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Consider the nonparametric regression model Yj”) = g(x!“)) + sj”), i = 1, . . . . n, 
where g is an unknown function, the design points x]“) are known and nonrandom, 
and E!“)‘s are independent random variables. The regressor is assumed to take 
values in A c RP, and the regressand to be real valued. This paper studies the 
behavior of the general nonparametric estimate 

” 
g,(x)= c W,/(X) Y!“! 

r=l 

where the weight function w,, is of the form ani = w,~(x; xi”‘, . . . . xr’). Under 
suitable conditions, it is shown that the general linear smoother g, for the unknown 
regression function g is asymptotically pointwise unbiased, weak, mean square and 
complete consistent, and asymptotically normal. The results of the limit theorems 
can be applied to extend or improve the conditions of the estimates with various 
particular weights w,, including all those known in the literature. 0 1988 Academic 

Press. Inc. 

1. INTRODUCTION 

Let p be a natural number and A be a compact set in RF. Consider 
observations 

Yj”’ = g(x(“‘) + &j”), i = 1, . ..) n, (1.1) 
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where xl”‘, . . . . xr) E A are design points, g is a bounded real valued function 
on A, and the random errors E?), . . . . EC) are assumed independently, but 
not necessarily identically, distributed with either Es!“) = 0, i= 1, . . . . n, or 
the law (a!“)) is symmetric about zero. The goal is to estimate g from obser- 
vations. If g is assumed to belong to a space of functions which is 
parametrized by a finite number of parameters (e.g., the polynomials of 
degree m or less) then standard regression techniques may be applied. 
However, if we are only willing to assume that g possesses some smoothing 
properties, then the use of a nonparametric regression technique is in order. 
To estimate the unknown function g (only for p = 1 ), many classes of 
estimates have been proposed, including the kernel method (Priestley and 
Chao [30], Clark [6], Gasser and Miiller [13], Cheng and Lin [4,5], 
Georgiev [15, 171, etc.), the nearest neighbor method (Greblicki [23], 
Georgiev [18, 191, Georgiev and Greblicki [22]), the spline method 
(Wahba [40], Rice and Rosenblatt [33], Silverman [37], etc.) and the 
orthogonal series method (Rutkowski [35], Rafajlowicz [31]). For the 
multivariate case ( p > 1) Ahmad and Lin [ 11, Georgiev [ 161, and 
Galkowski and Rutkowski [ 1 l] discuss consistency of the kernel estimates, 
and Galkowski and Rutkowski [12], and Rafajlowicz [32] establish 
consistency of the orthogonal series method. Generally, these estimates are 
linear in the Y!“)‘s. 

The present ‘paper investigates the following general linear smoother as 
an estimate of g, defined by formula 

g,(x) = i W,i(X) V), XEACR~, (1.2) 
i=l 

where weight functions wni(x), i= 1, ..,, n, depend on the fixed design points 
x!“‘, . ..) XC”) n and on the number of observations n. The point x may be inter- 
preted as a future value taken on by some x for which Y is not yet obser- 
ved. The estimate (1.2) was proposed by Georgiev [19] and discussed by 
Georgiev and Greblicki [22] for dimension p = 1. The main object of this 
paper is to prove pointwise laws of large numbers and the central limit 
theorem for g,,(x) under some regularity conditions met by the unknown 
function g, the weights w,r(x), ..,, w,,(x),, and the random errors 
E!“‘, . ..) &(“I 

For tie’stochastic design model (or the correlation model) it is assumed 
that the X,, . . . . X, are random variables. Freedman [lo] has emphasized 
the distinction between the regression model (1.1) and the correlation 
model under which (X,, Y,), . . . . (X,, Y,) is regarded as a random sample 
from the (p + 1 )-variate distribution of (X, Y), where X is a p-vector and Y 
is a scalar. For the correlation model Stone [39] has discussed a class of 
nonparametric regression estimates of type (1.2). His results imply that if 
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the weight functions wni(x), i= 1, . . . . II, satisfy certain conditions (in 
probability) and addition natural properties, then the nonparametric 
estimates are consistent in the mean. The results are valid for any 
distribution of X. Our model (1.1) is different from that of Stone and his 
results do not include results established in this paper. Moreover, Stone 
studied global behavior of the nonparametric regression estimates. We 
investigate local (pointwise) properties of the general linear smoother g,. 
For more details on the study of the correlation model the reader should 
consult bibliographic reviews Collomb [7, S] and Prakasa Rao [29], 
among others. 

