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0. Introduction 

A significant par t  of  p o s t - F n e d b e r g  recurs lon theory  has been  successfully 

gene rahzed  to recurs ion theory  on  an  admissible ordinal  a.  Such a recursion 

theory  has  two proper t i es  seemingly impor t an t  for priori ty a rguments  it ~s an  

"infinite '" theory  and  its domain  is recurstvely wel lordered Krelsel ([5], pp 

172-173)  has  asked (with some p e r s i s t e n c e - - s e e  his reviews of [6] and  [13] in 

Zen t r a lb l a t t  1973 and  1976 respectively) w he t he r  these  proper t ies  are sigmficant 
for the  existence of incomparab le  r.e degrees  Recent ly  Sy F r i edman  [4] has  

cons idered  the  first p roper ty  by d o m g  recurs ion theory  over  an  arbi t rary  hmi t  

ordinal  /3, thus  d ropping  the  adm~sslbthty cr i ter ion His mare  resul t  ~s the  existence 
for  m a n y / 3  of a pai r  of sets 2~ over  L(/3) such tha t  ne i the r  i s /3 - recurswe  m the  
o t h e r  We,  on  the  o the r  hand ,  are keeping  admissibili ty while relaxing the  

r equ i r emen t  of a wel lordered  domain  to tha t  of a p rewel lo rdered  domain ,  tha t  is 

we are essentmlly s tudying recurs~on theory  over  resolvable  admlss~ble sets w~th 
u re lement s  

However ,  r a the r  than  restr ic t ing our  a t tenUon to re,,olvable admissible  sets, ou r  

approach  m this pape r  ~s axiomatic  S ta r tmg wi th  a p~ecornputat~on theory  in the  

sense  of Moschovakls  [6] with  a computab le  select ion opera to r ,  we add  two 

axioms to ob ta in  an  infinite computa t ion  theory  T h e  irst asserts  the  existence of 

a p rewel lo rder  whose mitml segment~ are uniformly "finite ", while the  second 
msures  tha t  all " c o m p u t a U o n s "  can be  effectwely genera ted  and  tha t  th~s genera-  

t ion is ma tched  up  with the  complexi ty  of the  domain  as expressed by the  

prewel lo rder  The  class of mfimte computaUon  theor ies  coincides with the  class of 
F r iedberg  theor ies  as def ined in [6] 

It  is doubtful  (see Simpson [14]) w he t he r  the  axioms for  an mfimte theory  are 

qui te  adequa te  for  gwmg a poslt tve solut ion to Post ' s  p rob lem.  ~ A trivml but  

* This paper is based on the author's Ph D thesis (Toronto 1973) written under the dlrectton of 
Professor D A Clarke 

~I- Harrmgton has recently shown the following Con(ZF)~Con(ZFC+Post's problem has a 
negatwe solutton tot H(l~a)=/X tTC(X)I< S2}) It is sull open (not assuming A * i) whether there is a 
resolvable admissible set with a negattve solutton to Post's problem 
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smmficant observanon for o~-recurston theory (or for any recur',lvely wel lordered 

mfimte lhemy) is that  any c~-r e set bounded strictly below cU, the prolec tum ot 

c~. is ~-f imte We call an mfimte computa tmn theo ly  adequate  whenever  the 

analogous theorem holds For adequate  theorms we prove a strong form of Sacks' 

spht tmg theorem [7.10].  thereby support ing the conjecture  that  any of the usual 

finite lnjur~ p rmnty  arguments  can be carned  out for such theories 
In Section 1 we g~ve the axmms for an mfimte computat ion theory and prove 

home elementary results Secnon 2 introduces dfl terent notmns  of relanve com- 

putability and g|xes sufficient cond| t lons  m terms of regularity and hyperregularl ty 

fo~ the notions to coincide Shore 's  blocking :echmque using v functmns is 

developed m Section 3 while the proof of the spht tmg theorem,  along with some 

ol the usual corollarms, Is g~ven in Section 4 

S G Simpson (see [14] and [13]) hat  independent ly  studmd lecmslon  theory 

over resolvable admlssflJle sets In pamcular ,  he was the f r q  to note that Shore 's  

blocking technique could be used to obtain a version o! the Fr iedberg-Muchmk 

theorem for what he calls thin admissible sets 

1o Infinite computation theories 

We will be deahng with partml multlvalued functions and functlonals on some 

set U An n-ary partial multlvalued function is just an n +  1-ary relation 

Fo' lowmg the notat ion of MoschovaMs [6] we mean by f(:~), , x,, ) -+ z that  the 

paJtlal multlvalued function f hat  z at one of Its values at ~ .  , : , . .  l e 

(x L. . ~,,, z) is an e lement  of the defining relation for f In case / it smglevalued 

we may without confusmn write /(~1, . x ,  ) = z  ior f(~l,  , ~,,)---,z In this 

paper partial multlvalued functzons on U will simply be called f t tncuons,  wherea t  

0 total smglevalued function will be called a mapping 

The notation used should easily be unders tood from the context  keeping the 

lollo~xmg loosely defined conventions in mind Funcnons  on U are denoted  by 

t g .h.  , p, q. r, ~, 13 a~e reserved fm ordlnaN and i , / .  m. n tor e lements  In 

N Remaining lower case latin and greek letters (except A ix and v wtuch will 

haxc their usual meanings) denote  e lements  of U 

A computatmtt  dom a in  is a structure ~2| = ( U ,  N, s, M. K. L) where U is a set, 

N _c= U. (N, s I N) is isomorphic to the natural numbers  with the successo~ func- 

tl(m, M is a pairing function and K and L are reverses to M The latter me 'ms 

that fl M ( x , v ) = z ,  then K ( z l = x  and L ( z ) = v  From M , K  and 1. we detine the 

tuphng tumA,'on ( ) and its tth reverse ( ), m the usual fashzon 

A set (-) c ~_j { U" n/> 2} is called a (omlnt tat lon set on ?1 For a computat ion set 

6) ,~c deline he relation 

{e}~'.){x)~ z 1It l h ( x = n  & (e x, z l e O  

where Ih(x) denotes  the length of the sequence x Thus {e}'/) defines an n-ary 
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function for each e ~ U and n c N An n-ary function I on U is O-computable if 
there  is c~_ U such that f={r}{'), m which case e is a O-tndex for f An  n-ary 

relation R on U is O-semt¢omputable (O-s c ) with a O-s  c lnde,~ e if R h the 

domain  of a O-computab le  function with O- index  s R is O-computable with 

O-index e m ease its characteristic mapping  CR IS O-computab le  with O- index  s 

Finally we say that a consistent  functional F(A, , fk, x), where  t, varies over  
n,-ary functions, is O-comptaable with O-mde,c 8 If 

Vel,  , ~'~, X. z(F({e, }~'.)', ,{ek}o, x) z 
k ~n ¢:>{6},., (e~. . , rk ,  x ) - ~  z) 

The first step m pu. tmg some structure on a eomputat ton set  O ~, to r eq n v e  O 

to be a p l * ( ' ( o n l p R | o l l o h  ~heory m the sense ot m o s c h o v a h s  For a p r e a s e  def inmon 

we refer to [6] Roughly sp~ aking, O ~s a precomputa t ton  theory ~f the constant  

mappings,  the ~dent~ty mapping,  M, K, L and s are O-computab le  Fur thermore  

the O-computable  tunct~ons must satisfy the usual closure and enumera t ion  

cond~tions m a umform way A basic fact of precomputat~on theories  ~s the second 

re~.urs~on theorem 

The existence of a O-computab le  se lecnon opera tor  ~s normally assumed m 

order  for the O-s c relations to behave mcely A selat,on operator for O IS a 

function q such that  (henceforth dropping ~ and O from {s}'~) whenexer  po%~ble) 

and 

V z ( q ( s )  ---, z : : > { r } ( z  1) ,~ ) 

where " ~ "' means "~s def ined"  Note that the existence of a selection opera to r  

imphes the existence of a uniform select~oh opera tor  That  ~s there  exists a 

O-computable  mapping p(n) such 'ha t  for each n e N, p(~l) is a O- index for an 

n-ary selecuon opera tor  q" The usual v notat ion for a umtorm selecuon opera to r  

will be u,,ed, namely 

uz(le}','.,' I(z. x ,~ ) = q"(e,x) 

