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We discuss the SUSY Ward Identities in terms of the BRST Master Equation. This requires that the theory 
be coupled to Supergravity. In this paper we will mostly truncate the Supergravity part and consider the 
simpler Chiral and Gauge Realizations of SUSY.
The well-known Chiral and Gauge SUSY Actions realize the SUSY charge in terms of transformations 
among the Fields. In the context of the Master Equation, there is a simple kind of ‘Exchange 
Transformation’ in SUSY theories which allows us to transform any Chiral Action so that its Scalar Fields 
are replaced by Sources, while preserving the form of the Master Equation. This generates a new action 
which does not conserve the Supercharge, but which is still constrained by the new Master Equation. 
There is a close relationship between this theory with Suppressed SUSY Charge and the original theory 
with Conserved SUSY Charge. We examine the new theories to see what they can do for the problems of 
mass splitting in SUSY theories.

© 2016 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

In spite of a large amount of work, there is still much that is 
unknown about SUSY [1–6]. Even its representation theory is filled 
with unanswered questions [7]. Much recent work has concerned 
itself with geometric and duality issues in supersymmetric theo-
ries. Some of this is associated with Branes, M theory and AdS 
CFT [8–11]. A large body of SUSY work has, understandably, fo-
cussed on phenomenology and experimental signals, while leaving 
the problems of the origin of the spectrum of mass splitting for 
future work [12–14]. The progress reported in this paper is the di-
rect result of a study of the algebraic problem of the local BRST 
cohomology of the Chiral Multiplet [15–17], which examined the 
solution to the tachyon problem. Previous work, troubled by the 
tachyon problem, was in [18–23] using some of the methods in 
[24,25]. All of that work was based on the Master Equation formu-
lation of symmetries [26–31].

From the beginning of research into SUSY, it has been noticed 
by many authors that SUSY seems to hint at solutions to various 
problems. But these hints then turn to disappointment, because 
the effort to remove the mass degeneracy of the supermultiplets, 
using spontaneous SUSY breaking, tends to spoil the nice proper-
ties of the theory [32][39]. This has led some authors to wonder 
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whether the mass degeneracy of SUSY can be removed, even when 
SUSY itself is not really spontaneously (or explicitly) broken at 
all [33].

The theory presented here shows how the mass degeneracy can 
be removed for Chiral Multiplets, without spontaneous or explicit 
breaking of SUSY. The result is a sort of compromise between the 
usual SUSY theories that have a conserved SUSY charge, and theo-
ries which have no SUSY at all. We use an Exchange Transforma-
tion1 to change the original normal SUSY theory to a theory with a 
non-conserved, but still very relevant, SUSY charge. The new the-
ory satisfies a Master Equation that is very similar to the Master 
Equation of the parent SUSY theory. The method here does not ap-
ply to SUSY Gauge theory so as to remove its SUSY charge. But 
the presence of SUSY Gauge theory, or even Supergravity, is not a 
problem for the method.

2. Half-Chiral Multiplets and Un-Chiral Multiplets

For each Chiral Multiplet in an Action, there is a choice to be 
made. One can simply leave it as a Chiral Multiplet, or one can use 
an Exchange Transformation to transform it to a new kind of Mul-
tiplet, with a new Action and new physics. This Exchange Trans-

1 This is like a canonical transformation – it ensures that the new Master Equa-
tion yields zero with the new Action. See Section 14 below.
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formation transforms some or all of the Scalar Field A to a Zinn 
Source2 J and the Zinn Source � to an Antighost Field η. The Zinn 
Source � is the Source for variations of the Scalar Field A (in the 
old Action). The Zinn Source J is the Source for variations of the 
Antighost Field η (in the new Action).

The Exchange Transformations of the Master Equation that we 
will introduce in this paper will be said to give rise to a Half-
Chiral Multiplet, when one Scalar remains, and to an Un-Chiral 
Multiplet, when no Scalars remain. This decision can be made 
for each Chiral Multiplet in the theory, separately. Since the two 
Scalars in a Chiral Multiplet are not equivalent to each other (they 
differ in parity for example), there are really three different Ex-
change Transformations possible for each Chiral Multiplet. The Ex-
change Transformation is, in terms of its construction, a sort of 
Canonical Transformation, except that it takes one theory to a dif-
ferent theory for the Master Equation case. This is explained in 
Section 14 below.

The Half-Chiral Multiplets are useful for the spontaneous break-
ing of Gauge symmetry. However, some of the mass degeneracy 
survives for the Gauge/Higgs sector, as will be shown in [34]. The 
Un-Chiral Multiplets are useful to make an Action with no Scalars, 
and we will use them for the SSM in [34], to eliminate all the 
Squarks and Sleptons, leaving no mass degeneracy in that Matter 
sector. Clearly this is a form of ‘SUSY Charge Suppression’, which 
eliminates the SUSY charge in a particular sector, while preserving 
the Master Equation, which has a strong influence from SUSY.

