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Abstract

We show that the Abell cluster A586 exhibits evidence of the interaction between dark matter and dark energy and argue that this interaction
implies a violation of the equivalence principle. This violation is found in the context of two different models of dark energy–dark matter in-
teraction. We also argue, based on the spherical symmetry of the Abell cluster A586 that skewness is not the most general quantity to test the
equivalence principle.
© 2007 Elsevier B.V.
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1. Introduction

It has become rather consensual that the problem of the na-
ture of dark energy and dark matter (hereafter DE and DM, re-
spectively) is crucial in contemporary cosmology. Even though,
observational data is fully consistent with the �CDM parame-
trization, in order to get a deeper insight into the nature of DE
and DM one must consider more complex models and, in par-
ticular, the interaction of those components. However, so far no
observational evidence of this interaction has been presented.
In this work, we argue that study of the Abell cluster A586
exhibits evidence of the interaction between DE and DM. Fur-
thermore, we show that this interaction implies a violation of
the Equivalence Principle (EP). Our results are obtained in the
context of two distinct phenomenologically viable models for
the DE–DM interaction. We consider the generalized Chaply-
gin gas (GCG) model [1], a unified description of DE and DM,
where interaction is an automatic feature of this proposal, but
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also a less constrained approach where DE and DM are re-
garded as two independent components, but interacting (see
e.g. [2]). We show that interaction between DE and DM implies
a violation of the EP between DM and baryons which can be
detected in self-gravitating systems in stationary equilibrium.
For sure, the EP—that is, the universality of free fall—is one
of the cornerstones of general relativity, however its validity
at cosmological scales has never been directly tested (see [3]
and references therein). The EP can be expressed in terms of
the bias parameter, b, defined as ratio of baryon over DM den-
sity, at a typical clustering scale (Mpc). Should the EP hold, b

would be a constant over time since then all clustering species
would fall equivalently under the action of gravity. Inversely,
clustering should reflect the violation of the EP through a dif-
ferent behaviour for both species. Interaction between DM and
DE induces a time evolution of b.

In this work we shall focus on the effect of interaction on
clustering as revealed by the Layzer–Irvine equation. Given that
the EP concerns the way matter falls in the gravitational field,
considering the clustering of matter against the cosmic expan-
sion and the interaction with DE seems to be a logical way to
test its validity. In what follows we shall see that DE–DM in-
teraction implies a departure from virial equilibrium. First, we
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will set the formalism to address the DE–DM interaction and
consider two phenomenologically viable models: one based on
an ad hoc DE–DM interaction [2], the other in the GCG with an
explicit identification of the DE and DM components [4]. Our
observational inferences are based on the Abell cluster A586
given its stationarity, spherical symmetry and wealth of avail-
able observations [5].

2. Quintessence model with DE–DM interaction

The Bianchi identities with coupling ζ give origin to the fol-
lowing homogeneous energy conservation equations:

(1)ρ̇DM + 3HρDM = ζHρDM,

(2)ρ̇DE + 3HρDE(1 + ωDE) = −ζHρDM.

Notice that these equations imply that the energy exchange be-
tween DE and DM is adiabatic (see e.g. [6] and references
therein). Moreover, the basic assumptions used in these equa-
tions are a constant equation of state parameter pDE = ωDEρDE
and the following scaling with respect DM energy density

(3)
ρDE

ρDM
= ΩDE0

ΩDM0

aη,

for a constant η. From the time derivative of Eq. (3) inserted
into Eq. (2) together with Eq. (1) yields:

(4)ζ = − (η + 3ωDE)ΩDE0

ΩDE0 + ΩDM0a
−η

.

The solution of Eq. (1) is given by

ρDM = a−3ρDM0e
∫ a

1 ζ da
a

(5)= a−3ρDM0

[
ΩDE0a

η + ΩDM0

]− (η+3ωDE)

η .

The DE evolution is then derived from the scaling directly, or
from Eq. (2) combined with the scaling:

ρDE = aη−3ρDE0e
∫ a

1 ζ da
a

(6)= aη−3ρDE0

[
ΩDE0a

η + ΩDM0

]− (η+3ωDE)

η .