For a precomputat~on theory O with a O-computable  selection opera tor ,  the 

O-s c relations arc closed under  &slunctsons and exlstent~al quantification and a 

relation ~s O-computable  ~ff ~t and ~ts complement  are O-s c Fur the rmore  

O-computable  functions can be defined by cases m a general way 

In t h s  setting one  can define a well behaved notion of "'fimte'" Following 

M o s c h o v a h s  we say that  a set K IS O-finite if the consistent  functional 

, 0  ,t 3 x c  K (l '(x)--,,)}, 
E K ( / ' ) ~ { 1  fl V ~ c : K ( / ( ~ , ) - - . I )  

is O-computable  A O-index for E& Is said to be a canomcal O-index for the 
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O-finite set K .The usual p rope rues  (see [6]) of a generahzed  not ion  of l%aite hold 

umformly 
Hawng  asserted the existence of a selecUon ope ra to r  it is too restr ict ive to 

r eqmre  6_) to be a s ingle-valued theory  as this would exclude some of the  in tended  

models  However  when  consider ing funct ions whose  values are (canonical  O-  
radices for" 6)-fimte sets, t hen  O is essentially s ingle-valued.  In the  l e m m a  s ta ted  

below let k~  deno te  the  6)-fimte set  with canomcal  6)-index rl m case ~ is such 

an index 

L e m m a  1.1. Suppose r ts a O-computable fimctton whose values are canomcal 

6)-mdwes such that Vx,~, "o(r(x) --~ ~ "& r(x)--~ rl ~ K~ = K , )  

Then there Is a 6)-computable mapping q obtained umformly from r such that 

Vx, n(r(x) --> n ~ K~ = K.,.~) 

We now hst two addi t ional  axioms making  6) into an infimte computa t ion  

theory  

A~tom 1 There  is a 6) -computable  prewel lorder  ~< on  U such tha t  m m a l  

segments  of ~< are umformly 6)-fimte 

G w e n  a prewe!lorder  < we let x <  y denote  ~ ( y  ~< ~) and  x ~ y deno te  x < y & 
y ~ n  

Definit ion 1.2. A (<-,_)-enumeration of a set W is a 6) -computable  mapp ing  horW ° 

(whose values are canonical  6)-radices for the 6)-fimte sets W " )  such that  

(1) r < ~  W" c_ W ~, 

(22) W =  t J { W  ~" ~rE U }  

Axiom 2 There  is a 6) -computable  mapp ing  p(n)  such tha t  for each n c N, p (n)  is 

a O- index for a (~<)-enumeratlon of the  set 

T , = { ( e , x , y )  { e } ( x ) - ~ y  & l h ( x ) = n }  

Defini t ion 1.3. Let  (9 be  a cGmputat lon set  over  a computaUon  domain  ~1[ (9 is 

an mfimte computation theory ff 

(l) O is a p recomputa t lon  theory  
(22) Equal , ty  on  U Is a 6) -computable  r e l auon  

(m) (9 has a computable  selecUon opera to r  

(w) Axlom 1 and Axiom 2 hold for some prewel lorder  ~< on  U 

A basic fact of mfimte recurs loa  theories,  e g recurs lon on  an  admissible 

ordinal  a, is tha t  computa t ions  can be coded effecuvely in to  the  domain  m such a 
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way tha t  the complexay  of the  domain  cor responds  to the  complexi ty  of the coded 

computaUons  It t he re to re  seems reasonable  to assert  the existence of a (9- 

computab le  par tml  o rde r  ~ whose initial segments  ,ue wel l - founded and um-  

formly ()-Iamte Here  we restrict  ourselves  to the case wh~ re ~ ~s a prewel lorder  

A x m m  2 then  s t ipulates  tha t  all " c o m p u t a t m n s "  {e}(x)-~  y can be effectwely 

genera ted  and  tha t  this gene ra tmn  is ma tched  up with the  coml:,lexity of the  
domain  Note  tha t  U ~s not  (9-fimte for an  mfimte c o m p u t a u o n  th ~ory 

Following the  no ta t ion  of Barwlse [1], let  ,~/~ be a resolvable  admissible set 
w~th u re lements  re la twe to a language L * = L ( ~ ,  ) By combimng  Mosehovakts" 

c h a r a c t e n z a t m n  theo re m  for Fr~edberg theor ies  with Gandy ' s  t h e o r e m  lo t  v 

mducUve def inmons  over  adnuss~blc se~, (see Barw~se [1] p 208),  ~t ~s easily 

verified that  s l .  consu tu tes  an mfimte c o m p u t a u o n  theory  
J Staw (unpubhshed~ h~ts shown the  converse  ot G a n d y ' s  t heo rem to be false 

for some t r ansmve  sets However ,  for resolvable  t r ansmve  s t ructures  M (closed 

under  pa~rmg and sat~stymg z~o-separaUon) the converse  ~ true,  ~ e for such J/ ,  ,9/ 
~s admissible lff every v mduct tve  o p e r a t o r  over  ~ has a v fixed point  Th~s 

result,  due to A Nyberg  [16], g~ves some lusU|leat |on for A x m m  1 

in the sequel 6) will always deno te  an mfimte c o m p u t a t m n  theory  ove~ some 

c o m p u t a u o n  domain  ~)! 

L e m m a  1.4. Suppose f is a @-computable flm¢ non Then there is a O-computable 
ftm~ tlon g obtained tmlformly lrom I such tLat dom g = dom ], g ~ 1, and for each 
O-fintte set K c dom f there ts a @-fintte set 1~ obtained umformly flora K and f 
such that g(K)~_ N ~ _ / ( K )  

Before  p l o c e c d m g  wsth the proof  we need  to in t roduce the  p . -ope ta tor  By 

I~zR(z,x) we mean  a funeUon whose  values for x are some minimal  z such that  

R(z, x) In part icular ,  ff R Is 6) computab le  we set 

I L z R ( z , x ) = v z ( R ( z , x )  & ( V y < z ) ~ R ( y , x ) )  

Proof  of L e m m a  1.4. Let  AcrW" be a (<~)-enumera t ion  ot T~ :: 

{ (e ,~ ,y )  { e } ( O - ~ y /  and  let h(~)=~cr[(3y<tyl ( (e .x ,y)~W~)]  where  e is a 

O- index  for ] W h e n e v e r  f ix )  is defined let  N, ={y  < h ( r )  (e, r, y)E W ~"'~} Note  

tha t  N, Is well-defined since h ( x ) - , t r  & h ( x ) - ~ ' ~ c r ~  it  follows f rom 

L e m m a  1 1 tha t  a canomcal  (9-index for N, is ob ta ined  umformly  and  slngle- 
valuedly t rom c and  ~ Let  g t x ) = v y ( ) ~ N , )  If @-finite K f  dora], let N =  
U~N,  ~ c K~ 

A n  lmmedmte  corol lary to L e m m a  1 4 ~s tb~ existence ot a ~select~on ope ra to r "  

which smgle-valuedly  chooses  a canomcal  @-n-de," for a n o n - e m p t y  subset  of a 

n o n - e m p t y  6)-s c set  It is such a "se lec t ion  opt . ;~tor" ,  r a the r  than the multi-  

valued one  wc assumed,  which is kJeeded for our  arg,Jwents In [3] Fens tad  gives 



62 V Stolwnlwrg-Hansen 

axioms for mfimte computa t ion  theor ies  which do not  assert  the  existence of a 

se lecnon opera tor ,  but where  the existence of a " s e l ecnon  o p e r a t o r "  as above  

nonetheless  Is a t heo rem ' l h u s  Fenstad may and  does restr ict  himself  to qng le -  

valued theories  

Defini t ion 1.5. A (~)-parametnzaUon ot O-s  c sets is a O-compu tab l e  mapp ing  

h~crW7 such that  
O) V~, "r, ~r(-c ~ o ' ©  W;  c_ WT), 

(n) for each O-s  c set W there  Is an e such t h a t W =  ~ { W ~  ~r~ U} 

Axiom 2 asserts the existence of a (~<)-parametnzat~on of O-s  c sets Cons~der- 

m g a  fixed (<~)-parametrizatlon, we let W~ deno te  (_J{W, ~ o-~ U}, Note  tha t  a 
O-s e lnuex for W, is ob ta ined  umformly  from e, usmg the  select ion ope ra to r  
Indices t rom a (~<)-parametnzanon can therefore  be  used m e , p h o t  de f imnons  of 

