout this paper, the letter C denotes
a constant that is independent of the essential variables and that may vary from line to line.
Given a ball B = B(xp, r(B)) and A > 0, we write AB = B(xp, Ar(B)). For any set £ we write
diam(E) = SUP, yeE d(x,y). The average of f € L! in B is denoted by

loc

1

fB ZZ;[f(X)dM(X) = M

/f(X)dM(x)
B

and the localized and normalized norm of a Banach or a quasi-Banach function space A by
£ 1la,8 =1 fllaB,u/ucp))- Examples of spaces A are L+, LP or more general Marcinkiewicz
and Orlicz spaces.

2.2. Dyadic sets
We take the dyadic structure given in [9] (here we use the notation in [23]).

Theorem 2.1. (See [9].) There exist o > 4D8 > 1 large enough, 0 < c1,Cy,Cy <00 and D =
Ukez Dr a countable collection of open sets Q with the following properties:

(i) Dy is a countable collection of disjoint sets such that X = UQeDk 0 u-a.e.
(ii) If Q € Dy, then diam(Q) < Cio*.
(iii) If Q € Dx, then there exist xg € Q and balls Bgp = B(x, c10%) and éQ = B(xg, Ci10%)
such that By C Q C Bg.
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(iv) If Q1 € Dy, and Q2 € Dy, with ki < ky, then either Q1N Qx =@ or Q1 C Q».

We will refer to Q as dyadic cubes and to Dy, as the k-th generation of D.

In what follows, we fix o > 4D8 large enough and consider the dyadic structure given by
Theorem 2.1. We will use the following decomposition of X in dyadic annuli: given Q € D, we

write X = ;> Ck(Q) with C(Q) =0 B and Cx(Q) = 0" By \ 0¥~ By, k > 2. Also, given
aball B, we write X =z Cx(B) with C;(B) = B and Cx(B) =0*B\ 0" 1B, k > 2.

2.3. Muckenhoupt weights

A weight w is a non-negative locally integrable function. For any measurable set E, we write
w(E) = [ w(x)du(x). Also, we set

1
][fdw - ][ FE)dw() = —— / FEOWE) du ().
w(B)
B B B

As before, we write || fllaw), 8 = I/ laB,w/w) to denote the localized and normalized
weighted norm of a Banach or a quasi-Banach function space A.
We say that a weight w € A, (u), 1 < p < 00, if there exists a positive constant C such that

for every ball B
’ p=1
<][wd,u><][w1p d,u) <C.
B B

For p =1, we say that w € A1 () if there is a positive constant C such that for every ball B,
][wdu < Cw(y), foru-ae.yeB.
B

We write Aco (1) = Up>1 Ap(w). See [33] for more details and properties.
2.4. Functionals

Leta: B x F — [0, +00), where B is the family of all balls in X and F is some family of
functions. When the dependence on the functions is not of our interest, we simply write a(B).
We say that a is doubling if there exists some constant C, > 0 such that for every ball B,

a(cB) < Cua(B).

We recall the definition of the classes D, introduced in [16]: given a Borel measure v and 1 <
r < 00, a satisfies the D, (v) condition (we simply write a € D, (v)), if there exists 1 < C,; < 00
such that for each ball B and any family of pairwise disjoint balls {B;}; C B, the following holds

Y _a(B) v(B) < Cha(B) v(B).

i
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We write ||al| p, vy for the infimum of the constants C,. By simplicity, we write D, or D,(w),
when v = or w is a weight. Note that, by Holder’s inequality, the D,(v) conditions are de-
creasing: D,(v) C Ds(v) and |lallp,) < llallp, ), for 1 <s <7 < 0o. On the other hand, if a
is quasi-increasing (that is, a(B1) < C,a(B3), for all By C By) then, a € D,(v) for any Borel
measure v and 1 <r < 00.

2.5. Approximations of the identity and semigroups

We work with families of linear operators {S;};~¢ that play the role of generalized approxi-
mations of the identity. The reader may find convenient to think of {S;},~0 as being a semigroup
since this is our main motivation. We assume from now on that these operators commute (that
is, S; o §; = S5 o S; for every s,t > 0). Families of operators that form a semigroup (that is,
SsS; = Ss4+ for all s, ¢ > 0) satisfy this property. We assume that these operators admit an inte-
gral representation:

S f(x) = / 510 ) F ) di(y),

X

where s;(x, y) is a measurable function such that

(2.3)

Isr e )| < der. ”m>,

u(B(x,rl/m))g( :

for some positive constant m and a positive, bounded and non-increasing function g. Observe
that (2.3) leads to a rescaling between the parameter ¢ and the space variables. Thus, given a
ball B, we write tp = r(B)™ in such a way that the parameter ¢ and S; are “adapted” or “scaled”
to B.

We also assume that for all N > 0,

lim rNg(r) =0.
r—00

We can relax the decay on g by fixing N > 0 large enough (in such a way that the estimates
obtained below are not trivial). Further details are left to the reader. Let us note that the decay
of g yields that the integral representation of S; makes sense for all functions f € L?(X) and that
the operators S; are uniformly bounded on L?(X) for all 1 < p < 0o. As in [15], we consider a
wider class of functions for which S; is well defined: M = (J,cx g~ Mx,p), Where M p)
is the set of measurable functions f such that

1F O]
== d .
s 3(/ A+ dG ) P (B L +d0, ) O =

It is shown in [15] that (M gy, || - ”M(x,ﬁ)) is a Banach space, and if f € M then, S; f and S;
(S; f) are well defined and finite almost everywhere for all 7, s > 0.

As examples of semigroups we can consider second order elliptic form operators in R”, Lf =
—div(AV f), with A being an elliptic n x n matrix with complex L°°-valued coefficients. The
operator —L generates a Co—semigroup {e7"L},.0 of contractions on L2(R"). Under further
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assumptions (for instance, real A in any dimension; complex A in dimensions n =1 or n =2,
etc.) the heat kernel has Gaussian bounds, that is, the above estimates hold withm =2 and g(¢) =
ce=" . In this way we can take S; = e 'L or §; =1 — (I — e~ ')V for some fixed N > 1. Note
that for the latter we lose the semigroup property, however, we still have the commutation rule
and the Gaussian decay. Thus we can apply our results to that families. In some applications it is
interesting to have N large enough so that one obtains extra decay in the resulting estimates (see
[22,1,4] and the references therein). Similar examples could be considered in smooth domains
of R” since these are spaces of homogeneous type.

Another examples of interest are the Riemannian manifolds X with the doubling property.
In such a situation we can consider the Laplace—Beltrami operator A. We assume that the heat
kernel p,(x, y) of the semigroup e ' has Gaussian upper bounds (UE). As before, this allows
us to use our results both for §; =e 2 or S, =1 — (I — e"*)" for some fixed N > 1. Note
that the Gaussian upper bounds imply (2.3) with m =2 and g(t) = ce™ ?. See Section 4.4 for

applications of our main results to this setting.

3. Main results

Theorem 3.1. Let {S;};~0 be as above, | <r < 0o and a € D, (). Let f € M be such that
][lf—SzBfldM<a(B), (3.1)
B

for all balls B and where tg = r(B)™. Then for any ball B, we have

If = Sty flliree 5 <C Y 0™ g(ca™)a(o* B) (3.2)
k=0

with C > 1 and 0 < ¢ < 1. Furthermore, if a is doubling, then

If — Stz fllLree, B S a(B).
The previous theorem can be extended to spaces with A, (1) weights as follows:

Theorem 3.2. Let {S;};~0 be as above, w € Aoo(t), 1 <r <00 and a € D, (w) N Dy (w). If
f € M satisfies (3.1) then,

| f — Stp fllLroow),B <C Zoznkg(comk)a(okB)
k>0

for all balls B with C > 1 and 0 < ¢ < 1. Further; if a is doubling, we can write Ca(B) in the
right hand side.

Remark 3.3. We would like to call attention to the fact that (3.1) is an unweighted estimate and
that from it we obtain a weighted estimate for the oscillation f — S, f.
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Remark 3.4. We notice that we have imposed the mild condition D (), since in the proof we
are going to use Lemma 5.1 and Proposition 5.3 below. Observe that if we assume w € A, (u),
then a € D, (w) implies a € D1(u), see [24].

We would like to point out that one could have removed the condition a € Dj(u) in the
particular case where S; is a semigroup. The argument of the proof is somehow different and
more technical as one needs an alternative proof for Lemma 5.1 and Proposition 5.3. We leave
the details to the reader.

Asin [16,24], we extend Theorems 3.1 and 3.2. We change the hypothesis on the functional a
so that the D, (u) condition allows a different functional in the right hand side.

Theorem 3.5. Let {S;};~0 be as above and f € M be such that (3.1) holds. Given 1 <r < 00,
and functionals a and a we assume the following D, (i) type condition:

> a(Bi) w(Bi) <a(B) u(B), 3.3)

for each ball B and any family of pairwise disjoint balls { B;}; C B. Then, we have

1f = Sty fllroo g <C Y _ 0™ g(co™)a (0" B) (3.4)
k>0

for all balls B with C > 1 and 0 < ¢ < 1. Furthermore, if a is doubling, we can write Ca(B) in
the right hand side.