3. BRST cohomology of the Chiral Multiplet

The BRST cohomology of the Chiral Multiplet is immense, but 
much of it has unsaturated Lorentz Spinor indices [18]. By and 
large, these uncontracted Lorentz indices have been taken to mean 
that ‘this cohomology cannot appear in a Lorentz invariant Action and 
so it is of no interest’. But this pessimistic view is not valid. The 
cohomology is very important, because it can only be relevant if 
one couples the unsaturated indices to something new, so that the 
cohomology can appear in an Action. The point is that this opens 
up a new view on SUSY. The simplest such new object is evidently 
a Chiral Dotted Spinor Superfield [15]. But then the question is 
whether such an object makes sense by itself, and the answer has 
been discouraging for a long time. The most obvious Action for 
the Chiral Dotted Spinor Superfield has higher derivatives and also 
tachyons. But recently some progress was made on this problem 
[15–17]. A tachyon free Action for the Irreducible Chiral Dotted 
Spinor Superfield was found and used in a free theory.3 These 
Exchange Transformations were found while trying to make that 
theory an interacting one. In fact they go beyond the results from 
the cohomology. We will return to the Majorana version of the Ir-
reducible Chiral Dotted Spinor Superfield in Section 8.

2 The original formulation of the Master Equation as an ‘antibracket’ was given by 
Zinn-Justin [26–31]. The Sources in the Master Equation are sometimes called ‘Anti-
fields’, following [35]. The author thinks that this term is misleading and confusing. 
The so-called ‘Antifields’ are very definitely not Fields – they are Sources. The term 
‘anti’ is also confusing, because the term ‘Antifield’ would naturally means the ‘Field 
that creates Antiparticles’. So here these Sources are called Zinn Sources. The Zinn 
Sources do not get integrated in the Feynman path integral, whereas Fields do get 
integrated, and so, of course, do their Complex Conjugates, the Antifields. We use 
the term ‘Zinn Action’ to denote the part of the Action that is at least linear in Zinn 
Sources. It is unphysical, but useful to keep track of the symmetry.

3 That progress was not very exciting however, because it dealt only with free 
theories. Moreover, efforts to make those theories interacting have been fraught 
with obstructions of the kind mentioned in [16]. However this changes if one inte-
grates the auxiliary W , as will be seen below.
4. The Chiral Scalar Superfield

We start with the well-known Chiral Multiplet theory. It has 
the total Action:

AChiral Total = AChiral Kinetic +AChiral Mass and Interaction

+AChiral Zinn (1)

where the free massless kinetic Action is:

AChiral Kinetic =
∫

d4x

{
F F − ψα∂αβ̇ψβ̇ + 1

2
∂αβ̇ A∂αβ̇ A

}
(2)

and the mass and interaction terms look like4:

AChiral Mass and Interaction

=
∫

d4x

{
m1 A F − 1

2
m1ψ

αψα + g1 A2 F − g1 Aψαψα + ∗
}

(3)

and the Zinn Action is:

AChiral Zinn =
∫

d4x

{
�

(
Cαψα + ξ · ∂ A

)
+ Y α

(
C

δ̇
∂αδ̇ A + Cα F + ξ · ∂ψα

)
(4)

+ 


(
C

β̇
∂αβ̇ψα + ξ · ∂ F

)
+ ∗

}
+ASUSY (5)

where we define the following rigid term (it is not integrated over 
spacetime):

ASUSY = −CαC
α̇

hαα̇ (6)

Here A is a complex Scalar Field, ψα is a two-component Weyl 
Spinor Field, and F is a complex auxiliary Scalar Field. The Zinn Ac-
tion has the form 

∫
d4x {�δA + Y δψ + 
δF + ∗}, which is a sum 

of Zinn Sources coupled to the SUSY variations of the Fields, aug-
mented with translations for reasons explained below.

In the above Cα is a Grassmann even, space–time constant Weyl 
Spinor ghost Field, and C α̇ is its complex conjugate. The object 
ξαα̇ is a Grassmann odd, space–time constant, vector ghost Field 
corresponding to the translation. We define

ξ · ∂ ≡ ξαα̇∂αα̇ (7)

The term hαα̇ in Equation (6) is a Grassmann even, spacetime con-
stant, vector field which is a Zinn source for the variation of ξαα̇ . 
Note that the term in Equation (6) is not integrated over spacetime, 
because this is a rigid theory. If this theory included Supergrav-
ity, the related term would be integrated over spacetime. These 
terms take account of the fact that the SUSY algebra closes onto a 
translation. The BRST ghost of that translation for rigid SUSY is the 
constant anticommuting vector ξαα̇ .

The SUSY invariance can be summarized by the fact that the 
above Action AChiral Total as defined by Equation (1) yields zero 
when we take the lowest order term in the 1PI Generating Func-
tional, G →AChiral Total, in the Master Equation:

PChiral[G] =
∫

d4x

{
δG
δA

δG
δ�

+ δG
δψα

δG
δY α

+ δG
δF

δG
δ


+ ∗
}

+ ∂G
∂hαα̇

∂G
∂ξαα̇

(8)

4 Here + ∗ means ‘add the Complex Conjugate of the previous terms’.
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For the case when we are using G → AChiral Total, the Master 
Equation term ∂G

∂ξαα̇ at the end of equation (8) consists of terms of 
the following form:

∂G
∂ξαα̇

≡ ∂AChiral Zinn

∂ξαα̇

=
∫

d4x
{
−� (∂αα̇ A) + Y δ

(
∂αβ̇ψδ

)
− 


(
∂αβ̇ F

)
+ ∗

}
(9)

For the case where G → AChiral Total in the Master Equation, the 
terms ∂G

∂hαα̇

∂G
∂ξαα̇ generate∫

d4x
{
�

(
CαC

α̇
∂αα̇ A

)
+ · · ·

}
(10)

which exactly cancel similar terms that arise from the variations 
in the first terms of Equation (8). For the case where G in Equa-
tion (8) is the full 1PI Functional G , this is trickier, and we address 
that issue below in section 5.