In this model, from Eq. (5) one can see that the bias parameter
depends on time as follows:

(7)b = ρB

ρDM
= ΩB0

ΩDM0

[
ΩDE0a

η + ΩDM0

] (η+3ωDE)

η .

3. The GCG model

Let us now consider the GCG model with an explicit iden-
tification of DE and DM, as discussed in Ref. [4]. The GCG
model is considered here as it fares quite well when con-
fronted with various phenomenological tests: high precision
Cosmic Microwave Background Radiation data [7], supernova
data [8–10], gravitational lensing [11], gamma-ray bursts [12],
cosmic topology [13] and time variation of the electromagnetic
coupling [14]. In order to obtain a suitable structure formation
behaviour at linear approximation, ωDE = −1 (see [4] and ref-
erences therein). For the GCG admixture of DE and DM, the
equation of state is given by [1]:

(8)p = − A

ρα
,

where A and α are positive constants. From [4], the DM and
DE expressions for a constant DE equation of state are given by

(9)ρDM = ρDM0a
−3(1+α)

(
ΩDE0 + ΩDM0

ΩDE0 + ΩDM0a
−3(1+α)

) α
1+α

,

(10)ρDE = ρDE0

(
ΩDE0 + ΩDM0

ΩDE0 + ΩDM0a
−3(1+α)

) α
1+α

,

so that we recover Eq. (3), but now with η = 3(1 + α) and
ωDE = −1.

4. The Generalized Layzer–Irvine equation

Let us now turn to the cosmological gravitational collapse
and its implication for the EP. The core of our approach lies
on deviation of the classical virial equilibrium, in its standard
Layzer–Irvine equation form. We argue that A586 data allows
to establish this departure independently of the DE–DM in-
teraction model considered. It is possible to write the energy
density conservation for non-relativistic self-gravitating dust-
like particles through the so-called Layzer–Irvine equation [15].
The kernel of the method is to consider the Newtonian kinetic
energy, K , per unit mass, while keeping the average momentum
and mass, M , constant:

(11)MK = 1

2a2

〈
p2

m

〉
∝ a−2,

where a is the scale factor of the Robertson–Walker metric. It
then follows that:

(12)ρK ≡ M dK/dV = d(MK)/dV ∝ a−2.

It is assumed that the mass evolution of the cluster remains con-
stant over the course of the observation. The energy transfer
between DM and DE is negligible at this point. The potential
energy per unit mass derives from the definition of the auto-
correlation function, ξ(r), [15]

(13)W = −2πGa2ρDM

∫
dr ξ(r)r,

where we have replaced the background energy density by the
DM energy density. After considering the DE–DM interaction,
it follows that

(14)W ∝ a2+d lnρDM/ lna = aζ−1

and hence

(15)ρW ≡ M dW/dV = d(MW)/dV ∝ aζ−1.

This is the source of difference from the usual dust case. The
Layzer–Irvine equation for the energies per unit volume is just
a chain rule of time derivative for the energy density where the
time is parameterized by the scale factor, hence:

(16)
d

(ρDM) = ȧ
∂

(ρDM) = −[
2ρK + (1 − ζ )ρW

]
H,
dt ∂a
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from which follows

(17)ρ̇DM + (2ρK + ρW )H = ζρWH,

where H = ȧ/a is the expansion rate.
Furthermore, writing in terms of the virial equilibrium factor

2ρK + ρW and the departure to static equilibrium, due to the
DE–DM interaction, Eq. (17) becomes

(18)ρ̇DM + H(2ρK + ρW ) = − (η + 3ωDE)H

1 + ΩDM0/ΩDE0a
−η

ρW .

As before, it is possible to see from the equivalent of Eq. (3)
for the GCG model (for which ωDE = −1 [4]) that one can map
Eq. (18) for the generic interaction model into the GCG model
via the relationship η = 3(1 + α). Next we shall apply these
equations to the stationary Abell cluster A586 for which ρK

and ρW can be computed, so as to compare with the observed
local measurements with the homogeneous-spawned interac-
tion term:

(19)2ρK + ρW = ζρW .