Remark 3.6. Given two functionals a and a, abusing the notation, we say that (a, @) € D,(u) if
(3.3) holds. As in Theorem 3.2 we can consider a weighted extension of the previous result: we
assume that (a, a) € D,(w) N D1 () and obtain the corresponding L™°°(w) estimate. Details are
left to the reader.

4. Applications

We present some applications to the main results in the previous section. Some of the ap-
plications considered are analogous to those from [24] in the Euclidean setting. We would like
to point out that although the underlying measure of the given space of homogeneous might be
non-isotropic (i.e., we lose the property |Q| = £(Q)"), we will have at our disposal estimates
(4.3) and (4.4). Examples 1, 2, 3, 4, 6 are essentially contained in [24] and therefore we sill skip
some details. Examples 5, 7, 8 are new.

We recall that Kolmogorov’s inequality implies that for any 0 < g <r < 00

1/q
I fllLe.p < (L) 1fllLreo.5. @.1)

r—q

This means that whenever we apply the previous results, we can replace L">* by L4 for every
0 < g < r. Note that the same occurs in the weighted situations.
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Example 1 (BMO and Morrey—Campanato spaces). We set a(B) = Cu(B)%, a > 0, and note
that a is clearly increasing and doubling (because sois u). Thus, a € D, (u) forevery 1 <r < oo.
Consequently if f € M is such that

1
m][v =S fldu <C, 4.2)
B

we can conclude by Theorem 3.1 and Kolmogorov’s inequality (4.1),

If = Sip fller,B S w(B)*,

forevery 1 < r < oo and for all balls B. Also all these estimates hold in L" (w) with w € Axo ().

Under the additional assumption that {S;}; > 0 is a semigroup, (4.2) defines the spaces BMOg
for o = 0 (see [15]) and the Morrey—Campanato Lg(«) for o > 0 (see [34]). The reader is re-
ferred to those references for the corresponding self-improvement results (see also [14,23,24]).
A unified approach to these examples is given in [23] where exponential self-improvement is
obtained for general quasi-increasing functionals (and this is stronger than what ones obtained
here).

Analogously, one can consider the spaces BMO, s(u) that generalize those defined by
S. Spanne [32] in R” (see [24] and [23] for further details).

For the following examples we assume that all annuli are non-empty, i.e., B(x, R) \
B(x,r) # @ for all 0 < r < R < oo. This implies that r(B) ~ diam(B) and also that B] C B;
clearly yields r(B1) < 2Dor(B;) — we notice that these two properties fail to hold in general.
In particular,

(B2 _ u<r(32)> ’ @3

<c
u(B1) r(B1)

for every B; C B;. Also, in the examples below, »(B) can be replaced by diam(B) which is
univocally determined (we however keep r(B) to emphasize the analogy with the Euclidean
case). The non-empty annuli property implies that p satisfies the reverse doubling condition (see
[35]): there exist 7 > 0 and ¢, > 0 such that

u(B) <5M(r(31>> ’ s

w(B) ~ "\ r(By)

for all balls B; and B, with B} C B;.

Example 2 (Fractional averages). Given . > 1,0 <o <n, 1 < p <n/a and a weight u, we set

u(AB))l/p

B)=r(B)*

This functional is connected to the concept of higher gradient in [20,21]. Note that if p > n/«,
by (4.3) a is increasing; therefore, a € D, () N D, (w), for every r > 1 and w € Axo(1t). Thus,
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Theorem 3.1 together with (4.1) give self-improvement in all the range 1 < r < oo for L" (i)
and L" (w) with w € Ao ().

By [16] (see also [24]), we have that a € D,(u) for 1 <r < pn/(n — ap). Thus, if f € M
satisfies

(AB))l/p

][If Sy fldn < r <B)°‘< =

for all balls B, then

i . o (u@rB)\"?
<][|f Sig f |dx> <Zazk CO’ (okB) <m> ,

k=0

for every 1 <r < pn/(n — ap). If in addition we assume that u € A (1), [16] shows that
a€D _pm () (€ >0 depends on u € Axo(ut)). Also we trivially have a doubling since so
n—ap

is u (and then we can take A = 1). Therefore, in the previous estimate we reach the end-point
r = pn/(n — ap) and furthermore on the right hand side we can write a(Q). See [24] for more
details.

4.1. Reduced Poincaré type inequalities

As in the previous examples and motivated by the classical (1, 1)-Poincaré inequality, one
could consider estimates as follows: let f € M be such that

][|f—smf|du<r(3>][hdu, 4.5)
B B

for all balls B and where # is some non-negative measurable function: Typically 4 depends on f.
For instance, in R" one can take & = C|V f|. However, in the computations below we can work
with any given function /4. We call this estimate a reduced Poincaré type inequality, in contrast
with the expanded estimates (4.18) that we consider in Section 4.3 below. In this context it is
more natural to relax (4.5) and take as an initial estimate

1/p
][If—SzBflduér(B)<][h"du> , 4.6)
B B

with 1 < p < 0o. We would like to apply our results to obtain self-improvement from (4.6).

Example 3 (Poincaré-Sobolev inequality). If 1 < p < n we show that (4.6) yields

1/p
1f = Sip fllLroo p < Zd)(k)r(a"B)( ][ h”du) : 4.7)

k=0 ok B
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for all balls B, for some sequence {¢ (k)};>( and where p* = n"_pp.
ity (4.1), we get strong-type estimates on L for every 1 <r < p*.

We set a(B) = r(B)(fB hP du)l/p. Note that when p > n, by (4.3) it follows that a is quasi-
increasing. Thus we have strong-type estimates for all 1 < r < oo. This case is studied in [23]
and a stronger exponential integrability is proved.

In our case, 1 < p < n, it suffices to see that @ € D«(u) and to apply Theorem 3.1. Let B be
a ball and {B;}; C B a family of pairwise disjoint balls. Then, we use (4.3) (let us notice that in
the Euclidean setting it suffices to use that | B;| = ¢,,r(B;)") and the fact that p* > p:

. B;)" p*/n p*/p
(B u(B) = Z(’;(B?) (/hw)
i ! 4

i

r(B)n p*/n p*/p
5<u(3>) (Z/hpd“)
B

i

n\ p*/n */
<(r(B) )1’ (/hpd,u>p p
w(B) J

=a(B)”" 1(B). (4.8)

By Kolmogorov’s inequal-

Example 4 (Poincaré-Sobolev inequality for A1(un) weights). Given w € Aj(n) and 1 < p <n,
(4.6) implies

1/p
lf - Sth”Lp*,oo(w),B < Zd)(k)r(okB)( ][ h? dw) . 4.9

k=0 okB

As a consequence of the previous inequality and the weighted version of Kolmogorov’s inequal-
ity, we get the strong norm L" (w, B) for every 1 <r < p*.

In order to show (4.9) we use Theorem 3.2. First, using that w € A1(u), we have that (4.6)
gives

l/p
][If - SzBfIdM§r(B)<][h”dw> =a(B).
B B

Let us recall the notation introduced above fy -+ dw = g5 [+ wdp.
To show that a € D+ (w) we proceed as in (4.8) replacing everywhere u by w and using that

w(B) < wu(B) <(V(B))"’
w(B;) ~ u(By) ~\r(Bp)

where the first estimate follows from the left hand side of inequality (5.14) and the fact that w €
A1(u), and the second inequality is (4.3). On the other hand, notice that w € Ay (u) C Ap+ (1)
and therefore a € D1 (1) (see Remark 3.4). Thus, applying Theorem 3.2, we obtain (4.9).
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As before, when p > n, we can obtain exponential type self-improvement since the functional
is increasing (see [23]).

Example 5 (Poincaré-Sobolev inequality for A,(u) weights, r > 1). We show that (4.6) with
1 < p < n implies that for every r > 1 and w € A, (u), there exists g > % (depending on p,
n, w) such that the following holds

1/(rp)
1 = Sip Fll a5 < Zd)(k)r(okB)( ][ h’f’dw) . (4.10)

k=0 okB

To check (4.10), we first see that (4.6) and w € A, () give
1/(rp)
15 =S fldns r(B)(][h"’dw) — u(B).
B B

The openness property of the A, (u) class gives that w € A, () for some 0 < v < 1. Without
loss of generality, T can be chosen so that % < 1 < 1. Hence, for any B; C B we have, by (5.14)

below and (4.3),
w(B) _ <M(B) ) _ (r(B) )
w(B;) ~\u(B;)) "~ \r(Bp) '

nrp

We pick go = (ntrp)/(nt — p) and observe that go > ;—. Using this and proceeding as in
the two previous examples we can easily see that a € Dy, (w) which by using Theorem 3.2
and Remark 3.4 (since gg > r) leads to an estimate in L90-°°(w). Next taking ::1; < q < qo,
Kolmogorov’s inequality gives (4.10).

Example 6 (Tivo-weight Poincaré inequality). Given 1 < p < g <r < o0, let (w, v) be a pair of
weights with w € A, (u), v € Ay/p (1) such that the following balance condition holds

B B 1/r B 1/q
r(B1) <M> < (M) . forall By, B, with B C By. 4.11)
r(B2) \w(Ba) v(By)
Then, (4.6) allows us to obtain
' l/q
1 = Sty Fll ooy s < 3 6K (o B)< ][hqdv> . “.12)
>0

okB

Consequently by Kolmogorov’s inequality, we obtain strong type estimates in the range 1 <
s<r.
In order to obtain (4.12), note that by (4.6) and using that v € A,/ (1), we get

1/q
][ f = S fldi S r(B)(th dv) —a(B).
B B
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Using the balance condition together with r/g > 1, it is not difficult to see that a € D, (w).
Hence, applying Remark 3.4 and Theorem 3.2, we obtain the desired inequality.