5. Some remarks about closing the algebra and Supergravity

The following terms must always be added to every Master 
Equation of rigid SUSY theories:

PSUSY[G] = ∂G
∂hαα̇

∂G
∂ξαα̇

= −CαC
α̇ ∂G

∂ξαα̇
≡ −CαC

α̇ ∂A
∂ξαα̇

(11)

Equation (11) summarizes the fact that two SUSY transforma-
tions with the SUSY parameter Cα act like a spacetime translation. 
One cannot implement the BRST method, and the Master Equation, 
unless one closes the algebra. We have noted in Equation (11) the 
fact that G is not going to get any contributions from loop level in 
this theory, and this is obvious from a look at the Action above.

There is a genuine issue here. Although there are identities 
which arise from this Master Equation that are true in perturba-
tion theory for this rigid SUSY theory, those that require terms that 
come from the quantum nature of ξ are not true, because ξ is not 
integrated in the Feynman path integral, although it is more like a 
Field than a Zinn Source. This problem can be resolved by embed-
ding the rigid theory in Supergravity, but of course that is quite 
complicated, and for present purposes we claim that it is unnec-
essary, because we are remaining at the tree level here (mostly). 
However when one is checking this theory at loop level, care will 
be needed for this issue.

6. The Chiral Scalar theory after integration of the auxiliary F

After integrating the F auxiliary Field in Section 4, and drop-
ping the Source 
 for its variation, one gets.5

AChiral F Int

=
∫

d4x

{
−ψα∂αβ̇ψβ̇ + 1

2
∂αβ̇ A∂αβ̇ A

+ �
(
Cαψα + ξ · ∂ A

)
(12)

+ Y α
(

C
α̇
∂αα̇ A + ξ · ∂ψα

)
+ �

(
C

α̇
ψα̇ + ξ · ∂ A

)
+ Y

α̇ (
Cα∂αα̇ A + ξ · ∂ψα̇

)
(13)

5 Insert the Action into a Feynman path integral with Sources for the Fields and 
derive the Master Equation in the usual way. Then complete the quadratic in F and 
F and perform the same exercise, after dropping the Source 
. Then shift the F
and integrate it, which just leaves a number. This leaves the terms and Zinn Action 
shown.
− 1

2
m1ψ

αψα − g1 Aψαψα − 1

2
m1ψ

α̇
ψα̇ − g1 Aψ

α̇
ψα̇ (14)

−
(

m1 A + g1 A
2 + Y

α̇
C α̇

)(
m1 A + g1 A2 + Y αCα

)}
(15)

which yields zero for the smaller Master Equation:

PChiral F Int[A]
=

∫
d4x

{
δA
δA

δA
δ�

+ δA
δψα̇

δA
δY

α̇
+ δA

δA

δA
δ�

+ δA
δψα

δA
δY α

}

+ ∂A
∂hαα̇

∂A
∂ξαα̇

(16)

This is the Master Equation for a Chiral Multiplet where the auxil-
iary F has been integrated out. We will see this form again below. 
The Zinn Sources Y appear quadratically, and they keep the invari-
ance intact. Now we shall put this derivation in a theorem that we 
will often need.

7. Theorem about auxiliary fields and Master Equations

The technique in the above example is frequently used in this 
paper, and it is worth making it into a theorem. We will use this 
theorem repeatedly in this paper and the paper [34].

Theorem. Given an Action A that satisfies a given Master Equation P , 
then:

1. Suppose that there is a Field F in that Action6 which has an alge-
braically invertible quadratic term, and a linear term7 in F , so that 
the total Action has the form:

A =
∫

d4x
{

mij F i F j + F i Gi + 
iδF i + etc.
}

+AOther Terms (17)

and that the Master Equation has the form

P[A] =
∫

d4x

(
δA
δ
i

δA
δF i

)
+POther Terms[A] (18)

2. Then we can integrate out the Field F and get a new Action and a 
new Master Equation as follows:
(a) remove the Zinn Source term 

∫
d4x 
iδF i from the Action (17), 

and
(b) remove the related term δA

δ
i

δA
δF i from the Master Equation (18),

(c) the new Action is

ANew =
∫

d4x
−1

4

{
(m−1)i j Gi G j

}
+AOther Terms (19)

(d) the new Action yields zero for the new Master Equation, which 
reduces to

PNew[A] = POther Terms[A] (20)

The proof is simple. Write the relevant terms in the Action (17)
in the form

A =
∫

d4x

{
mij

(
F i +

(
m−1

2
G

)i
)(

F j +
(

m−1

2
G

) j
)

− mij

(
m−1

2
G

)i (
m−1

2
G

) j
}

(21)

6 Here we assume that F is real. In Section 6, F was complex.
7 Auxiliary Fields generally satisfy this condition.
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Then shift and integrate the Field F i , after placing it in a Feynman 
path integral. This yields an irrelevant constant plus the second 
term. It is important that the Gi does not contain F i . But it can 
contain anything else including Zinn Sources.