O-computabh  funcuons  

Defini t ion 1.6. (l) A tnolecmm into W is a total  O - com pu tab l e  t u a c n o n  p whose  

range IS a ~ubbet ot W such that  ff x # v then  p¢x)N p ( y ) =  ~ (Here  pOc) deno tes  

the set {z p ( ~ ) ~ z } )  
(n) O is prolectd)le into W ff the~e is a p ro jec t ion  into W 

L e m m a  1.7. tO Let W = le W, ~0}  fm a gwen (<~)-parametnzatton o~ O-s c sets 
Then 0 is prolecuble into W 

(n) Suppose p is a proFcmm Theq there ts a (<~)-paramemzanon of O-s  c sets 
smh that [e W ~ O } ~ _ r a n p  

Proof.  (l) Define 

f(x) = ~cr[(3e <~r)(x ~ W7 & (Vy ~ W'~ )(y = ~))] 

and let 

pl .~l= v~-[.,, ~ W[ ''~ 8.: ~Vy~ W~,"~ly-- ,c)] 

Then  p l~ clearly a p ro lecnon  into W 

Ill) I_et herrV'," be any (~<)-parametnzaUon of O-s,c sets Using L e m m a  t 4 we 
haw: a ~.olleetton ot O-hn l t e  sets K,, each o b t a m e d  uniformly from ~, such tha t  

0 / K , ~ p ( ~ )  Let  W = I J { K ,  t e U} and let ) t a W "  b e a ( ~ < ) - e n u m e r a n o n o f  W 
Define 

r i~ ,o . )={v . , [e (~K,]  ,f e ~ W " ,  
ff e~ W '~ 

Lett ing 

W ' / = { V ; o  ''~ if ff ecW",e~W '~ 

we obta in  a ( ~ ) - p a r a m e t n z a n o n  with the  r eqmred  proper ty  
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Due to the negative resul t  in Simpson [14] it is reasonable  to fo rmula te  yet  

a n o t h e r  condi t ion which isolates a subclass of infinite computa t ion  theor ies  for  

which the p r m n t y  a rgumen t  can be c a r h e d  ou t  T he  prob lem in the  general  case is 

tha t  lor  any (< . ) -pa rame tnza tmn  the set {e W~ ¢ 0 }  may be too " w i d e "  L e m m a  

1 7 reduces the  p rob lem of finding a " n a r r o w "  (~<)-parametnzat lon to tha t  of 

finding a " 'narrow" projec t ion  

A 6)-fimte set K is szid to be strongly 6)-finite if every 6)-s c subset  of K is 
O-f ini te  

Definition 1.8. A n  infinite computa t ion  theory  6) is said to be adequate  if 6) is 
prolect lblc  into the held ot a 6)-s c p rewel lo rder  whose initial segments  are 

umtormly  strongly O-fini te  

In the sequel wc assume tha t  the  prewel lorder  of Definit ion 1 8 Is <~ or  an 

mitml scgmcnt  ot ~ ,  tor  some ~ satisfying Axiom 1 and  Ax;om 2 The  modifica- 

t ions necessary lo t  the general  case are left to the  reader  

Let o be the unique o rde r -p rese rv ing  m ap  f rom U on to  the  ordinal  [~<1 Of t en  

we wdl bc ~mprecise and  write x when  we mean  O~ (~) Thus  x <  ~ where  0~ is an 

ordinal  and s tands for t) f x ) <  ~ T h r o u g h o u t  the  paper  we use the  following 

Convention. L ~ = { x ~- U x </3} 

Definition 1.9. (l) The prolectum (<~), deno t ed  l~ l* ,  is the least ordinal  /3 such 

that  6) is prolect~ble into L ~ 
(u) The  r e -prole¢tum (~<), deno ted  t~<1 +, is the  least ordinal  /3 for which there  

~s a 6)-s c non-6)-f imte  set  W_~L ~ 

Since the range  of a pro jec t ion  is a 6)-s c non-6)- f imte  set ff follows tha t  

[~[~ ~<]~<t* Thus,  modu lo  our  assumpt ion  af ter  Def inmon  l 8, 6) is adequa te  if 

and  only if I<~1' = I~<[ ~ = l i m i t  ordinal  

Every  computab ly  wel lordered  6) is adequa te  since for  such theor ies  every 
6)-s c non-6)-f imte  set is the  range  of an  mject ive  6) -computable  mapp ing  Any  

(cholceless) s tandard  model  of Z F  const i tu tes  a (non-wel lorderable)  adequa te  

theory  relatwe to the power  set ope ra to r  ~ We may also use u re lement s  to give 
some fur ther  examples  of non-wel lo rderab le  adequa te  theories .  Let  M - - ( M )  be  

an  mfimte s t ructure  ~ l t h o u t  re la t ions or  let  ~ : (M, < )  be a dense  h n e a r  o rde r -  
mg Then  H Y P , ,  the smallest  admissible set  above  M (defined in [1]), as well 

as H Y P ( H Y P , ) ,  HYP(HYP(HYPI~))  and  so on, can be  shown to be adequa t e  

2. Relative computa'~bility 

Equiva len t  no tmns  of T u r m g  reduc~bflity lo r  ordinary  recursmn theory  become  

dist inct  when  consider ing recurslon theory  on  an  arbi t rary  admissible ordinal  c~. 

As Krelsel [5] emphasizes ,  the  d l t te ren t  not ions  tall into essentially two 
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categories those concerned with computabili ty and those concerned  with defina- 

bility Below, a notion flora each will be defined (along with some auxihary 

nohons) corresponding to ~<,, and "~-., lor a - recurs ion  themy  We will then show 

that, as in the case of a - r e c m s l o n  theory, the notions agree on regular hyperregu-  

lar sets 

By an enumeration o] O-fimte sets we mean a O-computab le  mapping ~.~Ke 

wJth the p ioper t¢  that  for each O-fimte set K there is ~: such that  K = Ke Such an 

enumerat ion al.¢ays exists since every O-hmte  set is W, ~ for some e and a" An 

enumerat ion can of course be chosen w~th somewhat  care, e g we may reqmre  

K~GL a 

Definition 2.1. Let A and B bc ~ets, ] a tunction and A{KL a fixed enumera t ion  

ol O-fimte sets 

(i) ~ is weakly O-~omputable m B (denoted f ~  B) if there is a O-s e set W 

such that for all x, y, 

t(x)--..y<::>=lF~,'q((x.,,,,f,.~)c W & K~ ~ B  & K,~NB=~) 

A is weakly O-computable  in B (A~<,,B) in case ¢,x~<,,B 

(n) A is O-computable m B (denoted A ~ B )  f f t h e r e  is a O - s e  set W s u c h  

that for all 3", ,3 

K.~cA & K a n A  =f)<=>:lF..n((3",8,~,~l)eW & Kt~_B & K,~C'IB=O) 

Fhe defin tlon,, are independent  ot the pamcula r  enumeranon  of O-fimte 

,,et, We d e f n e  the upper semMattme of degrees m the usual way using the 

transitive redumbihty -< A = B denotes  A <--B & B < A The loin of deg(A)  and 

deg(B),  d e g ( A / v d e g ( B ) ,  is d e g ( A ~ B }  where 

A @ B = [ ( v .  0) ~cA}U{( -~ . I )  ~ c B }  

The notions of weakly O-s ( n, and O-~ ( m me easily abstracted f rom 0) and 

(n) o l D e f i n m o n 2  I ~ h u s A  I s O - s c  m B  l t t h e r e l s a O - s c  set W such that for 
each 3' 

K.,c_AC=>3~,'q((.y ~ , .o )cW & K~c_B & K~,NB=~)) 