Example 7 (Generalized Hardy inequality). We take 1 < p < n (where 7 is the exponent given
in (4.4)) and fix xo € X. Let us consider wy,(x) = d(x, xo) ~?. Then from (4.6) we obtain

1 1/p
1 = S P oo 1 < qu(k)(m [ h”du) . “.13)
o*B

k>0

As a consequence of (4.1), we automatically obtain strong type estimates in the range 1 <r < p.
Note that the claimed estimate implies

1/p
sup hwy, {x € B: [ f(x) = S, f ()| >A}””<Z¢3<k>< f h”du>

A=0
B k=0 o*B

and this should be compared with the classical Hardy inequality
2 dx 2
/If(x) — /8 e < /|Vf(x)| dx.
B B

To obtain (4.13) we first observe that it is easy to see that for every ball B = B(xp, r(B))

][d(x, x0)*du(x) ~d(xg,xp)*, xo0¢2DgB, x €R, (4.14)
B
and
][d(x,xo)“ du(x)~r(B)*, x9€2DyB, a > —i. (4.15)
B

Using these estimates it follows that wy, € A{(u) and r(B)(wa(B)/,u(B))l/p < 1. Then we
readily obtain that (4.6) yields

1/p
][|f—st3f|du§( : fh”du) —a(B). (4.16)
B wxo(B)B

It is trivial to show that a € Dj(wy,) and also that a € D1(u) by Remark 3.4 and the fact that
Wy, € Ap(u). Thus Theorem 3.2 gives as desired (4.13).

Example 8 (Generalized two weights Hardy inequality). We take 1 < p <n and 0 < g < p.
Fixed xg € X we set wy,(x) =d(x,x0) "7 and wy,(x) =d(x, x9)”?. Then from (4.6) we obtain

1 I/p
f - Sth”Lp’oo(leO),B < Z(P(k)(m [ hpd/L) . “4.17)
kB

k=0
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As a consequence of the weighted version of (4.1), we automatically prove estimates in L" (wy,)
forevery 1 <r < p.

Taking the functional from the previous example, we have already shown (4.16) and a €
D1(w). Using (4.14) and (4.15) we obtain the following balance condition

i)xo (B1) Wy (B2) <

— S1, By CBs.
Wi, (B2) wy,(B1)

This easily gives a € Dp(wy,). Note also that wy, € A1(«). Thus, Theorem 3.2 yields (4.17).
4.2. Global pseudo-Poincaré inequalities

As a consequence of our results and using some ideas from [24], we are going to obtain
the following generalized global pseudo-Poincaré inequalities, see [31]. These are of interest to
obtain interpolation and Gagliardo—Nirenberg inequalities, see [31,6,25,29]. Assume that f € M
satisfies (4.6) with 1 < p < n. Then for all ¢ > O:

e Global pseudo-Poincaré inequalities:
If = Seflleeco St/ IkllLecx)-

o Global weighted pseudo-Poincaré inequalities: for every w € A, (), 1 <r < 00,
1f = Sefllorqwy S o™ Il Lor ).

o Global pseudo-Hardy inequalities: let 1 < p < n and take wy,(x) = d(x,x0)" ", x0 € X,
then

If = St fllroow,y) S IlLrx)s

Let us show the first estimate. We fix ¢+ > 0 and take kg € Z such that Cioko L fl/m <
Clako“. Then, we write X = UerkO Q a.e. Note that for each Q € Dy, there exists T with

1 <1t <0o™ such that t = rtéQ. As in Lemma 5.5, we fix Q¢ € Dy, and consider the fam-
ily Jk ={Q € Dy,: o*t'By N "t By, # B). 1t is easy to see that each Q € J; satisfies
Q c o**t2By, C o**t3B. This and the fact that  is doubling imply #7; < ¢, (Cy/c1)"o"*+3,
On the other hand, Example 3 easily gives L? strong-type estimates. Then, Minkowski’s inequal-
ity and Lemma 5.4 imply

1/p
||f—Stf||LP(X)=< > /If—S,fV’du)

€Dy, 0

I/p
<<Z / |f—Sn§Qf|”du>

QeDkO tl/méQ
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5( > M(Tl/mgQ)(Zd)(k)r(aktl/még)( ][ thM>1/p>p>l/p

0eDy, k=0 okrl/m By
B 1/p
<lm Z¢(k)gk<1n/p>< ) / WP du)
k=0 QEDkong[;Q

) 1/p
Sl Zm)ak(”"“’"/p)(/ hpdu) Sl oo,
k>0 X

where we have used that {¢ (k)}x>0 (given in Theorem 3.1) is a fast decay sequence by the decay
of g.
In the weighted case with w € A, (), we use Example 4 for »r = 1 and Example 5 for r > 1.

For r = 1 we have p* > p, and if r > 1 we observe that ::’; > rp. Thus, in both cases we obtain
1/(rp) 1/(rp)
<][|f—5t3f|rpdw> <Z¢(k)r(0k3)( ][h”’dw) ,
B k=0 okB

Proceeding as before and using that the w du is doubling we obtain the desired inequality.
For the pseudo-Hardy inequalities one uses the same ideas with the weak-type norm in the
left hand side.

4.3. Expanded Poincaré type inequalities

We introduce some notation: given 1 < p, g < co we say that f € M satisfies an expanded
L9 — L? Poincaré inequality if for all balls B C X

1/q l/p
<][|f—SrBf|"du) <Za<k>r(a"3)< ][h”du) ,
B

k=0 okB

where {a(k)}r>0 is a sequence of non-negative numbers and / is some non-negative measurable
function.

In this section we start with an expanded L' — L? Poincaré inequality and show that it self-
improves to an expanded L7 — L? Poincaré inequality for ¢ in the range (1, p*). More precisely,
our starting estimate is the following: let p > 1 and f € M be such that

1/p
Za(k)r(akB)( ][hpdu> , (4.18)

][|f—Sth|dM <
B k=0 kB
for all balls B C X and where {a(k)}r>0 is a sequence of non-negative numbers and / is some
non-negative measurable function.

In the classical situation, replacing S, f by fp and taking h» = C|V f|and a(k) =0 fork > 1,
this inequality is nothing but the L' — LP Poincaré—Sobolev inequality. Let us also observe that
if a(k) =0 for k > 1, we get back to (4.5) in the previous section. On the other hand, if A? is
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doubling and {a/(k)}r>0 decays fast enough, then (4.18) leads us again to (4.6). As mentioned
in [24] and [23], we believe that the estimates (4.18) are more natural than (4.5) or (4.6) in the
sense that they take into account the tail effects of the semigroup in place of looking only at a
somehow local term.

As done in [24], (4.18) with & = |Df|, where D is some (differential) operator, can be ob-
tained if we further assume that S;1 =1 a.e. in X and for all # > 0, and the following Lt—rr
Poincaré—Sobolev inequality

I/p
][If— feldu < CV(B)(][IDfI”dM> -
B B

As we show below, under some conditions on a Riemannian manifold we can obtain (4.18)
without any kind of Poincaré—Sobolev inequality, thus our results are applicable in situations
where such estimates do not hold or are unknown.

Starting with (4.18) we are going to apply our main results to obtain a self-improvement on
the integrability of the left hand side. For the sake of simplicity, we are going to treat only the
unweighted Poincaré—Sobolev inequality analogous to those in Example 3. We notice that the
same ideas can be used to consider Example 4 and obtain (4.9) with L" (w), 1 <r < p*, in place
of LP**OO(w) (here one can show that a € Dp+_.(w)); Example 5 and obtain (4.10) for some
q > :ﬁ’; (here one can show that a € Dy, _(w) and this allows us to pick such value of g);
and Example 6 for which we can show (4.12) with L®(w), 1 < s < r, in place of L"*°(w) if we
further assume that 1 < p < g < r (here one can show that a € D, _(w)). Further details are left
to the interested reader.

We borrow some ideas from [24, Section 4.2]. We fix 1 < p < n and define

1/p
a(B)=_a(ka(c*B) withay(B) = r(B)<][h1’ du> )
B

k=0

We are going to find another functional a with a similar expression so that (a, a) satisfies a D,
condition as in Theorem 3.5.

Proposition 4.1. Given a as above, let 1 < p <n and 1 < g < p*. There exists a sequence of
non-negative numbers {a(k)}r>0, so that if we set

a(B)=Y_a(kao(c*B).

k>0
we have that (a,a) € Dy.

The proof of this result is postponed until Section 5.4. From the proof we obtain that a(0) =

Ca(0) and &() = Co™d Yo i 20) ™D a(k) for I > 1 with § = max{q, p}.
This result, Theorem 3.5, and Kolmogorov’s inequality (4.1) readily lead to the following
corollary:
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Corollary 4.2. Given 1 < p <n, let f € M satisfy (4.18). Then, for all 1 < q < p* there exists
another sequence of non-negative numbers {a (k) }r>0 so that

1/q 1/p
(frr=senran) < Yaweato)( fnrau) .
o

k>0 o0

It is straightforward to show that @ (k) = C Z?:o o2 g(ca™Na(k — j).