The usual demonstration that the Master Equation yields zero 
goes through when this has been done, and no Zinn Source for 
the variation of F i is needed because F i is gone from the theory. 
This theorem is important because our Exchange Transformations 
here map Actions which have had their auxiliaries integrated, as 
we shall see.

8. The Majorana Irreducible Chiral Dotted Spinor Supermultiplet

Next we consider the simplest example of a Majorana Irre-
ducible Chiral Dotted Spinor Supermultiplet. It is the Majorana 
version of the Dirac type theory.8 We will use the notation of [15]. 
The Action is quite simple:

AMI = AMI Kinetic +AMI Zinn (22)

where

AMI Kinetic =
∫

d4x

{
− φα̇∂αα̇φ

α − 1

2
Wαα̇W αα̇

+ 1

2
G�G − 1√

2
η

(
φδ̇C δ̇ + φ

δ
Cδ

)}
(23)

In the above, G is a real Scalar Field, φα̇ is a two component com-
plex Weyl Spinor, Wμ is a real vector Field,9 and it turns out to be 
auxiliary (no kinetic term), η is a real Grassmann odd Antighost 
Scalar Field and Cα is again the Grassmann even space–time con-
stant Weyl Spinor ghost Field. The Zinn Action that we need is:

AMI Zinn =
∫

d4xZ α̇

(
−i

1√
2
∂αα̇GCα − Wαα̇Cα + ξ · ∂ φα̇

)

+ Z
α

(
i

1√
2
∂αα̇GC

α̇ − Wαα̇C
α̇ + ξ · ∂ φα

)

+ �αα̇

(√
2ηC α̇Cα − 1

2
∂
γ̇
α φγ̇ C α̇ − 1

2
∂
γ̇
α φα̇C γ̇

− 1

2
∂
γ
α̇ φγ Cα − 1

2
∂
γ
α̇ φαCγ + ξ · ∂ Wαα̇

)

+ ϒ

(
− i√

2
φβ Cβ + i√

2
φβ̇ C

β̇ + ξ · ∂G

)

+ J

(
1√
2
∂γ δ̇ W γ δ̇ + ξ · ∂η

)
+ASUSY (24)

Any of the three Actions in (22) yields zero when inserted into 
the following Master Equation for SUSY:

PMI[A] =
∫

d4x

{
δA
δZ α̇

δA
δφα̇

+ δA
δZ

α

δA
δφα

+ δA
δ�αα̇

δA
δWαα̇

+ δA
δϒ

δA
δG

+ δA
δ J

δA
δη

}
+ ∂A

∂hαα̇

∂A
∂ξαα̇

(25)

8 This could be derived in exactly the same way as in [15–17], using BRST recy-
cling, starting with the U(1) Gauge theory in this Majorana case. We start with this 
simplest case but the other (Dirac) case is also needed and it can be found in [40].

9 Wαα̇ = Wμσ
μ
αα̇ .
9. Integrate the auxiliary out of the Irreducible Chiral Dotted 
Spinor Supermultiplet

After [15–17] were written, the main problem for the new ver-
sion of the Irreducible Chiral Dotted Spinor Superfield was whether 
it could be put into an interacting Action. That seemed very diffi-
cult at first. However, it turns out that interactions can be gener-
ated easily if we first integrate the auxiliary vector Field Wαβ̇ out 
of the Action for the Majorana Irreducible Chiral Dotted Spinor Su-
perfield in Section 8. We will give the result of that a new name: 
the Half-Chiral Multiplet Action. We use that name for the Half-
Chiral Multiplet because it has half the Scalar degrees of freedom 
that a Chiral Multiplet has.

Once the integration of W is done, it is fairly easy to recognize 
that the resulting Half-Chiral Multiplet Action is really the result of 
an Exchange Transformation acting on a Chiral Multiplet that has 
had its auxiliary Field F integrated. This is the Exchange Trans-
formation that we will be using. Because it will turn out that this 
theory can be obtained from an Exchange Transformation acting on 
a Chiral Multiplet, we can couple the Chiral Multiplet using known 
methods, and then using the inverse Exchange Transformation, we 
can deduce the interactions of the Half-Chiral Multiplet.