Recently Hardle and Luckhaus [25] and Hlrdle and Gasser [26] have 
introduced a robust nonparametric function fitting method. Their estimates 
are motivated by the theory of M-estimation and of kernel estimation of 
regression functions. 

The paper is organized as follows. In Section 2 the main theorems are 
stated and discussed. The new results for the estimate of multiple function 
g allow the improvement of some recent results (for p > 1) given by 
Ahmad and Lin Cl]. The proofs of the theorems are given in Section 3. 
Our proofs are extremely simple. 

We hope that this paper will achieve two main objects. First, the general 
results for the estimate g, will give a useful tool for the analysis of a wide 
class of nonparametric regression estimates. For particular known weights 
W,l (XI, . . . . w,,,(x) the statisticians can obtain new sharper results (see the 
example in Section 2). Second, the established properties of the weights 
Wnl(X), ...T w,,(x) and of the random errors .sp), . . . . E:) should give the 
reader an insight into the way of constructing new practical, useful weight 
functions and new estimates. 

2. RESULTS 

Throughout the next two sections the following assumptions are made. 
Let A c RP be a compact set. Let w,Jx) = 0 for i> n. To simplify our 
notation we shall write Yi, xi, ai for Yi”), xi”), &I”). 

Our first theorem establishes that g,(x) is asymptotically unbiased. The 
theorem holds an array of weight functions w,,i(x), . . . . w,,(x), x fixed, with 
the properties 

and 

(2.1) 

icl 1 W,i(X)( G B for all n. (2.2) 
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THEOREM 1. Assume the function g is bounded on A c RP. Under the 
conditions (2.1) and (2.2), and zf 

izl IwfAx)I z(,,.x,-.x,, >a} -i O us ’ -+ O” for az1 a’0T (2.3) 

then 

-&n(x) -+ g(x) as n+cq 

at every continuity point XE A of the function g. 

Our next result describes a weak law of large numbers for the estimate 
g,. Suppose that random variables E, are uniformly bounded by a random 
variable E in the sense that 

s~pP(IEil~t}~P(lEJ~t} for all t > 0. (2.4) 

Now we are in the position to give the following 

THEOREM 2. Assume the conditions of Theorem 1, and in addition that 
El, .a*, E, are independent random variables with EE,= 0, uniformly bounded 
by a random variable E with E)E( < co. If 

suP I wni(x)l + O as n-+cO, (2.5) i 

then 

g,(x) + g(x) in probability as n + co, 

at every continuity point XE A of the function g. 

EXAMPLE. The above theorem extends and improves one of the recent 
results given by Ahmad and Lin [ 11. They introduced a multidimensional 
version of the Priestley and Chao estimate, i.e., the estimate (1.2) with 
weights 

where A 1, . . . . A, is partition of A = [0, 11” into n regions such that the 
volume d(Ai) is of order n-l, K(U) is a known p-dimensional bounded 
density, {a,,} is a sequence of reals converging to zero as n + co, and 
xi E Ai. Ahmad and Lin [ 1, p. 1711 prove that if K(U) is Lipschitz of order 
/I, maxi A(Ai) = O(n-‘) and naAl+ l/s)P -+ co as n + co, then g”(x) + g(x) in 
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probability as n + cc for all x E A, provided that g(x) is continuous in 
[O, 11”. Following that theorem, the best result for the sequence (a,} is for 
fi= 1, i.e., 

naF+co as n-co. 