Remark 4.3. We would like to call the reader’s attention to the fact that in the case p > n, the
functional a defined above is increasing since so it is ag. Therefore the previous estimate holds
for all 1 < ¢ < oo with a sequence & defined as before and where @ = «.

As in [24, Section 4.2] one can consider generalized Poincaré inequalities at the scale p*.
More precisely, one can push the exponent g to p* and obtain an estimate in the Marcinkiewicz
space associated with () ~ t1/7"(1 + logt 1/1)~(+9/P" ¢ > 0. Notice that ¢ is the fun-
damental function of the Orlicz space LY (log L)~ and the Marcinkiewicz space is the
corresponding weak-type space (as L' is for L9). Further details are left to the reader,
see [24].

Given 1 < p < oo, by Corollary 4.2 and Remark 4.3 both particularized to ¢ = p, we imme-
diately get that f € M satisfies an expanded L' — L? Poincaré inequality (4.18) (with a fast
decay sequence) if and only if it satisfies an expanded L” — L? Poincaré inequality. Notice also
that an expanded L! — L? Poincaré inequality implies trivially an expanded L! — L? (equiv-
alently L9 — L) Poincaré inequality for every ¢ > p. As a consequence of this and repeating
the argument in the previous section we obtain the following global pseudo-Poincaré inequali-
ties:

Corollary 4.4. Assume that (4.18) holds with a fast decay sequence {a(k)}x>0. Then, for all
g=>pandallt >0

Lf =St fllzace St Ml Lac).
4.4. Expanded Poincaré type inequalities on manifolds

In this section we show that on Riemannian manifolds we can obtain expanded Poincaré
type inequalities as (4.6) with different functions % on the right hand side. As observed before
(see [24]), assuming that S;1 = 1 w-a.e., classical Poincaré—Sobolev inequalities imply (4.18).
There are situations where such Poincaré inequalities do not hold or are unknown. However the
arguments below lead us to obtain generalized expanded Poincaré type inequalities to whom the
self-improving results are applicable.

We refer the reader to [3] and the references therein for a complete account of this topic. Let
M be a complete non-compact connected Riemannian manifold with d its geodesic distance. As-
sume that the volume form w is doubling. Then M equipped with the geodesic distance and the
volume form u is a space of homogeneous type. Non-compactness of M implies infinite diame-
ter, which together with the doubling volume property yields (M) = oo (see for instance [28]).
Notice that connectedness implies that M has the non-empty annuli property, therefore we are in
a setting where we can apply all the previous applications.
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Let A be the positive Laplace—Beltrami operator on M given by

(Af, &) =/Vf -Vgdu

M

where V is the Riemannian gradient on M and - is an inner product on 7M. The Riesz transform is
the tangent space valued operator VA~1/2 and it is bounded from L2(M, w) into L2(M:; TM, 1)
by construction.

One says that the heat kernel p,(x, y) of the semigroup e’ has Gaussian upper bounds if
for some constants ¢, C >0andallt >0,x,ye M,

20y
7C,d (;m)

pi(x,y) < (UE)

< .
W(B(x, V1))

It is known that under doubling it is a consequence of the same inequality only at y = x
[18, Theorem 1.1]. Notice that (UE) implies that p;(x, y) satisfies (2.3) with m = 2 (therefore

tg =r(B)?) and g(t) = ce=" . Thus our results are applicable to the semigroup S; = e~/ and
to the family of commuting operators S, = I — (I — e~'*)" with N > 1 — expanding the latter
one trivially sees that its kernel satisfies (UE).

Under doubling and (UE), [11] shows that

VAT £ Lo < Cpll fllLr (Rp)

holds for 1 < p <2 and all f bounded with compact support. Here, | - | is the norm on TM
associated with the inner product. We define

g+ =sup{p € (1,00): (R}) holds}
which satisfies g+ > 2 under doubling and (UE). It can be equal to 2 [11]. It is bigger than 2

assuming further the stronger L>-Poincaré inequalities [2] and in some situations g4 = 00.
We also define g as the supremum of those p € (1, co) such that for all r > 0,

[1Ve 2 £l o <€t f Il (Gp)
By analyticity of the heat semigroup, one always has g4 > ¢ ; indeed (R,) implies (G p):
19e 1110 < Colal2e £, < Cot ™20 .

As we always have (R») then this estimate implies (G2). Under the doubling volume property
and L2-Poincaré inequalities, ¢, = G, see [3, Theorem 1.3]. It is not known if the equality holds
or not under doubling and Gaussian upper bounds.

Proposition 4.5. Let M be complete non-compact connected Riemannian manifold satisfying the
doubling volume property and (UE).
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(a) Given N > 1, let StN =1 — (I —e "N, For any smooth function with compact support f
we have

][|f fldu<Cy o NIy (0¥ B) ][|A1/2 fldu.

k1 kB

(b) Forany p € ((¢+)', 00) U [2, 00) and any smooth function with compact support f we have

1/p
(][|f—e’BAf|pdu) ey e "B(][waw) .
B

k>1

As a consequence of this result (whose proof is given below) and by Corollary 4.2 and Re-
mark 4.3 we obtain Theorem 1.1 whose precise statement is given next:

Corollary 4.6. Let M be complete non-compact connected Riemannian manifold satisfying the
doubling volume property and (UE). Given 1 < p < oo we set p*=np/(n —p)if 1< p<n
and p* = oo otherwise.

(a) Given N > 1, let S,N =I—U—-e"™Nand 1< q < p*. Assume that N > (n +n/p —
n/max{q, p})/2 if 1 < p < n. Then, for any smooth function with compact support f we
have

1/q 1/p
<][|f—Sfo|"du) <CY ¢wr(a"B) ( ][|A”2flpdu) ,
3 k>1
where ¢ (k) = o kKCN=D=n/D) if | < p < n and ¢ (k) = o *EN=D) if p > p.
(b) For any p € ((g+)',00) U[2,00), any 1 < g < p* and any smooth function with compact
support f we have

1/p
<][|f—e"BAf|"du> ey e kB(fIVflpdu>.
B

k>1

Remark 4.7. As mentioned before we can also get similar estimates assuming further local
Poincaré—Sobolev inequalities. Notice that our assumptions guarantee that e~41 = 1. Let us
suppose that M satisfies the L' — L? Poincaré inequality, 1 < p < oo, that is, for every ball B
and every f € Ll (M), |VfleLl (M)

loc

1/p
][If ~ faldu <r<3)<][ IVfI”dpL> .
B

B

loc

Then,

1/p
][If Sifldu<C Y e ' r(a*B) ( ][|Vf|f’d,u>

k>1 kB
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with either §; = e™"2 or §; =1 — (I — e~'*)™. Notice that Proposition 4.5 establishes this
estimate for some values p, and for the first choice of S;, without assuming any kind of Poincaré
inequalities.

We would like to call the reader’s attention to the fact that, as mentioned before, one could
prove similar estimates in the spirit of Examples 4, 5 and 6. Besides, global pseudo-Poincaré
inequalities can be derived in the same manner.

We finish this section exhibiting some examples of manifolds where the previous results
can be applied. The most interesting example, where our results seem to be new is the follow-
ing:

Consider two copies of R” minus the unit ball glued smoothly along their unit circles with
n > 2. It is shown in [11] that this manifold has doubling volume form and Gaussian upper
bounds. L? — L? Poincaré does not hold: in fact, it satisfies L? — L Poincaré if and only if p > n
(see [19] in the case of a double-sided cone in R", which is the same). If n = 2, (R} holds if and
only if p <2 [11]. If n > 2, (Rp) holds if and only if p < n [8]. In any case, we have g, =n,
hence g4 > n. We can apply Corollary 4.6 and obtain (a) and (b). Notice that although classical
L? — L? Poincaré holds if and only if p > n, (b) yields in particular expanded L? — L? Poincaré
estimates for all n’ < p < co.

There are many examples of manifolds or submanifolds satisfying the doubling property and
the classical L' — L' Poincaré. Since doubling and L' — L' Poincaré imply (UE), we can apply
Proposition 4.5 and Corollary 4.6 on such manifolds. Note that in this case, (b) of Proposition 4.5
and (b) of Corollary 4.6 are not new since, as mentioned before, Poincaré inequalities are stronger
than expanded Poincaré inequalities. However, (a) yields new expanded Poincaré inequalities
involving the square root of the Laplace—Beltrami operator on the right hand side. From these
manifolds, we would like to mention the following:

e Complete Riemannian manifolds M that are quasi-isometric to a Riemannian manifold with
non-negative Ricci curvature (in particular every Riemannian manifold with non-negative
Ricci curvature) have doubling volume form and admit classical L' — L' Poincaré.

e Singular conical manifolds with closed basis admit classical L> — L? Poincaré inequalities
for C*° functions (see [12]). Using the methods of [17] one can also see that classical Lt—r!
Poincaré holds. Such manifolds do not necessarily satisfy the doubling property, but they do,
if for instance, one assumes that the basis is compact.

e Co-compact covering manifolds with polynomial growth deck transformation group satisfy
the doubling property and the classical L' — L! Poincaré (see [30]).

e Nilpotent Lie groups have polynomial growth, then they satisfy the doubling property and
the classical L' — L' Poincaré inequality. Among the important nilpotent Lie groups we
mention the Carnot groups.