10. The Majorana Half-Chiral Multiplet

Drop the � terms in the action in Equation (22) in Section 8, 
and integrate W out of the Action.10 This yields a closely related 
Action, which we will dignify by a new name, the Majorana Half-
Chiral Multiplet:

AMHC =
∫

d4x

{
−φα̇∂αα̇φ

α + 1

2
G�G − 1√

2
η

(
φδ̇C δ̇ + φ

δ
Cδ

)}

+
∫

d4x

{
Z α̇

(
−i

1√
2
∂αα̇GCα + ξ · ∂ φα̇

)

+ Z
α

(
i

1√
2
∂αα̇GC

α̇ + ξ · ∂ φα

)

+ ϒ

(
− i√

2
φβCβ + i√

2
φβ̇ C

β̇ + ξ · ∂G

)
+ Jξ · ∂η

}

+ 1

2

∫
d4x

{
Z α̇Cα + Z

α
C

α̇ + 1√
2
∂αα̇ J

}

×
{

Zα̇Cα + ZαC α̇ + 1√
2
∂αα̇ J

}
+ASUSY (26)

Now this yields zero for:

PMHC[A] =
∫

d4x

{
δA
δZ α̇

δA
δφα̇

+ δA
δZ

α

δA
δφα

+ δA
δϒ

δA
δG

+ δA
δ J

δA
δη

}

+ ∂A
∂hαα̇

∂A
∂ξαα̇

(27)

11. Remarkable symmetries of the Action AMHC

The above Action AMHC in Equation (26) has a remarkable 
symmetry which was not obvious before we integrated the aux-
iliary W . The Field η and the Source ϒ appear in similar ways. 

10 Insert the Action into a Feynman path integral with Sources for the Fields, and 
derive the Master Equation in the usual way. Then complete the quadratic in W
and perform the same exercise, while leaving its Source out, and shifting the W to 
integrate it. This leaves the terms and Zinn Action shown. This is an application of 
the theorem in Section 7.
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The term η
(

1√
2
φδCδ + 1√

2
φδ̇C

δ̇ + ξ · ∂ J

)
looks like a Zinn Source 

coupled to a variation, except that η is a Field. The Field G and the 
Source J also appear in similar ways. The term 1

2 J� J looks like a 
kinetic term for J , except that J is a Source.

12. New variables for the Majorana Half-Chiral Multiplet

This symmetry can be exploited with a Generating Functional 
for an Exchange Transformation of the Action and Master Equa-
tion. The new Action will yield zero for the new Master Equation. 
Our new Action will have ‘a new complex Field’ (S, S) and ‘a new 
complex Zinn Source’ (�, �). These will replace the ‘old real Fields’ 
(η, G) and the ‘old real Zinn Sources’ ( J , ϒ). We will choose a 
Generating Functional of the new Zinn Sources (�, �) and the old 
Field G and the old Zinn Source J .

GMHC =
∫

d4x

{
1√
2
�( J − iG) + 1√

2
�( J + iG)

}
(28)

and the Exchange Transformations are:

S = δG
δ�

= 1√
2
( J − iG); S = δG

δ�
= 1√

2
( J + iG); (29)

η = δG
δ J

= 1√
2

(
� + �

) ; ϒ = δG
δG

= 1√
2
(−i� + i�) (30)

These have the following inverses:

G = 1√
2
(i S − i S); J = 1√

2
(S + S);

� = 1√
2
(η + iϒ); � = 1√

2
(η − iϒ) (31)

13. New Action after Exchange Transformation: it looks like the 
Chiral Action

The new Action expressed in terms of the new variables is:

ACM =
∫

d4x
{
−φα̇∂αα̇φ

α + S�S + �
(
φδC δ + ξ · ∂ S

)
+ �

(
φδ̇C

δ̇ + ξ · ∂ S

)
+ Z α̇

(
∂αα̇ SCα + ξ · ∂φα̇

)
+ Z

α
(
∂αα̇ SC

α̇ + ξ · ∂φα

)
− Zα̇Cα ZαC

α̇
}

(32)

The new Master Equation is:

PCM[A] =
∫

d4x

{
δA
δZ α̇

δA
δφα̇

+ δA
δ�

δA
δS

+ ∗
}

+ ∂A
∂hαα̇

∂A
∂ξαα̇

(33)

The invariance of the new Action ACM is expressed by:

PCM[ACM] = 0 (34)

Note that the expressions in this Section are identical to the re-
sults for the Chiral Multiplet in Section 6 above, if one changes 
the names of the Fields and Zinn Sources, and sets m1 = g1 = 0 in 
Section 6. Here is the mapping from Section 6 to this Section 13.

A → S;� → �; Y α → Z
α;ψα → φα (35)

and their Complex Conjugates.
14. Poisson Brackets, Canonical Transformations, 
Exchange Transformations, and the Master Equation

The Master Equation [26–31] has the same form as a Poisson 
Bracket11 in classical mechanics [37,38]. There is no essential dis-
tinction between coordinates and momentum for classical mechan-
ics, but there is one for the Master Equation. The reason is that the 
Fields are quantized and the Zinn Sources are not. Nevertheless, 
Canonical Transformations play a role for both kinds of Poisson 
Brackets, because they leave the Poisson Bracket invariant [37,38]. 
For the Master Equation case we are calling these ‘Exchange Trans-
formations’, because they can map one action to another, which a 
Canonical Transformation would never do in Classical Mechanics. 
But it is important to remember that these Exchange Transfor-
mations must always yield an Action which yields zero for the 
resulting Master Equation, and that is because they are Canonical 
Transformations in their mathematical form.