The sets weakly O-s c m B are enumera ted  by putt ing 

Wl '={~ 3 ¢ , q I ( ~ . ~ , . ) ~ W ,  & K~_~B & K, nB=¢)}  

It follows m,nedmte ly  trom the def inmons that a set is (weakly) O-computab le  

m B lfl both it and its complement  ale (weakly) O-s c m B, and that a set v, 

weakly O-s c m B lit it ~s the domain ol a tuncnon weakly O-computab le  m B 

To detmc a reductbfllty notion c o n e s p n n d m g  to definability is te~.hmcally some 

what more complicated From an infinite theory O and a set B c_c_ U we construct  a 

new theory O[B] and say that f~<aB ff f is O[B]-computab le  In ad d mo n  to the 
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obvious reqmrement  that O[B]  should have the usual closure and enumerat ion 
properues,  I e that 19[B] should be o p lccomputanon  theory, we want B to be 
19[B]-computable, t9 ~ 19[B] (~< ts the relatmn between precomputat lon theorms 
gwen m [6]), and quantification over  mmal  segments of < to be O[B]-  
computable  The latter means that the tunctmnal E should be ~)[B]-computable 
where 

E~(f,z)__+{~ ,f 3x<z(f(x)--~O), 
ff Vx <z(1(x)---~ 1) 

Fur thermore  19[B] should have a computable  selectmn opera tor  m order  for the 
19[B]-s c relatmns and 19[B]-fin|te sets to behave properly 

The theory 19[B] will be the least fixed point of an mductwe opera tor  F defined 
by clauses 0 -VI I I  Clause 0 introduces the charactensuc tunchon of B and clause 
I makes 19<~19[B] using Axmm 2 for 19 Clauses I I -VI  correspond to clauses 
IX ' -XI I I '  in 16] lqnally, clauses VII  and VII I  introduce the functmnal E" and a 

selectmn operator  respectwely Hawng already opted tor multi-valued theorms we 
make the selection opera tor  take all ~ts possible values 

The /3-th i teratmn of F is defined as ~[B]-:-F(O-~[B]) where O" ~[B]--  
U{19~[B] 3'</3} Thus the least hxed point of 1" is O [ B ] =  U ~ & ' [ B ]  

There  is no need to gwe the detailed eonstructmn We only note that all clauses 
have the tol lowmg ~mportant property A tuple (e, x, z) is added to 19~[B] only if 
~,x, z and (e,x, : )  are elements of L r~ For  (e,x, z)~196[B], ~et I,e,x, zlom =leas t  
ordinal 13 such that (e x, z ) e  19e[13] Using this norton of length of compmatlons,  
19[B] Is a computa tmn theory m the sense ot Moschovakls One  can show that 
19[B] is rather an mfimte theory or  a Spector theory (defined m [3] and [6]) 
depending on whether  U ss 19[B]-|nfin|te or  19[B]-fin|te 

In [9] Sacks defines a-recurs lon relatwe to a set B c_ a to be N~-recurslon on a 
relatwe to the structure (L(a, B), ~, B}, where Llc~, B) ~s the result ot relatwlzmg 
L(a)  to B by adding x ~ B to the atomic formulas We regard the theory 19[B] as 
the relatw~zanon of an mfimte theory {9 to a set B Suppose O ~s a formulatmn of 
a - recu:~mn theory Then one can show tt 'at  O[B] is an mfimte theory ~I a,ad only 
ff (L(a, B), ~ ,  B) is admmslble, m which case the notmns of O[B]-f in | te  and 

O[B]-s  c agree with a -B- f in i t e  and a - B - r  e 

Definition 2.2. (0 f<~aB if f is 19[B]-computable 
(n) A ~<aB If c,x IS 19[B]-computable 

Lennna 2.3. A <~aB if and only ,f O [ A ] ~ O [ B ]  

;£orollary. <~,~ ts transmve 

The proof of the lemma is standaed The reqmred mapping p is defined by 
cases using the second recurslon theorem for @[B] The "If"  dlrectton of 
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(e, x, z)~ O[A ]Cz>(p(e, n), x, z )~  O [ B ]  IS shown by Induction on tp(e, n), x, zl~.)~Ji. 
while the "on ly  if" direct ion ~s shown by m duc t m n  on le, x, zlola~ 

Using the  corollary we define d-degrees  by 

d -deg(A)  = {B A ~,~B & B -%,A} 

The d-degrees  form an upper  sem~-Iattme m the usual way 

Lemma 2,4. 14, ,  B =~. f <~a B 

Proof .  Let A.~K L be an e n u m e r a n o n  (m O) of O-f imte  sets It follows f rom the  

O[B]-computabf l l ty  of E "  and O ~< O[B] tha t  K, c_ B and  K., fi B = 0 are O[B]- 
computable  re lauons  Supr)ose ] ~<,, B usmg W. i e .  

f(x)--~ vC:>3~, ~l((x. y, ~, ~)~ W & K~ c-_ B & K.  f i B  =O) 

Recalling that  v takes all its possible values nn O[B] we have 

] l x ) = ( v v [ ( x , ( v I l , ( y ) z , ( y h ) e W  & K,,)c:_-B & K .... f i B  ~fl])t 

From the lemma wc conclude that  A ~B:=),A ~<.. B ~ A  <~aB None  ol the 
implicauons can be reversed since D m c o l l  [2] has shown that  ~<.. need  not be 

transltl~e even on  O-s c sets 
We now int roduce the  analogues ot two noUons due to Sacks [8] Recal l ing the 

definition ol WI~ ~ let 

"W.U = {~ =I,~,r)((x, t x , ~ ) ~ W ' / & K ~ c _ B & K , , A B = O ) }  

Definition 2.5. (t) A set B is regular :f B O K  is O-fini te  wheneve r  K is O-fini te  

in) A set B is hype.egular if whene~m K ~_ WI ~ and  K is O - h m t c  then  there  ,s 
o" such that  K g " W  j} 

Hypel reguhmty  has the following eqmvalen t  formula t ion  in terms of funct ions  B 

is hyperregulal  if and only It wheneve r  ] 4, ,  B, K c_ dora ] and  K v, O-brute ,  then 
3z(~qx c K)(::I y < zJ(f(x)--~ y) 

Every O-compulab le  ~ct is hyperregular  (Lemma 1 4) and  evmy  hyper regular  

O - s o  set is regular (proved m [15]) A usetul character iza t ion of the  regular  

O-~ c ~ets is the lol lowmg Suppose AcrW '~ is a (~<)-enumerauon of a set  W Let  

V " =  W '~ - I J { W  ¢ r <o-} For  obvious  reasons  we say that  .ko-V" Is a dlslomt 
(~)-enumemtton of W Then  W Is regular  ff and  only zf 

(V/3 < t<.l )(3¢rt(V~ > a)(  V" N L ~ = 0) 

The  problem of non-regular i ty  can be avoided m the usual way when  s tudying 
O-s c degrees  lor  adequa te  theor ies  

Theorem 2.6. Suppose 0 ts an adequate theory Then for every O-s  c set B there I~ 
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a regular O - s c  set D such that B=-D D may be chosen such that 
V ~ y ~ x ) ( x 6 D ~ y ~ D )  

The theorem" is due to Sacks [8] for a-recurslon theory. Its proof (which we 
omit) in our  more general setting is modelled on Sacks' original proof  m [8] A 
proof of a weaker,  but for our  purposes sufficient, version ot Theorem 2 6 can be 
found in [15] 

Now we set out  to show that for any sets A and B , A < ~ B C ~ A  ~,~ B tf B is 
regular and hyperregular Given disjoint sets B~ and B~ we obtain a 

theory O[B~, B2] by al.termg clause 0 m the definmon of O[B] as tollows 

O' If (O, O), x, O. ((O, O), x, O) ~ L ~ & x c B ~ ,  

then ((0, 0), x, 0) c 0 t'[Bj, B~.t 

If (O,O),x, l, ((0, 0), x, l )  ~ L ~ & x6B~,  

then ((0,0), x, 1)~ O~[B~ B~_] 

Thus O[B]  = O[B. U-B] For each a, ~:, "q and m dehne 

'"H~'. = {(e, x, y) (e, x, y ) c  0"  ("'[KE. K.] ,  lh(x) = m} 

Lemma 2.7. '"H~n is O-fimte umforrnly m m, ~r, ~, rl 

Proof. "H'~n can be d e f n e d  by reduction on tr with respect to ~< considering all 
cases H: the definmon of O[K~, K . ]  

By an easy induction on tr we have 

Lemma  2.8. l f  (e,x,  y )~ 'H '~ ' , ,& Kc~_B & K~ N B  = 0 .  then (e.x.  y ) ~ O  ° (=)[B] 

l ' h e o r e m  2.9. Let B be a regular set Then (1)-(111) below are equwalent 
(i) B Is hyperregular, 