It is easy to prove, by checking the conditions of Theorem 2, that if K(u) is 
a continuous probability density function, nonincreasing as JjuJI -+ cc, 
max,d(,4i)= O(n-‘) and na{ -P cc as n -+ GO, then g,(x) --f g(x) in 
probability as n --f cc at every continuity point XE A. We remark that the 
above result improves that of Ahmad and Lin [ 11. The sequence {a,} is 
such that 

na{ + cc as n--+az~, 

and the above conditions is the same for other multivariate weights 

(2.7) 

investigated independently by Ahmad and Lin [l] and Georgiev [16]. 

Remark. In the above example, the weights (2.6) are constructed based 
on a positive kernel K(U). There may be some drawback in using positive 
weights when some smoothness condition is assumed. For example, when 
the dimension p = 1 and x0 is an endpoint of the support, then the use of 
nonnegative weights results in weighting values of g, at x’s which lie on 
one side of x0 and there is no way of effectively using the smoothness of g 
to reduce the resulting bias. This problem does not occur in the correlation 
model setup as the smoothness assumption is not required in establishing 
Stone’s consistency results, see Stone 1391, Devroye and Wagner [9], 
Spiegelman and Sacks [38], and Greblicki et al. [24]. Notice that the 
weights w,,~ used in this paper are not necessarilly positive. 

THEOREM 3. Assume the conditions of Theorem 1, and in addition that 
El 9 . . . . E, are independent random variables with EEL = 0, supi EEL < co. If 

icl wZ2i(x) + O as n-co, 

then 

EL-g,(x) - &)I2 4 0 as n-rco, 

(2.8) 

at every continuity point x E A of the function g. 
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We can also establish sufficient conditions for strong pointwise 
consistency of g,(x). 

THEOREM 4. Assume the conditions of Theorem 1, and in addition that 
E,, . . . . E, are independent random variables with EC,= 0, supi Ej~~l’< 00, for 
some r > 2. Zf 

sup wti(x) n loglog n -+ 0 as n-+oo, (2.9) i 

then 

g,(x) + g(x) with probability 1 as n + co, 

at every continuity point XE A of the function g. 

We remark that the conclusion of Theorem 4 improves those of 
Benedetti [2] and Gasser and Miiller [ 131 for dimension p = 1. It is noted 
that they assumed identically distributed random variables with EC: < co 
and other regularity conditions on the particular weights. 

In the next two Theorems we give sufficient conditions for complete con- 
sistency of the estimate g,(x) in the sense of Hsu and Robbins [27]. The 
results for complete consistency imply strong consistency by Boole’s 
inequality. 

THEOREM 5. Assume the conditions of Theorem 1, and in addition that 
E,, . . . . E, are independent random variables with EE, = 0, uniformly bounded 
by a random variable E with EJEI’+I/‘< co, s ~0. If 

sqplw,i(x)l = W-7, (2.10) 

then 

g,(x) --, g(x) almost completely as n -+ co, 

at every continuity point XE A of the function g. 

This result extends Theorem 1 of Georgiev [19] for a general linear 
smoother in one dimension ( p = 1) and Theorem 3 of Ahmad and Lin [ 1 ] 
for particular weights of type (2.7) and random variables si, . . . . a, which 
are independent but not necessarily identically distributed. 

If we assume that the random errors in (1.1) are bounded random 
variables, we obtain the next result. 

THEOREM 6. Assume the conditions of Theorem 1, and in addition that 
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Ed, . . . . E, are independent random variables with E.zi = 0, supi I&J < CO almost 
sureIy. If 

sup 1 wni(x)J log n + 0 as n-kco, (2.11) 
1 

then 

almost completely as n + co 

at every continuity point x E A of the function g. 

Our last result provides a central limit theorem for the estimate g,(x). It 
generalizes known results for particular weights given by Benedetti [2] and 
Cheng and Lin [S] for the univariate case and by Ahmad and Lin [l ] for 
the multivariate case. 