15. Finding mass and interaction terms for the Half-Chiral 
Multiplet by starting with the known mass and interaction terms 
for the Chiral Multiplet

So now we see that the Half-Chiral Multiplet arises from the 
Chiral Multiplet through the Exchange Transformation above. This 
is useful because we know how to make masses and interactions 
for the Chiral Multiplet, and we did this in Section 6. Can we put 
those into a Chiral Multiplet and then use the Exchange Transfor-
mation to deduce what they look like for the Half-Chiral Multiplet 
from that? The answer is yes! Let us see how this works in de-
tail, by adding a mass term and a cubic interaction term to (32). 
This is a little tricky, because the two theories are related by an 
Exchange Transformation only when the auxiliaries in both theo-
ries have been integrated out of the theories. Also, the auxiliaries 
of the two theories are different – the Chiral Multiplet has a Scalar 
F and the Irreducible Chiral Dotted Spinor Superfield has a vector 
auxiliary Wαα̇ . When these auxiliaries are integrated then there is 
an Exchange Transformation that relates the two, and we call the 
Irreducible Chiral Dotted Spinor Superfield with its W auxiliary 
integrated, by the shorter and more descriptive name Half-Chiral 
Multiplet. The Chiral Multiplet with a mass term and an interac-
tion term has the following Action, once the auxiliary has been 
integrated:

ACM with Mass & Interaction

=
∫

d4x
{
−φα̇∂αα̇φ

α + S�S + �
(
φδC δ + ξ · ∂ S

)
+ �

(
φδ̇C

δ̇ + ξ · ∂ S

)
+ Z α̇

(
∂αα̇ SCα + ξ · ∂φα̇

)
+ Z

α
(
∂αα̇ SC

α̇ + ξ · ∂φα

)

− (
1

2
m1 + g1 S)φα̇φα̇ − (

1

2
m1 + g1 S)φ

α
φα

−
(

m1 S + g1 S2 + Zα̇C
α̇
)(

m1 S + g1 S
2 + ZαCα

)}
(36)

We are using the notation in Section 13, rather than the nota-
tion in Sections 4 and 6. This is done to agree with the notation 
in [34].

11 The Master Equation is a Poisson Bracket, except that it uses Grassmann anti-
commuting quantities (these actually simplify things somewhat).
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16. The Half-Chiral Multiplet Action with mass and interaction

It is elementary to use the Exchange Transformation from Sec-
tion 12 on the expression in Section 15. The result is the Action 
for the massive interacting Majorana Half-Chiral Multiplet:

AMHC with Mass & Interaction

=
∫

d4x

{
−φα̇∂αα̇φ

α + 1√
2
( J − iG)� 1√

2
( J + iG)

+ 1√
2
(η − iϒ)

(
φδC δ + ξ · ∂ 1√

2
( J + iG)

)

+ 1√
2
(η + iϒ)

(
φδ̇C

δ̇ + ξ · ∂ 1√
2
( J − iG)

)

+ Zα̇

(
∂αα̇ 1√

2
( J − iG)Cα + ξ · ∂φα̇

)

+ Zα

(
∂αα̇ 1√

2
( J + iG)C α̇ + ξ · ∂φ

α
)

− (
1

2
m1 + g1

1√
2
( J − iG))φα̇φα̇

− (
1

2
m1 + g1

1√
2
( J + iG))φ

α
φα (37)

−
(

m1
1√
2
( J − iG) + g1

1

2
( J − iG)2 + Zα̇C

α̇
)

×
(

m1
1√
2
( J + iG) + g1

1

2
( J + iG)2 + ZαCα

)}
(38)

17. Details for the Majorana Half-Chiral Multiplet with mass, and 
the loss of the SUSY charge

Let us set g1 → 0 in Section 16. Then the expression in Sec-
tion 16 is the Half-Chiral Multiplet with just a Majorana mass 
term. The only difference from the massless case is:

AMHC with Mass =
∫

d4x {· · · (39)

− 1

2
m1φ

α̇φα̇ − 1

2
m1φ

α
φα −

(
m1

1√
2
( J − iG) + Zα̇Cα

)

×
(

m1
1√
2
( J + iG) + ZαC

α̇
)}

(40)

We see that indeed there is a mass term here for the Scalar, 
namely

AMHC with Mass =
∫

d4x

{
· · · − m2

1

2
( J 2 + G2)

}
(41)

But note that there is also a ‘mass’ term for the Zinn Source J in 
Equation (41), and then there are extra terms that are all in the 
Zinn Action

AMHC with Mass =
∫

d4x
{
· · · − (

Zα̇Cα
)(

ZαC
α̇
)

(42)

−
(

m1√
2
( J − iG)

)(
ZαC

α̇
)

− (
Zα̇Cα

)(
m1√

2
( J + iG)

)}
(43)

So here is what we have discovered: The Half-Chiral Multiplet 
Action has one Scalar G and a Majorana Spinor φ and also the 
Source J . When we generate the Half-Chiral Multiplet mass term 
from the massive Chiral Multiplet plus the Exchange Transforma-
tion, we get a massive Spinor and a massive Scalar G . We also get 
an object that looks like a mass term for J , but J is a Zinn Source.
Because this is all a result of the Exchange Transformation, we 
are guaranteed that it will satisfy the Half-Chiral Master Equation 
in Equation (27).