5. Proofs of the main results

In this section we give the proof of the main results. For ease of reference we recall the
meaning of some geometric constants that will appear several times in the proofs: ¢, and n refer
to the doubling constants for w in (2.1); Dy is the constant in the quasi-distance condition (2.2);
and o, C, ¢ are taken from Chirst’s dyadic construction in Theorem 2.1.
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5.1. Proof of Theorem 3.1
We split the proof in two parts.

5.1.1. Step I: Dyadic case

We use some ideas from [24]. First, we fix o > 4D(3) large enough and take the dyadic structure
given by Theorem 2.1. In this part of the proof, we show that for every 1 < 7 < ¢” and for every
QeD,

If— S”égf”uoo 0 < Za2nkg(gm(k—8))a(akéQ).
T k=0

In order to get it, we define a functional a : B x F — [0, +00) given by

a(B) = Zaznkg(am(k_g))a(akB).
>0

Fix Q € D and assume that Ez(éQ) < 00, otherwise, there is nothing to prove. Let G(x) =
| f(x)— Sné S Ox,2 By (x). The Lebesgue differentiation theorem implies that it sufficies to

estimate ||MG||pr~ g. Thus, we study the level sets §£2; = {x € X: MG(x) > t}, t > 0. We split
the proof in two cases. When ¢ is large, we use the Whitney covering lemma (Theorem 5.2
below). When ¢ is small, the estimate is straightforward.

The following auxiliary result will be very useful. Its proof is postponed until Section 5.1.3.

Lemma 5.1. Assume that a € Dy and (3.1). Forevery 1 <1 <0™, k>0 and R € D, we have

][ |f = 8wy fldu < llallpguoeio™ (Ci/c1)"a(o" Br).

okBg

Take co = cpy ||a||Dl(M)ci(C1 /cl)z”g(l)_l, where ¢y is the constant of the weak-type (1, 1)
of M. Then, using the previous lemma, (2.1) and Theorem 2.1 we have

~

c\" N
Gl i x) = / lf = SnéQfldlL < ||d||D1(u)Ci05”(Z) a(o*Bo)u(o?By)

(TZBQ
< Lo™g(a(0*Bo)i(Q) < a(Bo)u(Q). (5.1)
cM (974

Then G € L' (X) since &(EQ) < 00. Also, M is of weak type (1, 1) with constant cps, and then
we obtain

(€2 < NGl ) < TFa(B(Q). (5.2)
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Next, let ¢ > 1 be large enough, to be chosen. Our goal is to show the following good-A
inequality: given 0 <A < I, forall > 0

~ é r
w2400 Q) SAu(2,N Q) + <¥> u(Q). (5.3)

Ifo<t< cocM(Cl/cl)”oz"&(éQ) and 0 < A < 1 then (5.3) is trivial:

a(Bo)

r ~ é r
v ) n(Q) S a2, N Q)+ (M) n(Q).

w(2¢ N Q) <u(Q) S < Y

In order to consider the other case, we need to state the following version of the Whitney
covering lemma whose proof is given in Section 5.1.3 below.

Theorem 5.2. Lett > 0 and G € LY(X). Let 2, = {x € X: MG(x) >t} be a proper subset of X.
Then, there is a family of Whitney cubes {Qﬁ }i such that

(@ 2, =; Q; w-almost everywhere.

(b) {Qﬁ}i C D, these cubes are maximal with respect to the inclusion and therefore they are
pairwise disjoint.

(©) 0 < (C1/61)06r(éng) < d(Q;,.QtC) < (1/2)(C1/cl)08r(éQ§) and as a consequence
a9(c1/c1)ZBQ§ N ¢ #0.

(d) JCo"BQx Gdu <t, forallk > 1.

O] M(GX(UBQ,)C)(X) <t, forall x € QL.

Suppose that t > coc, (C1/cy )”azné(ég). Note that £2; is a level set of the lower semicontin-
uous function MG. Moreover, as we have already seen, G € L'(X) and 11(£2;) < oo. Thus, £2;
is an open proper subset of X. Therefore, the set £2; can be covered by the family of Whitney
cubes {Qﬁ }i, by applying Theorem 5.2. From now on we restrict our attention to those cubes Q§
with Q; N Q # . Notice that as a consequence of (5.2) and ¢ > coc, (Cy /c1)"02"&(I§Q), we
have 1 (£2;) < u(Q) and therefore Q; C Q for every Q; N Q # . Also for such cubes, by (5.2),
(2.1) and Theorem 2.1 we obtain

w(Q}) < () < CI—Oa(éQ>M<Q>

o r(Bo) \" o T(Bo) )"
gTOa(BQ)cM<r(BQQ§)) n(Q) <o™? ( 0 ) 1(Qf)

and therefore
r(By) <o ?r(Bg) and o’By CoBy. (5.4)

We have the following estimate, its proof is given in Section 5.1.3.
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Proposition 5.3. For every x € Qf,
MG(x) < M(|f = Su o et )(x) +c1f + e2d(Bg).
Using this and the fact that a(Q) < ¢ we conclude that

MG(X)<M(|f—Sn fIXUB )(X)+Cot

We choose ¢ large enough so that g > C and take 0 < A < 1. Using that the level sets are nested,
we write

w&uNO) = Y ulfxe0f: MGx) > qt})

i: 0{cQ

< Y ow({reor M(f = ey o, )<x>>(q Cot})
i: QicQ
I I

where

{Q’CQ ][If Suy 141 < }

U'BQ

:{QfCQ: ][ |f—5rtl§Qlf|dM>M}.

0By

1

Applying that M is of weak type (1, 1), u doubling, and Theorems 2.1 and 5.2, we estimate /:

15— Z/|f Sy, Fldi 51 > w(Q)) SN Q).
it 0;CQ

In order to estimate /I, we first observe that if Q; € I (by Lemma 5.1), we have

A < ][ If — SnBQt fldp Sa(oBy).

oy

i

Thus,

< ZM (M)r > alo’Bo) n(0)).

i: QicQ
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In principle, it is not possible to apply the condition D, (1) since the balls of the family {o B 0! }i

may not be pairwise disjoint. Note that by (5.4) we have {a3§Q{ }. C O’ZBQ. Next, we claim that
[

{03BQ§ }i splits in N families {€; }?]:1 of pairwise disjoint balls with N < cu(Cl/c1)3"a 13n

Assuming this, we use that a € D, (i) over each &}, the fact that u is doubling and Theorem 2.1
to obtain

r N r
s <%t) > a(0*Bo) n(0*By) S (/\—t) a(0Bo) n(o2By)
j=li: Qteg;
1Y . 4
S (E) a(Bo) n(Q).

Plugging the estimates for / and I/ into (5.5), we conclude
1\
(2 N Q) S Au(82,N Q) + <E> a(Bo) n(Q),

for all ¢ > cocM(Cl/cl)”azné(éQ) provided we check the previous claim. Note that by
Lemma 5.4 below it suffices to fix Q;‘ and show that

#E; :=#| 0l 03§Q§ N 03EQ3_ #0} <cu(Cr/en) o'
As a consequence of Theorems 2.1 and 5.2, for any Q; € E; we have
0< oSr(éQlt_) < d(03éQ’r_, 2f) < GS(Cl/cl)r(l@Q;).
Then it is easy to see that
o~H(Cr/enr(Bo) <r(Bg) <o*(Ci/en)r(Bg)

and

0; C US(CI/Cl)éij C 013(C1/01)21§Q§-
Using these estimates, (2.1) and Theorem 2.1 we obtain

wo®(Cr/enBy HE; < ) u(0P(Ci1/e)’Byy) < cuo ™ (Cr/ey™ Y u(Q))
' QleE; QleE;

§Cual3n(cl/01)3nﬂ< U Q§>

t
Q;€E;

< CMUB"(C1/61)3"M(08(C1/01)1§Q5,)

and this readily leads to the desired bound for #E ;.
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Next, we fix N > 0. Note that the good-A inequality (5.3) implies

R4: 0 2N a(Bp)\"
sup trMSCA sup o (82 Q)+C(a( Q)>
0<t<N/q n(Q) 0<t<N/q u(Q) A
2N a(Bo)\"
<ch sup tr'u( ! Q)—i—c(a( Q>>.
0<t<N n(Q) A
Hence, we have
2N N a(Bo)\"
sup t’ugcqu sup t’M( Q) +cq’(a( Q)> . (5.6)
0<t<N n(Q) 0<t<N n(Q) A
‘We observe that
£2: N
sup t’u <N’ < o0.

0<t<N n(Q)
Thus, if we take A > 0 small enough, we can hide the first term in the right side of (5.6) and get

P (820 Q)

sup ¢t

<a(By)'.
0<t<N n(Q) ~alBo)

Taking limits as N — oo, we conclude
IMG||Lr.o S d@(Bg).

This estimate and the Lebesgue differentiation theorem yield the desired inequality, as observed
at the beginning of the proof.