THEOREM 7. Assume that Ed, . . . . E, are independent random variables with 
EE, = 0, supi E (EJ * + ’ -c co, for some t > 0. If 

CT=1 lwni(x)12+’ +o 

[Ix;= * W;i(X)]‘+“2 
as n+cx3, (2.12) 

then 

gn(x) - Eg&) --) N(O 

Par g,(x)1 1’2 
> 1 ) in distribution as n + 00. 

Denote by @J the standard normal distribution. We obtain the following 
results concerning the rate of convergence in the central limit theorem 
expressed in terms of the weight functions wn,(x), . . . . w,,(x). 

COROLLARY. Assume the conditions of Theorem 7 with t G 1, then 

g,(x) -k,(x) C;= 1 I wni(x)l ‘+ ’ 

War g&)1 ‘I2 
G z} - @J(z) 4 c, t-c;=, w$(x)ll +r’2’ 

where C, is a universal constant. 

In this section we have derived various pointwise properties of the 
general linear smoother g,(x). The results given above extend or improve 
the results known in the literature. 
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3. PROOFS 

The method of some proofs used here was apparently lirst used for the 
univariate case by Georgiev [19] and later modified by Georgiev and 
Greblicki [22]. In spite of the fact that some ideas of the proofs used here 
have been used in part before, the author considers the results obtained 
here to be sufficiently interesting to warrant comprehensible (and therefore 
necessarily complete) proofs. 

Proof of Theorem 1. Choose an a > 0 and let g be continuous at x E A. 
Note that 

ELI(x) - g(x)1 

+ Igtx)l i wni(x)- l 

i=l 

<4g, a)B+2C i IW,j(X)l I,,,.,- Xll>O}+c i wni(x)-l Y (3.1) 
i=l i=l 

where C=su~,Ig(x)l and d(g, ~)=su~~~,-,~~.. Ig(x)- g(y)l. Now we 
may deduce from (2.1), (2.2), and (2.3) that (3.1) tends to zero if n + co 
and a is sufficiently small. 1 

Proof of Theorem 2. Since 

I g,(x) - &)I G Ig,(x) - J%,(xN + I&L(x) - &)I, (3.2) 

we show that the random part of r.h.s. in (3.2) tends to zero in probability 
as n + co. Observe that 

Igntx) - Egn(x)l = /  k wni(xlcil. (3.3) 
i= 1 

Now the result follows via Theorem 1 given by Rohatgi [34, p. 3053, and 
(2.5). I 

Proof of Theorem 3. It suffices to prove that (3.3) tends to zero in 
quadratic mean as n --, co. Since 

E(g”(x) - Egn(x))2 G ‘iax i wzi(x), 
i=l 

where cr$,, = supi E&f, the proof follows from (2.8). i 
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Proof of Theorem 4. Observe that by virtue of the law of the iterated 
logarithm, we have for (3.3) 

/g,(x) - Eg,(x)J = O((sup, Wij(X) n log log n)““) 

with probability 1 as n -+ co. Hence the proof is complete by (2.9). 1 

Proof of Theorem 5. It is easily seen that the random part in (3.2) tends 
to zero almost completely as II + co as (2.10) is in force by Theorem 2 of 
Rohatgi [34, p. 3061. 1 

Proof of Theorem 6. As usual we shall start with (3.2). By a slight 
modification of the Bernstein inequality given in Bennett [3], Georgiev 
and Greblicki [22] have obtained that 

P(Ig,(x)-&,b)l at> <2exp ( 
A4 - 

suPi I wni(x)l ) ’ (3.4) 

where 1, M> 0. (3.4) is summable with respect to IZ when (2.11) holds. 1 

Proof of Theorem 7. Write p = supi JZ)E~~‘+~ for some t > 0 and 
oiin = infi EC?. Recall that 

g,(x) - &n(x) XI= 1 Wni(X)Ei 

[Var g,(x)]“* = [xy= 1 Var(Wni(X)Ei)]“*’ 
(3.5) 

By applying Liapunov’s central limit theorem we see that 

(3.5) converges to N(0, 1) in distribution as n + co when (2.12) is in 
force. 1 

The proof of the corollary follows immediatly from the Berry-Esseen 
theorem and some t E (0, 11. 
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