(11) O[B]  Is an mfimte theory, 
(111) Vf(~<-~,B ¢*f~dB)  

Proof .  0)::~(n) To  show O[B]  is an infimte theory it suffices to show Ot-~'[~]= 
O<I<I[B] Since 141 is a hmlt  ordinal we need only consider the ease of umversal 

quanuficatlon whose mduetwe clause ~s 

If (7, 0), x, ((7, 0), e, x, 1 ) e L  ~ & ( V y < x ) [ ( e , y .  1 ) ~ O  ~[B]], 

then ((7, 0). e, x, 1)~ O e [ B ]  

So suppose (e, y, 1)~ O<l~l[B] for each y < x  It follows from the regularity of B 

that for each y < x  there are or, .~, -q such that (e, y, 1)~ ~H~'~ where K~ ~_ B and 
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K . , N B = ( I  Letting 

W " = l ( V . ¢ , ' 0 ) e  L" @.V, I )¢ 'H ' : . .} ,  

flus can be reformulated as L" c W x where Aerl,V'" ~s a (~) -enumeraUon ot W By 

the hypenegu lan ty  of B, L" ~ ' W  n for some ~- But then (e, V, 1)~ O"'~'~[B] for 

each v<:'~ by I_emma 2 8, and hence ((7, 0), e, x, 1)¢O*-I~lrB] 

( m ~ ( m )  Suppose f ,s O[B]-computab le  w~th a O[B] -mdex  ~ Then by (n), 

Lemma 2 8 and the regularity of B, 

fix) ~ v ~=~¢J < [~<](It, x, v t e O~[B]) 

¢:~,~o-,~.n((e x ,:)~'"H~'~, & Ktc_B 8. K , , N B = ~ )  

It follows that ] ~<,, B 

I m ) ~ l l )  Assume (m) Then e~ery O [ B ] - s c  set has a ( ~ ) - e n u m e r a n o n  m 

O[B] For suppose V is O[B]-s  c Then V = W"  tor some O-s  e W by (m) Put 

V ' ~ = { ~ < c r  3 ~ , ' O < ~ ( ( x  ~_.rt)eW '~ & K ~ _ B  & K,,NB=~I)}  

Then A3V '* ~s a (~<)-enumeraUon m O[B] of V It follows that U ts O[B]-mfim~e 

(,,nd m fact that O[B]  is an mtimte theory) Suppose a (-)-fimte set K _~ IV~ ~ L-~t 

~lt)= txcr[t ¢"W~*] Then for each ~ ¢ K  L l''~ is O[B]-finlte uniformly m ~ Thus 

M = U{[2 ~'' ~ c K / i s  O[B]-f imte and hence bounded by some o- Then K c_"W:', 

,o R ,s h~pelregular 

Note that regt0anty was not needed m going t rom (m) via (hi to (1) "lhe regular 

hyper~egular sets can be dlaraetenTed as those sets B for whlch every O[B]-f imte  

set is ~ - h m t e  Of course, whene~er  (m) holds for B t t  follows that A<~B¢~ 

A~,~R lust let 

Bctotc dehnmg the lump o1 a set we introduce yet anothel  notion ot 

ted ucfl~fiW' 

D e f i n i t i o n  2 . 1 0 .  A set  A ,s many-one teductble to a set /5, A ~, .B.  If there is a 

e-l-computable mapping A~H. whose values are (canomc,d O-md~ces for~ non- 

empty (-)-finttc sets such that 

(1) ~ A c ~ H ~ m B  

(n) ~- A ~ I t .  N B = ~  

Note that A ~ . ~ R ~ A ~ B  and A ~ m B  & B ~ C ~ A ~ . . C  

Following Shore [12] and Simpson [13] we want the lump o |  a set B to he a ~m 

complete set B'  weakly O-s c m B. J e whenever  A ts weakly O-s c m B, then 
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A ~+,, B'  Let t ing ;feW) be a (not necessan!y the)  s tandard  (<~)-parametnzaUon of 
O-s  c sets we make  the  fol lowing definition. 

Defini l lon 2+11 r h e  jump of a set  B is the set  

B'={e.3+.n((~,n)eW~ & K~cB & K~nB=0} 

Our  only requ+rement  on  the  (~<)-parametnzat ion used m the  def imnon  is that  

(!i0 m Proposl t )on 2 12 below must  hold  This  is certainly the  case for a 

(~<)-parametnzat~on ob ta ined  from the  s tandard  one  as m L e m m a  1 7 

Proposition 2.12. (I) B ~ B '  but not B' <~,~ B (so B < B') 

(i0 B-~DC~B'  ~ , . D '  

(m) D t s  weally O - s c  m B C : ; , D ~ B '  

(w) B' ts weakly 19-s c m B 

Thus  the lum , Is well defined and  increasing on  degrees  However ,  tt may not  

be  increasing ou d-degrees  as Is readily seen  by conmderlng a non-hype r rega l a r  

d -deg lee  This  is not  surpris ing since ~<d in general  is a much  s t ronger  r e d u o b t h t y  
not ion than  ~ The  p r o p e r  not ion  of " s em i - com pu t ab l e  m B'" lor  <~d is O[B] - s  c 

Thus  we want  the  j ump  (in this ~.onnection called d - lump)  ot a set B to be a 
comple te  tg[B]-~ c set 

Definition 2.13. The  d - j u m p  of a set  B is the  set 

B '+ =-{+,~. x)  {~:},.:,I. l(x) ,I, } 

It is easily verified tha t  the  analogue  for the d - jump  of Proposi t ion 2 12 holds 

Of course,  m czse B is regular  and  hyperregular ,  then  B ' ~ m B  d 

3. *2-functions 

It  is clear tha t  m case the  domain  of an mfimte computa t ion  theory  IS not  

computab ly  weIlordered,  one  canno t  consider  a unique r equ i r emen t  at  a gwen 

staue of a pr ior  ty cons t ruc t ion  The re  is thus  a need  to consider  a O-f imte  block 

of requi rements  at  each  stage T he  obvious  way to block r e q m r e m e n t s  is m terms 

of the levels of the  gwen prewel lo rder  let t ing each  level make  up  one  block This  

m e t h o d  suffices for @-fimte lnlury a rguments  where  e lements  in at  most  one  set 

of r equ i r emen t s  can be  in jured  more  t han  a fixed finite n u m b e r  of t imes In 
part icular ,  a weak  posmve  solut ion to Post ' s  p rob lem was ob ta ined  m [15] foi 

every adequa tc  theory  using this m e t h o d  
In proving Ihe sph t tmg  t heo r em  for an  admissible ordinal  ct, Shore  [11] 

deve loped  a te( :hmque of b locking r equ i r emen t s  into ~r2cf(c~) m a n y  a - f imte  sets 

S G Simpson [ 14] was the  first to  note  tha t  this t echn ique  could also be used to 
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prove a version o~. the F u c d b e r ,  Muchmk theertcm for  thin admissible sets Th~s 

led us to develop Sho~e's blocking t echmque  for adequa te  theor ies  6) 

A set A ts stud to be v and  H .  if ~t ts 6) -computable  A is S, , , t  ff 

x e AC=>~y({x. y )~  B) where  B ~s H..  and  A is 11,,+1 ff its c o m p l e m e n t  is v,,~ ~ A 

funcnon  f ~s S .  ff ~ts graph Gf ={(x, y~ f(x)--+ y} is v,, 
Let ~ be the class of funcnons  on  U satisfying 

f (~, ,  .~,, ,~,, '~--,z & p ~ , ,  ,x~, ,x,,)---.z'  

& x , ~ x ~ z ~ z '  

Funcuons  m ~v will be ~denttfied m the obvious  way w~th p a m a l  smgle-value~ 

funcuons  on  I.<1 Thus by a f uncnon  m j ,  fq v,, we will mte rchangeab ly  m e a n  a 

S.-funct~on m :/ '  or  a funcnon  on I~<l reduced by a S , , - functmn m 5 ~ I1 is shown 

m [15] that  1.<I ~s admissible and that  every 1.< ]-recurswe tuncUon ts m ~ v 

Let , ' (a ,  3" be a part tal  s ingle-valued funcuon  on  I<[ T h e n  hm,~ t"(m 3') = 8 fff 