5.1.2. Step II: General case

Fix a ball B. Let ko € Z be such that C;o%0 < r(B) < Cio®*t! and T = {Q € Dy,: O N
B # (}. For every Q € 7 it is easy to see that éQ CoBC 031§Q. Then, (2.1) and Theorem 2.1
yield

(o BWL < Z 0 BQ <C,L0%”(C1/c1)" (U Q) cuo ”(Cl/cl)" (o0 B)
0€eT QeT

which leads to #7 < C,L03”(C1/c1)” Note that u(B) ~ u(Q) and also g = ‘L'tA with 1 <
7 < ™. Then, the first part of the proof yields

1f = Sts Fllproe 5 S YN = Sts fll oo

Qel

S22 0 (0" )alo" Bo)

0eT k>0
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< Za2nkg(o_m(k—9))a(ok3)_
k>0

In the last estimate we have used that a(okég) < a(o**t1B) which is obtained as follows. First,
notice that 0% By € %' B ¢ o**3By. This, (2.1), and a € Dy yield

a(aklg’Q),u(akl?Q) < ||a||D1a(ak+1B),u(ak+1B) < ||a||D1cua3”a(ak+1B)u(ak1§Q).

5.1.3. Proofs of the auxiliary results
In this section we prove Lemma 5.1, Theorem 5.2 and Proposition 5.3. Before doing that we
need two auxiliary results.

Lemma 5.4. Let N > 2 and let £ = {E}; be a sequence of sets such that its overlapping is at
most N, that is,

sup#{Ey: ExNE; #0} < N.
J

Then, there exist N pairwise disjoint (non-empty) subfamilies & C & comprised of disjoint sets
so that £ = U,I{Vzl Eand N < N.

Proof. By the axiom of choice we first take any set in £. Then, we select another set among
those that do not meet the one just chosen. We continue until there is no set to be chosen. All
these selected sets define £1. We repeat this on £ \ &1 and obtain &;. Iterating this procedure we

have a collection of families {&} 11<V=1’ each of them non-empty and being comprised of disjoint
sets from €. We want to show that N < N. Let us suppose that N >N + 1 and we are going to

get into a contradiction. In such a case there exists Eny) € Eny1. Since Ey41 ¢ &, 1 <k N,
for every 1 < k < N there exists E € & such that Ey11 N Eyx # @. Therefore,
#{EjZ E;iNEny +0Y>H#E,...,Ent1}=N+1

which violates our hypothesis. This shows that N < N. O

Lemma 5.5. Let R € Dy, for some ko € Z, and set J ={Q € Dy,: QN o*Bg # (0} with k > 0.
Then

akéRC U 0cC U éQ Cok+11§R, u-a.e., 5.7)
0eJk 0eJk
and
# T < o &2y e)n. (5.8)

Also, given 1 <t < o™, for each fixed Qo € J, we have

#Ty =#{0 € Ji: T'/"Bo Nt"/™ By, # W} < cua®(Ci/er)" (5.9)
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Proof. Note that (5.7) follows easily from Theorem 2.1. It is easy to see that for every Q € J
we have ok T1 B C ak+2BQ. Then, all these give

w(@ T BRI < Y n(0" 2 Bo) < cua©IN(Ci/en)" Y (@)
QeJk ek

< Cua(k+2)n(cl/cl)nﬂ< U Q) < cua(k+2)n(C1/C1)nM(0k+lBR),
0eJk

and this readily implies (5.8).
Next we observe that for every O € Z; we have QO C GZBQ0 C 03BQ. Then, proceeding as
before we conclude (5.9):

(02 BooJ#Tk < ) u(0”Bo) <cuo™(Ci/e)" Y m(Q)
Q€T Qe

< cuo3”(C1/Cl)"ﬂ< U Q) <o (Cr/e)" u(0?Bgy). O
Q€I

Proof of Lemma 5.1. Fix R € Dy, for some ko € Z, k > 0 and 1 < v < o™. We apply
Lemma 5.5 to cover o¥ B by the family {¢!/” BQ}QE 7, - Note that all these balls are contained

in 0**t2 By and also that we have control on their overlapping (5.9). Thus Lemma 5.4 allows us
to split this family into N < cﬂa3" (C1/c1)" subfamilies of pairwise disjoint sets. We apply (3.1),
use a € D1(u) in each subfamily and the doubling property to conclude as desired

[ =Sy ndn< ¥ [ 1=, flau
O’kéR

QEJkTI/mB‘Q

< Y a(x'"Bo)u(x'" Bo)
0eJk

< llallpyeno ™ (Cr/en)"a(c* 2 Br)u(c* 2 Br)

A

< lallpyeyo™ (Ci/en)"a(o*? Br)u(o* Br). O

Remark 5.6. From the proof it follows that if B is any ball such that o* Bg C B then we conclude
that

f |f = Sey fldp < llallp,goeno™ (Cr/en)"a(o? B)u(o? B).

o*Bp

This follows easily using that {7 !/ ’"].@’Q}QE T C o**2Br 62 B and therefore we think of this
family as a collection of balls contained in o2 B. The rest of the argument is the same.
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Proof of Theorem 5.2. Items (a)—(d) follow as in the proof of Whitney covering lemma of
[23, Theorem 5.3, Lemma 5.4] with the difference that now, for every k € Z, we take

C ) C
Q2 = {x € £2: Cl—lak+6 <d(x, Q‘) < C1—10k+7}.
Cl Cl

On the other hand, (e) follows from (c): Fix Q! and x € Qf, by (c) we can take z €

o”(C1/c1)*Byr N £2f. Let B > x be such that BN (aéQ,_)c £ . Thus, z € (C1/c1)*0'°B and
using that u is doubling, we have

][GX(C, i< cuCrfer? ot ][ Gdu <MGR) <,

B (C1/c1)?01°B

since z € £27. Observe that this inequality holds for any ball B such that B > x and B N
(0B 0!)¢ # 9. Taking the supremum over these balls, the desired estimate is proved. O

Proof of Proposition 5.3. We claim that for every x € o B 0l

1S,5, )= Ser, [ St+a(Bo).
o 0

i

Then, (e) in Theorem 5.2 leads us to the desired estimate: for every x € Qﬁ s
MG() < MG g,y ) + MGy )W) 1+ a(Bo)+M(f - Sty 1%, By ) )
We show our claim. Note that the commutation rule implies
|Sn,;Q; FO) = Suy fO] < |Sn,;Q§ (f = ez, | +[Ser (F = Snégf_ H)|
=1+

We study each term in turn. Fix x € O’BQ; and pick k; € Z such that

akir(Bg) <r(Bg) <o *'r(Bg). (5.10)
Using (5.4), we have

ki >2 and a"féQ; CoByg. (5.11)

This implies that | f(y) — Seiy f(I=G(y), when y € okiéQ{. Therefore, since 1 <7 < o™,
Q 1

we can write
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1< mxfg(%)lﬂy) Set, SO du(y)
d(x, y)"
<M(B(x r(BQr)))/ ( ( y? )G(y)du(y)
P S / g(M)]f(Y) Sery SOty
M(B(x,r(BQ,’-)))(Jki b iy 0
=1+ D. 512

To take advantage of the decay of g we decompose X as the union of dyadic annuli {C k(Q;)}/@z.
Thus, if x € O’BQ{ and y € Cx(Q!), we have

if k=2,
if k > 3.

d(x, y)"

0
>Ar where \gy =1 . _

o!

i

Also for every k > 2, we have okBQr c o**1B(x, I'(BQt)) Then, using that u is doubling, the
decay of g and applying (d) in Theorem 5. 2, we obtain

L'<) o™ g ][ Gdu sty gwo™ <t

k=2 k=2
U Q{

i

To estimate I, we note that Q; C @0, (5.10) and (5.11) imply the following: for every k > k; + 1
Ce(Qf) Co* By co* 1 * Bg c o' Bo o TIB(x, r(By)), (5.13)

with x € at}Q{. Therefore, arguing as in Lemma 5.1 and Remark 5.6, using that a € D (u) and
w doubling, we get

1
3 g0 [ 17~ Say, fldu

28 B r (B
HABAX, TAB Q) > k41 kbt g

< Z oM EHD ¢ (67D (o4 By) < ZUan 5" 6=)a(o* 1 Bo) < a(By).
k>ki+1 k=3

Collecting all the estimates, we obtain I <t + &(EQ).
Next, let us show that IT < d(éQ). Notice that by (5.13), akéQq C ok’kin?Q -

ok %+2B(x,r(Bp)), k > ki + 1, and then, proceeding as in Lemma 5.1 and Remark 5.6, and
using that u is doubling, we obtain
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I / (d(x,y>m>
1< = g FO) = Su, fO)]dr(y)
n(Bx.r(Bo)) 4 "\ 4, | By |
80 /
<" |f =S, fldu
(B r(Bo)) | J ol
o' IBQI[-
b 3 g(kk%"‘) [ 17 =50, flau
,u(B(x,r(éQ))) >k 42 'L'IB,Q g ”égg