But just looking at it we can see that it describes a Multiplet of 
SUSY that has one Scalar and a Spinor – but this is clearly not a 
proper mass multiplet that forms a representation of the SUSY al-
gebra – that needs two Scalars and there is only one here. And yet 
there is some mass degeneracy here, as though the SUSY algebra 
is ‘half-present’.

And that is the essential point of this entire paper! The Ex-
change Transformation has enabled us to build a SUSY theory that 
does not have a nice conserved Noether Charge – the physical the-
ory here is not the proper one we would expect from a theory 
with a conserved Noether current – it has this Source J where the 
Scalar should be. And because of the Exchange Transformation, it 
has the right set of Zinn Source terms to satisfy the Half-Chiral 
Master Equation.

18. Details for the Half-Chiral Multiplet with mass and 
interactions

Now consider the case where g1 �= 0 in Section 16. The Ac-
tion there has both mass and interactions. Note the complicated 
way that the Zinn Source is intertwined with the Scalar Field. We 
could do the same with a Chiral Action that also includes any other 
kind of interactions, with Gauge, other Chiral Multiplets, even Su-
pergravity. We would end up with a lot of Zinn Source terms and 
an Action that only goes half-way towards a representation of the 
SUSY algebra.

The Action in Section 16 is probably the simplest possible Half-
Chiral massive interacting theory, and it would be worth while to 
examine its nilpotent BRST operator δBRST (this is the ‘square root’ 
of the Master Equation), and its one loop diagrams to get a feel for 
how this Half-Chiral Multiplet works at one loop.

These Half-Chiral Multiplets will be used in [34] for the Higgs 
Multiplets. We will use a Dirac Half-Chiral Multiplet and a Majo-
rana Half-Chiral Multiplet there.

19. Un-Chiral Multiplets

If we take the Exchange Transformation that goes all the way, 
to generate an Un-Chiral Multiplet, we get a theory with no Scalar 
and some interesting Zinn terms, and a mass just for the Spinor. 
That case is actually simpler than the above, and we write it down 
in Section 20. In that case the interaction term would just add to 
the Zinn Source sector, and the theory would still be a free massive 
theory. To get interactions there requires Gauge theory.

The Exchange Transformation can be applied twice, so that both 
Scalars are removed from the Lagrangian. The new Lagrangian 
gains two terms with Antighosts while the Fermions remain as 
quantized Fields. Start with the Chiral Multiplet with the Action 
in Equation (32). Now consider using an Exchange Transformation 
generated as follows. Instead of the Exchange Transformation in 
Section 12 we now note that the old ‘Fields’ (S, S) are conjugate to 
the old ‘Zinn Sources’ (�, �), and we want an Exchange Transfor-
mation that takes us to the new ‘Fields’ (η, η) which are conjugate 
to the new ‘Zinn Sources’ ( J , J). We choose a generating functional 
of the new Zinn Sources ( J , J) and the old ‘Zinn Sources’ (�, �). 
This is

GMUC =
∫

d4x
{
� J + � J

}
(44)

and we have

S → δG = J ; S → δG = J ; (45)

δ� δ�
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and

� = δG
δ J

→ η; � = δG
δ J

→ η; (46)

We get the following transformed Action:

AMUC =
∫

d4x

{
−φα̇∂αα̇φ

α + J� J

+ η
(
φδC δ + ξ · ∂ J

) + η

(
φδ̇C

δ̇ + ξ · ∂ J

)

+ Zα̇

(
∂αα̇ J Cα + ξ · ∂φα̇

)
+ Zα

(
∂αα̇ J C α̇ + ξ · ∂φ

α
)

− Zα̇Cα ZαC
α̇
}

(47)

which yields zero for the new Master Equation

PMUC[A] =
∫

d4x

{
δA
δZ α̇

δA
δφα̇

+ δA
δZ

α

δA
δφα

+ δA
δη

δA
δ J

+ δA
δ J

δA
δη

}

+ ∂A
∂hαα̇

∂A
∂ξαα̇

(48)

This looks very similar to (32), but the theory is not at all 
the same. The J are not quantized and the η are quantized. So 
the complex quantized Scalar Field (S, S) is gone from the theory 
along with its Zinn Source (�, �), while the quantized Fermion 
(φ, φ) remains, and the new Zinn Sources ( J , J) and quantized 
Antighosts (η, η) appear. We are assured that the new Action sat-
isfies the new Master Equation, because the old Action satisfied 
the old Master Equation.

This procedure does not correspond to any known starting Ac-
tion like the Half-Chiral Multiplet discussed above in section 10. 
Equation (47) is a new Action. We started with the Half-Chiral 
Multiplets found by BRST recycling, and then found the Ex-
change Transformations that took those theories to Chiral Mul-
tiplets. Now by generalizing those Exchange Transformations we 
have discovered new theories that have no physical Scalars at all, 
just physical Fermions.