R[3(Va >~[3)(l'(a. 3")= 8) For ] . f ' ~ 5  ° we say that  hm,, f'(o', x ) = f ( x )  ff thts ~s the  
case fm the reduced func tmns  on I.<l. where  = has ~ts usual mean ing  

Lemma 3.1. Let 6) be an adequate theory Suppose f E~Yf~X2 ts total (on [<~1) 
Then thel e Is a total 6)-~ omputable ]un~ tlon ] ' c ~ such tilat hm,~/ ' (m x ) = f ( x )  

ProoL Since G¢ is v e it follows that  ] <~.. A. say using W. where  A is O-s  c and  

by T h e o r e m  2 6) ~egular Let  Ao-A'" and  )to-W'" be (~<)-enumeranons  of A and  

W re spccme ly  Let N': be the  O-f imte  set of mlmmal  ~1 <o-  such that  

( 3 v < o - ) ( 3 x ' ~  v)((x', y. '~)~ W'" & K . . ~ A "  = 0 )  

Define 

rI ,,I: , ,,, W " t  ,f N': # ,  
else 

Then  f '  I,, total and ill J ' N v ~  

Suppose f(c~)=/~ (on [-~1) Choose  v.y such tha t  # (v)=c~, p . ( y ) = 1 3  and  
f~.x) ~ v, and choose rl such that  (v. y, "O)¢ W & K n N A  =9} By the  regular i ty  of 
A we can choose cr sufficmntly large so tha t  v < o - . ( v , y , - q > e W  '~ and  ( U -  

A ) N L" = ( U - A "  ) N L ~' Suppose r >~ o- T h e n  N~. # 0 since "O is a c an&da te  Let  
,~ e N .  There  is C ~ v and  y' such that  (C,  y', ,~) e W -  & Kz g'l A ~ = 0 Since ~ ~< ~1 

and twe may assume our  enumera t ion  of O- t imte  .~ets to satisty) Kt~_L ~, 

K, N A = 0 But then (x', y', ~) is a correct  computat , .on of ], i e f (x ' ) - - ,  y' Smce 
]e/J '  and ~ ' - -  ~. we must  have v ' -~y  Thus  h m , . / ' ( m  c~)=/3 

Defini t ion 3.2. The  V:-cof(cz) is the  least ordinal  /3 for which the re  is a f uncnon  
f e 5/~N Z :  with domain  /3 and  range  u n b o u n d e d  m 

L e m m a  3.3. Let 6) he an adequate theory Then Z2-cof ( l~<l)=Z:-cof  (!<-%1*) 
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Proof. Let k ~ ~' be a total  (-)-computable funct ion wllh ~ange in l~l ~ such tha t  

{/3.k(/3)<c~} ~s b o u n d e d  for each a < l < ~ [  * Such a k can bc defined f rom a 

(<~)-enumerat~on ot a O-s  c n o n - B - c o m p u t a b l e  set  W_~ U ~ ~ Suppose f ~ 5 ° ~ $2 

with domain  /3 ~s u n b o u n d e d  m t~<l T h e n  g (a  ~= k ( f ( a ) )  is an ~fq-w~ tunct~on 

u n b o u n d e d  in ~<1 ~ Thus  ~2-cof t [ ~  I*)~<.~._cof (l~< l) 

For  the converse  mequah ty  suppose f ¢  ¢~ ~ ~ with d o m a i n / 3  is u n b o u n d e d  m 

I ~1" Let  g (x) -- ttcr['qa" ~ cr ( / (x)  < k (~-))] T h e n  g ~ ~ and  g ~s u n b o u n d e d  m I <~ [ It 

follows from L e m m a  3 1 and some easily shown closure p roper t | e s  ol S,, and  II,, 
sets tha t  g ~s ~ 

By a (%)-seq'tenct o / O - s  c sets we m e a n  a 6) -computablc  mapp ing  r such that  

- v ~ W ~ , , , = W , , , ,  

L e m m a  3.4. Sul~pose a <~2-cof( l~< [) and ( i ,  x < a )  ts a (~)-sequente o] O-s c 
sets such that ]or each x <a ,  I, zs O-fin|re Then U{I ,  x <~,} ts O-~imte 

Proof .  Let  a be least for which such a sequence  exgsts whose  un ion  1~% not  

O-fini te  Let  W =  U{I~.  x <c~} and  let AcrW'" be a (<~)-enumeration of W Define 

g ( x ) = ~ ¢ r [ l ,  c W " ]  T h e n  g ~ f f 3 ~ _  and  g is defined o; ~, L '~ But g(L~l l~ 
u n b o u n d e d  in U since W is not  O-fimte.  l e S_~-col (1~<1)<~ 

Assume for the r emain ing  par t  of this sect ion that  O is an adequa te  theory  We 

arc going to divide the p ro lec tum L ~" q* Into _V2-cof (1<~[) many  O-f ini te  blocks M,,, 

each b ounded  strictly below I<~1 ~ Clearly ..V2-cof([-._<l)<~l~<l * Suppose  first tha t  
S2-cof(t~<t~=l~<[ ̂  In this case we let  M , ~ = M ~ = { x  ~ - a }  tor  each  a< l~<[  × 

Fhen each M.  is O-f imte  umfor lnly  m c~ 
Now suppose Y~-cot (1~[)<1~1" We are going t o  define O-f ini te  approx ima-  

t ions M~, ~ to our  blocks M,~ umtormly  f rom o- and  a Fu r the rmore  

~Va < Vz-col (l~<l))(3cr)(V.>.-~r)(V/3 < a ) ( M ~  = M~), 

e our  approx imat ion  will be " ' t ame"  

Let g S2-cof(l~l)---~l-~<} * be  a ~ N S z  tunct lon u n b o u n d e d  m I<~I *, and  let 

g 'E Y be O-compu tab l e  such tha t  hm,. g'(cr, a ) -~  g (a )  and  ran g'~_ L I" ~* These  
funct ions exist by L e m m a  :~ l and  k e m m a  3 3 Define 

h (~r. a )  = t~V[O4/3 < a)(g ' (o ' . /3)  < V)] 

and  put  M :  = {e h(tr. o~) ~< e < h(o', ot + 1)} Note  tha t  a canonical  O- index  for  M~ 

is ob ta ined  uniformly f rom c~ and cr and  tha t  each M',: Is b o u n d e d  strictly below 

I~1 ~ To show hezcrM',', is tame,  let 

lt~ ={~r (=17>cr)(g'(r , /3)J~ g'(cr,/3))} 

Fix c~ < 2r-co(([~<1) T h e n  (I~ /3 < c~ + 1) Is a (~<)-sequence of O-s  c sets such tha t  
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each I~ is O-f imte  Applying  L e m m a  3 4 we ob ta in  

:l~(V/3 <~ a )(Vr >~ ~)( g'(r,/3 ) ~ g'(a./3 )), 

I e 3~r(V/3 < a ) (V~  ~ ~ ) ( M ;  = M~) 
Let M~ = M~ for sufficmntly large ~r It remains  to  show 

U{M~ ~ < v_,-cof (l<l)} = U "l* 

Fix e<l~<[ * and choose least a for whmh e < h ( m a )  where  ~ is fixed and  
sufficmntly large Such a exists since g is u n b o u n d e d  m 14 [~ By the  definit ion 

of h there  Is / 3 < a  such tha t  e~<g ' (m/3 )  But  then  e < h ( m / 3 + l ) ,  so by the 

choice of a , a = ~ q + l  and  h(mf3)<~e 

4. The  splitting theorem 

For  parts  0) and (u) of our  mare theo rem we need assume O has a reasonable  

part ing functmn By this we mean  that  for each a < I-%< 1" there  is/3 < ['4 [~ such that  
L '~ x L  ° ={0¢, y) v, y e L ~ } c - L  ~ Surely any adequa te  O tha t  comes to mind  has a 

reasonable  pmrmg funct ion 

Theorem 4.1. Suppose 0 ts an adequate theory wtth a reasonable p a m n g  ¢ancnon 