9

5 a(641§Q) + Z g(am(k_k"_5))0”(k_ki)a(ok_k"+3f3Q)
k>ki+2

< Za”kg(am(k_g))a(akéQ) SZI(EQ). g
>2

5.2. Proof of Theorem 3.2

We follow the steps of the proof of Theorem 3.1. So, we only detail those points where both
proofs are different. We recall that w € Ao (1) implies that there exist 1 < p, s < oo such that
w € Ap(u) N RH(w). In particular, for any ball B and any measurable set S C B,

1/s'
(&)p < & < (&) . (5.14)
w(B)) ~ w(B) "~ \ u(B)

The first inequality follows from w € A, (u) and the second one from w € RH(u) (see [33]).
Note that in particular, this yields that w is doubling.
We fix Q € D and suppose that a(Bg) < oo where

El(éQ) — Zo.znkg(o_m(kfg))a(o.kég)
k=0

Set G and £2; as before. Then, since we have assumed that a € D1 (i), we have (5.1) and (5.2).
Taking g > 1 large enough, we show the following weighted version of (5.3): given 0 < A < 1,
forall t > 0,

w(2y N Q) SA w20 Q) + (%) w(Q). (5.15)

With this in hand, the proof follows the steps of Theorem 3.1. We explain how to obtain (5.15).
If 0 <t S a(By) this estimate is trivial, since

w(24 N Q) <w(Q) < (“(ftQ)) w(Q).
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Let us consider the case ¢ = a(Q). Notice that G € L'(X) and n($2;) < oo, by (5.2). Then, by
Theorem 5.2, we write §2; as the p-a.e. union of Whitney cubes {Q;}i. Arguing as before, we
obtain

w2y N < Y w(fxeok M(|f—Srt flxoB )(x>>(q Co)t})
i: Q{cQ

:Z"'+Z"':1+Il’
I I

where Iy and I are defined as before. To estimate / we use (5.14), that M is of weak type
(1, 1), w is doubling and Theorem 5.2:

plx € Of: MUS = Suy f1xg5,)(0) > (@ = Corpy V"
( (2D ) w(Q

1<y
I

1/s'
S <][|f Suis ;fldu) w(0!)

oy

1

AN w(0h) AV w20 Q).
i: 0icO

On the other hand, following the computations to estimate /I in the proof of Theorem 3.1 (re-
placing the Lebesgue measure by w) and using Lemma 5.1, we conclude that

é r ~ é r
UBS <¥> w(Q) S <¥> w(Q).

Note that we have used that w is doubling and that a € D, (w) N D1(u). Collecting the obtained
estimates for I and /1, we obtain (5.15) and therefore the proof is complete. O

5.3. Proof of Theorem 3.5

We have to modify the previous argument: when passing from the dyadic case to the general
case we used that a € D; — indeed a € D implies a(B1) S a(By) if By C By C o3 B). Here we
do not have such property (unless we assume a € D) but we can use the following observation:
if (a, @) € D, (1) then for all balls B, B such that B C B, and for any family of pairwise disjoint
balls {B;}; C B we have

> a(B) w(B;) Sa(B) u(B). (5.16)

We follow the lines in the proof of Theorem 3.1 pointing out the main changes. We start as in
Step I and cover B with the dyadic cubes in Z. As the cardinal of Z is controlled by a geometric
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constant, it suffices to get the desired estimate for a fixed cube Q € Z. As mentioned before for
every k > 0 we have akBQ C o**+1B. We take a given by

=0

Using that (a, a) satisfies (3.3), we can see (as in the proof of Lemma 5.1) that for each R € D,
I1<t<o™andk >1,

][ 1 = Sey fdin S a(0*Bg). (5.17)

ok Bg

Furthermore, when R = Q using that O'k+2éQ cof3B ak+5§Q, w(o*+3B) < ,u(akéQ)
and (5.16), we can analogously obtain

][ 1 = Suy S Sa(0*B). (5.18)

ok By

This implies that G = | f — SnéQfIXngQ e L'(X) with 1GLix) <a(B)u(Q). Also £2;, the

t-level set of MG, satisfies u($2;) S a(B)u(Q)/t.
Our goal is to show the following good-A type inequality: given 0 < A < 1, forall ¢ > 0

= B\
(824 N Q) SAn(82:N Q) + <%t)> n(Q). (5.19)

From here we obtain as before |MG| 1~ o < a(B) which in turn implies the desired estimate:

Lf = Sip fllroo 5 S Y NF = Sipfll oo < D IMGllrres, o S @(BWL S a(B).
Q€T QeZ

Notice that (5.19) is trivial for 0 < ¢ < a(B). Otherwise, for ¢ 2 a(B) we proceed as before
and use the ideas that led us to (5.17), (5.18) to obtain an analog of Proposition 5.3 with a(B) in
the right hand side, which is written in terms of a in place of a. All these together yield (5.5). The
estimate for / is done exactly as before. For I, we use the same ideas, but in this case, we do not
want to use (5.17), because this would drive us to a before using (3.3). By applying Lemma 5.5,
and proceeding as in Lemma 5.1, for every Qf € I; we take the family 7 (Q}) = Ji (Qf) and
obtain

M < ][ =S S1drS 3 ][ 1 = St SR <Y a(z/" Be).

GBQ{ REJ(QDII/”’BR REJ(Q;)

i

(5.20)
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This and the fact that #.7 ( Q; ) < C give

H<ZM(BQt)< Z Z <a(r1/mBR)> u(2/7 Br).

it Q{CQReJ(Q))

As before, we split the balls {O‘SBQ{},' in K families {Sk},f:l of pairwise disjoint balls. For
every Q! by (5 9) and Lemma 5.4 we can split the family /(Q!) = {t/mBg: R € JOH}

in {Z (Qﬁ) j} dlS_]Olnt families of disjoint subsets. Notice that JQr cuo 3nc, /c1)". Write
J = max Jy and set Z(Q!); = for Jor < j < J. In this way, for every Q! we have split

1(Q}) in J pairwise disjoint families (some of them might be empty) so that for each family
the corresponding balls (if any) are pairwise disjoint. Notice that for each fixed 1 < k < K,
1 < j < J, we have that {tl/méR: R e Z(Qﬁ)j, Qf € &} is a disjoint family since so it is for a
fixed Q!, tV/mBe 031§er_, and {031§ng: Q! € &} is also a disjoint family. Then, we use (5.16)

and the fact 7!/ By C 031§er C (IZBQ Cco3B:

K 1/mp r )
WZZ > () e
k=1 j=1 ReZ(0});,0!c&
J-K_ R a(B)\"
< 3 3py < [ 2222
< G5 ue*n) < (52 ) wo.

From here one gets the good-lambda type inequality (5.19). Further details are left to the inter-
ested reader.

5.4. Proof of Proposition 4.1

We adapt the argument in [24] to the present situation. Fix 1 < p <n and 1 < ¢ < p* where
p* =np/(n— p). Let us recall that Holder’s inequality yields that the D, conditions are decreas-
ing, thus we can assume without loss of generality that p < ¢ < p*. Fix a ball B and a family
{B;}; C B of pairwise disjoint balls. Minkowski’s inequality and the fact that ¢ > p give

1/q 1/q
(Za(B,-m(B,-)) Za(k)(Zao (c*B:) M(B))

k=0

kB (B;)Pl4 5
Za(k)(Zr(a M()Gf;i)) /h”du) . (521)

k=0 2,

We estimate the inner sum as follows. First, if k = 0 we use that p < g < p*, (4.3) and that the
balls B; C B are pairwise disjoint:

r(Bi)P u(Bi)P r(B)P )
S [ dn s s [ =iy ansy
1 B,‘ B
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For k > 1 we arrange the balls according to their radii and give an estimate of the overlapping
whose proof is given below:

Lemma 5.7. Let B be a ball, | > 0 and & = {B;}; be a family of pairwise disjoint balls of B with
o~ 'r(B) < r(B;) <o ~"tr(B). Given B; € & and k > 1, we have

#jk(Bz) Z#{Bj E(c;l: o‘kBj ﬂUkB,- 75@} < CMUn(k+2)~

In addition, for every B; € &, and k > 1, if 0 <I < k+ 1, then okBi c o* 2B, and ifl >k+2
then c*B; C o B.