5. The Abell cluster A586

In order to estimate the coupling between DE and DM from
Eq. (19) one has to find a particular cluster to compute ρK

and ρW . It is convenient that the cluster is as spherical as possi-
ble and close to stationary equilibrium. Under these conditions,
one can approximate the kinetic and potential energy densities
as:

(20)ρK = M
d

dV
K � M

K

V
� 9

8π

MCluster

R3
Cluster

σ 2
v ,

(21)ρW = M
d

dV
W � M

W

V
� − 3

8π

G

〈R〉
M2

Cluster

R3
Cluster

,

where MCluster and RCluster are the cluster’s total mass (galaxies,
DM and intra-cluster gas) and radius, σv is the velocity disper-
sion as determined globally from weak lensing, and 〈R〉 is the
mean intergalactic distance [5].

The cluster must be also relaxed, since the core of our
method consists in estimating the EP violation from a deviation
from the standard form of the cosmic virial theorem defined by
Eq. (17) set with no interaction.

Given these constraints a particularly suitable cluster for our
purpose is the Abell cluster A586 [5]. It is found that the mass
profile in this particular cluster is approximately spherical and
that it is a relaxed cluster, since it has not undergone any impor-
tant merging process in the last few Gyrs [5]. The agreement
between dynamical (velocity dispersion and X-ray) and non-
dynamical mass estimates (weak-lensing) indicates that A586
is in fact a relaxed cluster.

Considering that gravitational weak lensing is independent
from equilibrium assumptions about the dynamical state of the
cluster, it turns out to be the best mass estimator. Therefore, in
our analysis we assume [5]:

(22)MCluster = (4.3 ± 0.7) × 1014 M�
which corresponds to the total mass inside a 422 kpc radius
region estimated using gravitational weak lensing.

In order to have a coherent set of data, we take for the veloc-
ity dispersion [5]:

(23)σv = (1243 ± 58) km s−1

as computed from gravitational weak lensing measurements.
The mean intergalactic distance is estimated using the coor-

dinates (right ascension-αc and declination-δc) of the 31 galaxy
sample provided in Ref. [5]. Given that weak gravitational lens-
ing data concerns a 422 kpc radius spherical region and the 31
galaxies lie within a 570h−1

70 kpc region, one has to select from
the original sample the galaxies that lie within the range of
interest. Since at the cluster’s distance, one arcsecond corre-
sponds to 2.9 kpc, we select from our sample the galaxies that
have αc and δc such that:

(24)
√

(αc − αcenter)2 + (δc − δcenter)2 � Δmax,

where αcenter and δcenter are the coordinates of the center of the
cluster and Δmax = 145′′ is the angular dimension correspond-
ing to a radius of 422 kpc. From this procedure, we build a
sub-sample containing 25 galaxies. From this sub-sample co-
ordinates one can estimate the mean intergalactic distance by
elementary trigonometry, the distance between any two galax-
ies i and j with coordinates (αci, δci) and (αcj , δcj ) is given
by r2

ij = 2d2[1 − cos(αci − αcj ) cos δci cos δcj − sin δci sin δcj ],
where d is the radial distance from the center of the cluster to
Earth. Therefore the mean intergalactic distance 〈R〉 is

(25)〈R〉 = 2

Ngal(Ngal − 1)

Ngal∑
i=1

i∑
j=1

rij ,

where Ngal is the number of galaxies in the sample. In our
sub-sample, Ngal = 25 and hence we get the estimate 〈R〉 =
309 kpc. Using Eqs. (22), (23) and 〈R〉 we can estimate the ki-
netic and potential energy densities, Eqs. (20) and (21):

(26)ρK = (2.14 ± 0.55) × 10−10 J m−3,

(27)ρW = (−2.83 ± 0.92) × 10−10 J m−3,

where the errors were computed using linear error propagation.
It is worth mentioning that

(28)
ρK

ρW

� −0.76 ± 0.05,

instead of −0.5 as one would expect for a relaxed cluster con-
sidering the standard form of the cosmic virial theorem and no
DE–DM interaction.

6. DE–DM interaction and putative evidence of violation
of the EP

In what follows we use our estimates of ρK and ρW ,
Eqs. (26), (27), and the latest cosmological WMAP data [17]
to show the evidence of DE–DM interaction. We also demon-
strate that this interaction implies a violation of the EP between
DM and baryons.
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Fig. 1. Normalized gravitationally induced bias parameter as a function of the
redshift, where b15 ≡ b(z = 15), z = 15 being a typical condensation time.