Let C be a tegular O-s  c set and let D be a O-s  c non-O-computab le  set Then 

dzere are O-s c set~ A and B such that C = A U B, A n B = O, A <~ C, B ~ C and  

0) O [ A ]  and O [ B ]  are adequate theories (so m partwulal A and  B are 

hyperregular), 

(n) A '=-B'=-O' ,  

(m) D ~ , , A  and D ~ B  

Before proving r~heorem 4 1 we state some of its usual corollarle~ FIrM we 
need the tol lowmg ' . m m a  

L e n n n a  4.2. I f  A and B are d,slomt regular O-s  c sets, then d e g t A  U B ) =  

~eg (A)  v d e g  (B) and d-deg  (A U B)  = d-deg (A)  v d-deg (B)  

Proof .  Clearly A U B <~ A • B For the  converse we note  tha t  

U - A  = ( U - A U B ) U B  

Using the regulari ty of B we have 

K ~ f l A  =0¢~3"0(K.___ /~  & K v - K , ~ _ B  & K . N ( A U B ) = • ) ,  

e A < A U B The  proof  for d-degrees  does  not  use regular i ty  
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Let  a, b ,  c, d vary over  O-s  c degre  :s (O-s  c. d-degrees)  and  let  a '  deno te  the  

lump (the d - jump)  of a 

Corollary 4.3. (0 (Vc>O)(3a, b ) ( c = a v b  & a < c  & b < c  & a Ib), 

(n) (Vd/(O<d<O':ff=la(d la & a' =0')) 

The  proofs  are enure ly  s~mflar to  the  ones  found  in [10] and  [1 1], using the  
ma in  t h e o r e m  and  L e m m a  4 2 

Corollary 4.4. (i) :An, b ( O < a < b  & a' =b'), 

(n) 3a ,  b ( C < a < b  & a ' < b ' ) ,  

(in) :]a, b (a  [b & a ' = b  ' = ( a v b ) ' )  

(w) :Za, b(a Ib & a '=b '=avb)  

We now proceed  with the  proof  of T h e o r e m  4 1 Our  descr ip t ion of the  

cons t ruct ion  will be  m te rms  ot A only w h e n e v e r  the  descr ipt ion m terms ot B xs 

analogous  In case AorH" is a (~<)-enumeraUon of O-fini te  sets we use the  

no ta t ion  H '~ = I..J{H * ~-< o,} By T h e o r e m  2 6 we may assume D to be regular  

and  saUsfy Vx (Vy -- x)(x ~ D ~ y ~ D) Let  )ford ~ be  a ( ~ ) - e n u m e r a t l o n  of D and  

let  A~C'" be  a dtslomt (~<)-enumerat ion of C W e  are going to define (<~)- 
enumera t i ons  XcrA ~ and  X~rB" of A and  B mduc twely  on  the  prewel lo rder  ~< If 

~r ~ T, then  the  set  const ruct ions  at  s tage cr and  stage ~- will be  ~dent~cal though  the  
mdtces used may  differ A t  stage or, C '~ wdl be  added  to p reose ;y  one  of A <~ and  

B ' ~  Thus  A and  B will be  O-s  c ,  C = A LJ B and  A f3 B = O F u r t h e r m o r e  A ~ C 

and  B ~ C  For  let q(~)=txcr[(K~-C<'~)NC=O] T h e n  q < ~ C  and  q is total  by 

the  regulari ty of C Clearly K~ f qA  = 0 ¢ ~ K ~  n A q ' e ) = 0 ,  so A ~ C  
In order  to satisfy (0 and  (n) of the  t heo rem,  some care is needed  m choosing a 

(~<)-parametnzat lon AecrW7 of O-s  c sets, besides r e q u m n g  {e W~ ~ 0} ~- L I~- I* 

First  of all we wan t  AecrW~ to be  r e p e t m v e  m the  fol lowing sense  For  each 

a ,  e <1~<1 * there  ~s ~ <l~<l * and  o, such tha t  a < 8  and  V r  >¢r(W~ = W~) Then  we 
want  De f inmon  2 11 ot the  jump to make  sense  for  ou r  choice of (<~)- 

p a r a m e t n z a t l o n  Let  hecrV~ ~ be a ( ~ ) - p a r a m e t n z a t l o n  ob ta ined  as in L e m m a  1 7 

f rom the  s t andard  one,  such tha t  {e V, ~0}~_L I~1" Let  W T =  V~), T h e n  hecrW~ 

has  the  requi red  proper t ies  
T o  make  O [ A ]  and  O [ B ]  into adequa te  theories ,  the  cons t ruc t ion  is spht  !~1Io 

two cases 

Def in i t ion  4.5. Suppose  13 < [ E l .  T h e n  

cof (13) = ~a [ : : lO-compu tab le  q L ~ --~ L" such tha t  

Ve E L~ 3-¢ < 13(q- l(e) ~ L~)] 
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Re~ark  Smce /3<l~<l,q t(e) may be considered a to-finite set with an index 

obtained umformly from e Note that dom q = L t* 

If I~1~=1~1 or I~1'<1~1 and cot(].~-]~)<[-<[*,thcn at tempts  are made  to 

p lese lve  computat ions t ~ W: x tot ~ < ~ In case I.<1" <1~1 and cof (]~<[*) = [.<[*, 

addmonal at tempts are made to preserve computat ions  on mmal  segments  of 

Assume we have shown A~<,,0 ' A '  is weakly O - s c  m A by Proposi t ion 

2 12 By the hyperregularIty of A, A '  Is m fact O-s  c m A and hence O-s  c In 0' 

Let A" denote  the lump of A using the s tandard (~<)-paramemzatlon AeV~ Then 

K~ (3A" = 0¢~, -3 (3-q ~ t0 { V, e ~ Ka})(K,, f3 A = 0) 

<=~t(6)~ A" 

where ] is a tO-computable mapping giving a s tandard index for [,.J{V, e ~ / ~ }  
Thus ( U - A ' )  Is weakly tO-sc m t)' Iff ( U - A ' )  is O- , . c  in O' Both A'  and A" 

satisfy Proposition 2 12 (Ul) and (iv), so A'=-,,,A" Thus A" ~<,,0' since A '~ , , I ) ' ,  

and hence ( U - A ' )  is t o - s c  in O' But then (again usmg A' - - -mA')  ( U - A ' )  Is 

to-s e m t)' Since both A '  and its complement  are O-s  c m 0'. A'~<0 ' Thus It 

suffices to make A'<~,,0 ' In order  to satlsty (u) 

To make A'<~,~t) ', a t tempts  are made to preserve computat ions showing ,-6 A '  

l,y creating a rcqmrenaent for such a computat ion Then one can effectively from 

(l' look through the list of requi rements  to de termine  whether  or not e ~ A '  

Fmally, to insure that  for no e, ( U - D ) =  W~ a,  we use the usual approach of 

t)ymg to preserve computat ions x E W A for minimal x not In D In case ( U - D ) =  

W, x for some e we would eventually preserve a correct  computat ion for each 

~_ W~ ~, i e W~ would be to-s c Thus computat ions  x ~ W, a will eventually stop 

being preserved However  we need have O-fimte blocks of requirements  to settle 

down by some stage of the construction Towards  this end we use Shore 's  

technique of letting each block play the role of a single r eqmremen t  m trymg to 

preserve a computation x c W~ for x~ D and some e m the block considered 

Furthermore,  to avoid the problem of never fimshmg creating requi rements  with 

arguments from a lixed level of <., we utlhze the fact that  D was chosen to ha~c 

the property Vr(Vy - ~ )~ ~ 6 D ~  y ~ D) Thus there is a need to create a require-  

ment  preserving a con,p~ttatlon x ~ W; ~ only if no o ther  computat ion y c W A for 

~, ~ ~ is bemg preserved 

Let M',~ and M~ for cx <X2-cof  (1~<[) be the O-hmte  blocks described in Section 

3 Wc will create ~ets R ~,(R~,)  of requirements  for i <  3 RA (~ will insure that 

to[A] is adequate.  R,~ ~ that  A '  <~w0', and RA 2 that D ~,, A SA denotes  the set of 

A- requ i rements  (I e requirements  m I.J {RA, z<  3}) injured during the construc- 

tion R;~x, and S'; denote  the to-finite parts ot R,,,, and SA obta ined by stage cr 