20. Mass term for the Un-Chiral Multiplet

In Section 17 above, we discussed the mass term for the Half-
Chiral Multiplet. It has a mass term that only goes half-way to-
wards that of a Chiral Multiplet. Now let us start again with 
the Chiral Multiplet with the Action in Equation (32), with a 
mass term, so that we get Equation (36), and then use the Ex-
change Transformation in Section 19 on Equation (36). This yields 
the following Action (we are setting g1 → 0):

AMajorana UnChiral Massive

=
∫

d4x
{
−φα̇∂αα̇φ

α + J� J + η
(
φδC δ + ξ · ∂ J

)
+ η

(
φδ̇C

δ̇ + ξ · ∂ J

)

+ Zα̇

(
∂αα̇ J Cα + ξ · ∂φα̇

)
+ Zα

(
∂αα̇ J C α̇ + ξ · ∂φ

α
)

− m1
1

2
φα̇φα̇ − m1

1

2
φ

α
φα

− (
m1 J + Zα̇Cα

)(
m1 J + ZαC

α̇
)}

(49)

The Scalar Mass terms S
(� − m1m1

)
S in Equation (36) have be-

come the Zinn Source term J
(� − m1m1

)
J in Equation (49). So 
Equation (49) is an Action which has a Fermionic Mass term and 
no Scalars. Note that it is quite a lot simpler than the Half-Chiral 
Multiplet. We are guaranteed that it will satisfy the appropriate 
Master Equation for the Un-Chiral Multiplet, and so SUSY is still 
preserved. But the SUSY Charge has been suppressed in this Un-
Chiral Multiplet Quantum Field theory.

It is clear that this is not a representation of the SUSY algebra 
on the physical states.

This is the kind of SUSY multiplet that we will use for the 
Quarks and Leptons in [34], except that we need to have the Dirac 
version for that. A similar exercise to the above would show that 
there is only a massive Fermion left in the Dirac Unchiral Multi-
plet.

21. Conclusion

In this paper we have shown that, for any chosen Chiral Multi-
plet, one can easily derive and write down three more theories.12

The chosen Chiral Multiplet can be coupled to SUSY Gauge theory 
and other Chiral Multiplets, and the interactions of the new the-
ories follow directly and simply from those interactions. But the 
three new Actions are quite different in their behaviour from the 
original chosen one. This can be done for each Chiral Multiplet in 
the theory independently.

It is in the Chiral form that it is easy to write down the cou-
plings. Then one simply implements the appropriate set of Ex-
change Transformations, which result in a new Action and a new 
Master Equation. The new Action yields zero for the new Master 
Equation. This Exchange Transformation takes all or part of the 
Scalar Fields S and replaces them with Zinn Sources J , and also 
takes the related Zinn Sources � and replaces them with Antighost 
Fields η. These Exchange Transformations are closely related to 
Canonical Transformations, as is explained in Section 14.

These new Actions were discovered by generating the Irre-
ducible Chiral Dotted Spinor Superfield in [15], in the hope of 
coupling the BRST cohomology of the Chiral Multiplet to it. Once 
the auxiliary W was integrated in that theory, it was noticed 
that the resulting Half-Chiral Action could be generated by an Ex-
change Transformation from a Chiral Action that has its auxiliary 
F integrated. So, in a sense, that coupling of the cohomology has 
now been done, and the result is that we have discovered new 
ways to realize SUSY in local Actions, and those new Half-Chiral 
Actions can be coupled to Gauge theory and each other (and even 
Supergravity).

But the result here goes farther, because we also have dis-
covered Un-Chiral Multiplets that do not arise by way of the Ir-
reducible Chiral Dotted Spinor Superfield of [15]. The Un-Chiral 
Multiplet Action arises simply by taking the full version of the Ex-
change Transformation that was suggested by the existence of the 
Half-Chiral Multiplet.

Supercharges are not constructible in the new theories (except 
in some sectors), because when the Zinn Sources become involved, 
no divergenceless SUSY current exists. This happens because the 
Zinn sources are not quantized, and they do not satisfy Equations 
of Motion.

In Sections 15, 16 and 17 we set out the details for the massive 
Half-Chiral Multiplet case, which shows explicitly how the effect 
of a SUSY Charge acts like it is ‘half-present’. In Section 18 we 
observed the interactions of the Half-Chiral Multiplet.

Section 20 discusses mass for the Un-Chiral Multiplet case and 
shows that the SUSY Charge is completely gone there. In that case 

12 For a Dirac Multiplet this is limited by the conserved global U(1) phase, which 
must be conserved.
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we need to couple the theory to SUSY Gauge Theory to get an 
interaction.

The result is that these new theories, when calculated in the 
renormalized Feynman expansion, iteratively, loop by loop, should 
be as valid as is the original purely Chiral theory [41]. But the 
theories are very different, of course, and the Half-Chiral and Un-
Chiral theories are not subject to the SUSY algebra, as described in 
[36], because they do not have conserved SUSY Charges. They are 
lacking in Scalar Fields compared to Chiral Multiplets. The Dirac 
case [40] is needed to describe Leptons and Quarks, since they 
have conserved Baryon and Lepton numbers. It is not very differ-
ent from the Majorana case which is discussed above. We shall use 
some of these new Half-Chiral Multiplets and Un-Chiral Multiplets, 
coupled to SUSY Gauge theory and to each other, to write down a 
new kind of SSM, in [34].
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