For every [ > 0, we write & = {B;: a_lr(B) <r(B;j) < G_I'Hr(B)}. We recall that B; C B
implies r(B;) < 2Dgr(B) < or(B) and then

knp. P/ 00 knp. \p/

B (B )P4 B (B )P4

Zr(o i) 5( i) / h”duzz Z r(0c“B;) ]ft( i) / WP dy
. w(o*B;) — £ w(o*B;)

1 O'kB,' =0 B, €£1 O'kB,'

k+1

00
ZZ..._}_ Z =214 2.
=0

I=k+2

We estimate X'1. Using Lemma 5.7, (4.3), (4.4) and Lemma 5.4 we have

. k+1 r(6k71+ZB)PM(B)P/q r(akB,-) P/ u(B;) p/qu(o.kfl+28)
1= — M(o”¢—[+2B) Bleg[(;ﬂ(o—k—l-‘rZB)) (M(B) ) /L(O'kBi)

X / hldu

dkB,'

k+1 k=142 gyp plq
< O BIRBE g 3 /h”d,u
~ /L(O'k_l+2B)

1=0 Bie&i iy

(@ 2B ()P

~ k—1+2
P (o B)

O_*lﬁp/qo_nk hP du

ok—I+2p

k+1
— M(B)p/qo_nk Zo—lﬁp/qao (Uk—l-‘rZB)P
1=0

k+2
= u(B)P/ gk =7p/9) Z o!mPld g, (UIB)P.
=1

On the other hand, Lemma 5.7, (4.3), (4.4), Lemma 5.4 and the fact that p < g < p* imply
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r(oB)Pu(B)P/1 & (r(akB»)"( (B u(oB))"/‘f
Yy =— 2 77
? 11(o B) 2 2 r@B) ) \u(o*B;) u(B)

I=k+2 B; &
1-p/q

oB

u(o*B;)
UkBl'
p r/q n—ii °
< 1B BT “;B) PTG gk N2 g ltnela=m N[ e gy

'M(U ) I1=k+2 B;e&

a"'B;

/ n—n >
< HOBPWBIT kpasrgt / Whdp Y o lwtela=m
m(o B) I=k+2
oB -

< M(B)p/qok(n—ﬁp/q)ao(gB)p_

Plugging the obtained estimates in (5.21) we conclude that

1/q
(Za(Bi)qu(Bi)>

SaOu(B) ay(B) + Y alk)(E) + T2)7
1

1

i k+2 »
S OB ag(B) + Y ak) (u(B)f’/qa“"—"f’/q) Zol”f’/qao(ollf)”>
k=0 =1

Sa0)u(B) ag(B) + ()74 " ao(o' B) <o”’/q > o"(%—%)a(k))

=1 k>max{/—2,0}

= u(B)'/1Y " aao(o' B) = (a(B)! u(B))
=0

where @(0) = Ca(0) and &(l) = o/ > k> max(i—2.0) ak(%fg)a(k) for [ > 1. This shows as de-
sired that (a, a) € Dy.

Remark 5.8. We would like to call the reader’s attention to the fact that, in the previous argument,
it was crucial that ¢ < p*. Since otherwise, the geometric sum for the terms / > k + 2 diverges.

Proof of Lemma 5.7. It is straightforward to show that for every B; € Ji(B;),
o*B; C ot B, C ot 2B

This and the fact that the balls {B;}; are pairwise disjoint imply
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M(Uk+lBi)#\7k(Bi) < Z /,L(O'k+2Bj) < Cluo.(k-i-Z)n Z /'L(B])

BjeJi(B;) BjeJr(B;)

gcua(k"'z)",u,( U Bj) < cp0 ©HD (R )
BjeJk(B;)

From here the estimate for #.7; (B;) follows at once. The rest of the proof is trivial and left to the
reader. O

5.5. Proof of Proposition 4.5

We first show (b). Fix p € ((¢1)’, 00) U [2, 00). We observe that

1/p s d 1/p
(][|f—e“*Af|du) - (f - [ et rwas du(x))
B B 0
" 1/p
< /<][|e_SAAf(x)|pd,u(x)) ds.

0 B

Fix 0 < s < tp, and take a smooth function ¢ supported in B with [l¢||, ,» = 1. Then,

= ﬁ‘ A[ e AAL()@(x) di(x)

o kgyl/p 1/p , 1/p
Z u(o (B)) ( ][lvﬂpdﬂ) < / |Ve—m¢)|p dM)
k=1 okB

= ﬁ‘ A[ V) Ve 2o(x)du(x)

x(B
X skn/p 1/p A 1/p
< I P —s
< (B)W<][|Vf| du) ( /|Ve ol du)
k=1 ok B Ci(B)

i okn/p ( ][ 1/p
= IVfl”du> Iy.
1
el GO
okB

We estimate each Ii. For k = 1 we notice that p’ € (1,2] U (1, g4+) allows us to use (G p)—let
us recall that g4 > g4+ > 2, and that (G,) always holds—:
L < [[Ve 2|y < Cs™Pllpll = Cs™ P u(B)'/7"

Assume that k > 2. By definition of ¢ and the argument of [3, p. 944] we have

1/p' C
V
(/Iprs(x e du(x)> < ZaGo. TN
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for all s > 0 and y € M, with y > 0 depending on p’. Using this estimate and Minkowski’s
inequality we can control Ij:

:< / ‘fvxps(x,y)w(y)du(y)

Cv(B) B

4 1/p'
du(x))

UZkr(B)2

1/p'
<e ¢ /( / Veps(x, |7 oy e du(x)) lo(| du(y)
B B

< 12 —c”_zkrwﬂf 1 o) du(s)
ST/ s ——————(y)du(y
J I(B(y, /s)1/P

3 r(B)\NYP o2 1
<s 1/2(—) e ¢ s —/w(y)du(y)
B

NG w(B)!/p

B) np kg2 ,
< g—172 r(B) e ¢ s B)\/P,
N NG n(B)

where we have used that u(B) ~ u(B(y,rg)) < cu(rp/+/s) i(B(y, «/s)) since 0 <s < 1p =
r(B)? and y € B. Then,

1/p o0 kr(BY\YP o2, 1/p
Igs—l/z( ][|Vf|1’du> +s—1/22<%(s)> et ( ][ |Vf|1’du) .
oB k=2

Taking the supremum over all such functions ¢ we obtain

1/p i/p ®
( |f —e’BAfldu> < ( IVflpdpL> 5712 g

oB

B
0 I/p kp(BYNMP 2k
#3( fwm) [ (TrR) ety
k=2 okB 0
o0 1/p
Ze (c*B) ( ][ |Vf|pdu) )

It remains to prove (a). We write & = AY2f and h = Y jo | hy with hx = hxc,(s). Since
A2 =c [7° teT"™ AL we obtain

][lf N fldp = ][l 2N £ dp
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f

B

tp

(I _e—IBA)N—l (_/ %e—SAf(x)ds> d

0

1]

N
o
~
|
=
N
=
J
>
>
=
oS}
=
.
=
Y
t

g o0

//f| _tBA)N 1 _(Y"rf)AAh |d,bL\/_ dS
0 0 B

One has that ¢9; p; (x, y) satisfies also (UE) (see [13, Theorem 4] or [18, Corollary 3.3]) and
this easily implies that {e™’ A(tA)}=0 satisfies L' — L! full off-diagonal estimates (see [5] for a
discussion of off-diagonal estimates associated to semigroups): given E, F closed sets and t > 0

M8

k=1

le ™A xe) | 11y < Ce ST (5.22)

This and (UE) imply that e ?2(rA) and (I — e~"2)¥~! are uniformly bounded on L'. These
facts allow us to estimate the term k = 1:

tp o0
//f‘ —tBA N—-1 —(€+t)AAh ’d,u/\/— ds
g o0 \/_ d
t t
5][|h|d,u/ o ds<r(GB)][|h|d,u
oB 0 0 oB

For k > 2 we split the z-variable integral in two pieces: 0 <t < Ntp and t > Ntp. We first fix
0 <t < Ntgand 0 < s < tg. Observe that

N-1
(1 — e 32N =6+0A A = 3 ¢ e timtra
j=0

and thatt +s < jtp +1t + s < 2Ntp. Then (5.22) implies

o R, o252
][| )R AR die S S D Gttty [W‘m
=0

S i 5)! ][ Il dp.
okB
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Hence, we conclude that

tp Ntp
/ f|(1 _ e—lBA)N—le—(S+l)AAhk|duﬂ%ds
0 0 B

tp Ntp
) t dt
ge_LUZk ][ |h|d,u/ Vi —ds
kB

t+s t
0 0

< e_c"Zkr(UkB) ][ |h|duw.

okB

Next for the case t > Ntp we make the changes of variables 1’ =¢/(tgN) and s’ = s/1p:

I:/ / ][|(I—eftBA)Nflef(”’)AAhkMu\/;?ds

3
12

1 o0
§r(B)//][|(e"’BA — et AN (501 A (5 +z)tBA)hk|duﬂ ds.
01 B

We need the following lemma whose proof is below.

Lemma 5.9. Given given E, F closed sets and 0 < v < u, we have

_Cd(E.F)2
1 < Ce gy
LI(F)

%(e_“A — e IR (Fyp)

Using this result, (5.22) and [22, Lemma 2.3] we have forevery 0 <s < 1 <t < 00

_ dt
f|(€7ltBA _ef(tthH‘B)A)N ]ef(s+t)l‘BA((s +l)tBA)hk|dM—3 ds
B r

o2k, (B)? o2k
<t7(N71)—] e max{it G+ / |h|dp <t~ N=Dgkne=c5 ][ |h|d.

~ u(B)
o*B okB

Thus,

(5.23)
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1

o0
o2k dt
1 <r(B)ok ][ |h|du//l’(N’])e’cT — ds
1

12
okB 0

< cr*k(ZN*”)r(UkB) ][ |h|duw.

okB

Gathering the obtained estimates the proof is complete.

Proof of Lemma 5.9. We proceed as in [22, p. 504]:

v
d
=|-= / ——e A (fxp)ds

‘ Zlemd — e @A) (Fyp)

v LI(F) vO dS LI(F)
v
< e w08 o gy 2
X v e u N XE LI(F) M‘I‘S
0

v

<CIFlp ey~ / ~slEps 45

1 — e u+s

= L(E) v u+s
0

_ cd(E,F)?

< Ce " ||f||L1(E),

where we have used (5.22) and that u <u +s<u+v<2v. 0O
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