Let us first look at the quintessence model with DE–DM
interaction. From Eqs. (1) and (2) the DE–DM interaction is ex-
hibited through a non-vanishing ζ or equivalently, from Eq. (4),
by the condition η 
= −3ωDE.

Thus, assuming that ωDE = −1, ΩDE0 = 0.72, ΩDM0 =
0.24, one can estimate η for which Eq. (19) is satisfied for the
redshift of the A586, z = 0.1708. We find that:

(29)η = 3.82+0.18
−0.17.

Thus, since Eq. (29) satisfies the condition η 
= −3ωDE, one
concludes that DE and DM are interacting. Notice that, as ob-
servations suggest a recent DE dominance, then ζ < 0, and
from there follows that η > −3ωDE. This means that Eq. (29)
not only suggests that DE and DM are interacting, but also, as
expected, that the energy transfer flow is from DM to DE.

Let us now turn to the CGC model. With the identification of
components suggested in [4], DE–DM interaction is expressed
by the condition α 
= 0. In order to see the effect of interaction
in the GCG model, we proceed as before using Eqs. (19), (26)
and (27), from which follows:

(30)α = 0.27+0.06
−0.06.

Thus, the condition α 
= 0 holds, meaning that the A586 data
is consistent with the identification of components suggested
in [4] for the CGC model. Notice that for α = 0 the GCG model
corresponds to the �CDM model. Moreover, it is interesting to
point out that the value α ∼ 0.27 is approximately consistent
with values found to match the bias and its growth from the
2dF survey (see [4] and references therein).

Evidence on a possible violation of the EP implies the time
dependence of the bias parameter. We depict in Fig. 1, the evo-
lution with redshift of the normalized bias parameter predicted
by Eq. (7) where only gravitational effects are considered. Even
though other astrophysical effects might affect the way DM and
baryons fall under gravity, for EP purposes, gravity is the only
relevant interaction that offers a clear drift on a cosmological
time scale. Clearly, one expects that for large samples those ef-
fects would average out for non-cosmological drifts and thus
lead to possible detection in large surveys.

Fig. 1 shows that b(z)/b15 has undergone a sharp change
in the recent past, a clear signal of the violation of the EP due
to the DE–DM interaction. This abrupt variation corresponds
to the period when energy transfer from DM to DE becomes
significant (z ∼ 0.5).

7. Discussion and conclusions

In this work we have argued that the properties of the A586
suggest evidence of the interaction between DE and DM. We
stress that the considered models to describe the DE–DM in-
teraction are consistent with known phenomenological con-
straints. We have also argued that this interaction does suggest
a violation of the EP that should be detectable in large scale
cluster surveys via the analysis of the time dependence of the
bias parameter. We find that this violation is independent of
the interaction model between DE and DM and entails a red-
shift evolution of bias parameter given by Eq. (7) and depicted
in Fig. 1. Our conclusions are independent of the DE–DM in-
teraction model, generic or GCG. Actually, a violation of the
EP is reported to be found in other DE models [18]. For the
GCG model we find that the detection of interaction precludes
the �CDM model (α = 0). Furthermore, the obtained value for
α is approximately consistent with results for the bias and its
growth obtained by the 2dF survey [4]. Consistency of our re-
sults with observational data concerning interaction [19] and
further implications of the detected interaction between DE and
DM, for instance, in what concerns the motion of the satellite
Sagittarius galaxy [20], are discussed in [21].

It is interesting to point out that our results indicate evidence
for violation of the EP between baryons and DM using data ex-
tracted from the A586, a notoriously relaxed and spherically
symmetric structure. This seems to imply that the suggestion
that cosmological evidence for a violation could be detected
via skewness [16] does not hold. Indeed, spherical symmetry
implies that skewness vanishes given that it is an odd parity
spatial function. Thus, while the virial equilibrium may in prin-
ciple reveal the violation of EP due to the DM–DE interaction,
skewness is unable, by definition, to detect it in this particular
symmetry. The spherical symmetry of A586 and our detection
of violation of the EP via virial equilibrium exemplifies this
point.
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