Each requirement  will be of the form (e, x, F) where F is (a canonical O- index  

for) a O-finite set Such a requirement  i n  RA, IS called an e - A  requi rement  or 
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an  c~ - A r e q m r e m e n t  (at at) in case ~ ~ M .  (e ~ M~,) It  Is stud to have  a rgumen t  

x In case F f ) A ' "  = 0  it is stud to be acttve at tr, else ~t is macuve e ~ M ~  ~s an  

maettve a - A  reductton procedure at ~r m case there  IS an active e - A  requi re-  

m e n t  in R'~ ~ preserving a c o m p u t a u o n  x c W, A for some x ~ D" ,  i e there  Is 

( e , x , F ) c R ~ ' ~ - S ~ ' "  s.t 3 ~ - < o ' ( ( x , ~ I ) ~ W ' [ & K , , ~ F & x ~ D " )  

If no such r equ i r emen t  exists, t hen  e ~s an  active ot - A reductton procedure at er 

Let r [~<[ ~ V2-cof (1<1) be a O - c o m p u t a b l e  funct ion such tha t  

( 'qa < ~V=-cof (l~<l))(v/3)(~w > /3) ( r (v )  = ,~), 

where  a , /3  and  ~, vary over  I~< I T he  funct ion r indicates which par t  of the con-  

s t ruct ion to concern  ourselves wtth at  a given stage 

The construcnon at stage tr Suppose Her)=  a We describe only  the  construc-  

uon  of A - r c q m r e m e n t s ,  the cons t ruct ion  of B - r e q m r e m e n t s  be ing  analogous  

Fvs t  we const ruct  r e q m r e m e n t s  mak ing  O [ A ]  adequa te  The  cons t rucuon  ~s 

spht  into  two cases 

Case I I~<l* =1<  I or  cof (J<l*)<l~<l ~ <1~<1 ' Let  

K"  = {(e, x) ~- M~ x ( U { M ~  /3 ~< or}) (::l n < tr)((x, "0) ~ W~ 

--O}&(VWeRAo--SA )((W)l#13V(W)2#X)} & / C ~ n A  . . . . . . .  

Thus  ( E , x ) e K  ~" only  ff the re  is a computa t ion  x e  W~ ~ whmh is not  a l ready 
be ing  preserved  by an actwe r e q m r e m e n t  A r e q m r e m e n t  for each (e, x ) e  K "  pre-  

se rwng such a computa t ion  will be created.  Let t ing 

we put  

F;',= U{K,, (x,"0),~ W7 & ~nA~"- - :¢}  

R.I,,,, = R~'[,U{(e, x, F;",) (e, x}~ K"}- 

Case I t  Cof(l<~[*~=[~<l~<l~<[ Let  

K"  ={(e,  x ) ~  M~,×L l'I* (3"0 < t r ) ( (x ,  lq)c W ~ &  K~ f-)A ~ = 0 )  

& (Vw c RX','~--SA~)((W)t # e v(w)2  # x) 

& [(Vy < x ) ( B w  c R ~ I , - S Y C I ( ( w ) I  = 

& I w ) 2 = y ) v x e  U{M~ t3~a} ] }  

To show tha t  A is hyper regular  m this  case, we need  precerve  computa t ions  o n  
iniual  segments  of L 1-<1. In a d d m o n ,  m order  to  show O [ A ]  is adequa te ,  we ueed  

preserve  c o m p u t a u o n s  x ~ W~ for  x c- U{M~ /3 ~<a}. F~" ~ and  R~.,~ are def ined as 

in the  previous  case 
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Next we construct  r e q m r e m e n t s  making  A ' ¢ w O '  Let  

I ~ = {e E M~ (::l~q ~ W~)(K,~ N A <" = 0) 

& ( V w e  RX'~-Sk") ( (w)~  ~ e ) }  

Lett)ng G ' / =  I._J{K. ~]~ W~" & K,, fqA -'~ =0} we put  

n"~ ~ = R2'~ U { ( e ,  0 ,  G~") e e I"} 

Finally we construct  r equ i r emen t s  making  D ~,~A Let  H'" be the  O-f imte  set 
of minimal t such tha t  for each t '  ~ x ,  x ' ~  D "  and ~ ( : l ( e ,  "C, F ) 6  R T ( ~ - S , ~ " )  ( "e  

Is an active ce -  A r educnon  procedure  at ~r") Next  let 

N "  = {(v, "0 ~ M;~ × H . . . .  e Is ,m acnve  a - A reduct ion  p rocedure  at or'" 

& (::In < o~)((~. -q)¢ W;" & K.  A A <'" = 0)} 

Lct t ing F'~= U { K  n (::Ix a H")((x .  r t )~  W~ & K.  f"lA ~'" = 0)] we put  

R ~ : = R \ ' ~ U { ( e , x , E  ~) (e, t ) ~ N " }  

To establ ish our  p r io rmes  let 

J ' ~ = { ( e , x , F ) ~ R ' ~ - S - ~ ' "  F ~ C " # 0 }  where  R"x = U { R ' ' ,  1<3}  

J'L ~s the sct of acuve A - r e q m r e m e n t s  which would be mlured  m case C "  were 

added to A Using  the  no ta t ion  (H). ={(w), w e  H},  define f a ( t r ) =  

g/3 [(J',~x) ~ fq M~ ¢: 0] m case such /3 exists and  let f~ (or) = I~< [ o therwise  It ~s clear  
f rem the def inmon ot the blocks/k4~ (considering the  spht  m that  de f inmon)  tha t  

1~ and ~'~ may be v~ewed as O-compu tab l e  func tmns  If fA(Cr)~]B(~r),  let 

B = B - " U C  '~ and A " = A  .... I f  t~d~r)<fx(~r),  let A " = A ' " U C ' "  and B " =  
LE~ - ( r  

To complete  the construct ion,  let S'.'x ={(e  x, F ) e  R;'x F f q A " # O }  

L e m m a  4.6. Fol each c~ <v_~-cot (1~<1, tile set o f  a - A  a n d  a -  B reqmrements  ts 
O - ~ m t e  

Proof.  The  proof is by reduction on  a FIX a < S~-cof (I'4[) and  assume the  set of 

- A and /3 - B r e q m r e m c n t s  is O-fini te  for each /3 < c~ By the  t ameness  of our  
blocking there is a stage ~r,) by which all blocks M~ fo r /3  ~< a have set t led down 
Let 

I~ = {or> ~r , , C::l w ~ R "~x U R ~ - R~'~U R "~ ~ ) ( ( w h ~ MT~)} 

Then  1~ is O-finite for each 13 < a  by our  induct ion hypothes is  so U{lt~ /3 < a }  is 
O-finite by Lemma 3 4 Thus,  using the regulari ty of C, we can assert  the  

existence of oh ~tr,)  such that  all /3 - reqmrements  for 13 < a  have  been  crea ted  by 
trt and no such /3 - reqmrement  will mee t  C" for ~->~tr~ It follows tha t  fA(~-)>~a 
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and fu (~- )~a  for ~'~o-j and hence,  by our  p n o r m e s ,  no t ~ - A  reqmremen t  will 
be mlured beyond o-~ 

Now we show the existence of o- 2 ~ o-~ beyond winch no ~ -  A requi rement  m 
R,x ~ is created Let 

T~ = {~" c M,, (3o- ;.--. o-,)3w ~ RT, ~ - R~,"~)((wh -= ~ )} 

T~ is O-s  c and hence,  by the adequacy of 6), @-finite After  o-h only pe rmanen t  

a -  A r eqmremea t s  are created As is readily seen from the definition ot /".  at 

most  one  permanen t  e - r equ i remen t  is created for each e c M .  Thus the existence 
of  o-. follows from T~ being O-finite 

Next we show the existence of o-~ >~ (r e beyond which no o~- A requi rement  in 

R a .  is created We need consider two cases 

C a e c a  l~<l ~ = [ ~ [ o r  co|( l~[*)<l~<[*<l~<l The set 

( ( w ) l = e  & (w)_.= ~)} 

Is O-fimte by adequacy and the assumption on the pairing function The existence 

ot o-. then follows as above 

Ca~e B Cof([<.l~)=l~-.l '~<l~l Let 

T. = /e  ~-/VL (V-. < I.<I~)(3o-)(3,v ~ R'~ , , -  S~., ) 

( t w l ~ = e  & ( w l . = x ) }  

T .  Is the set of e ~ M ~  for which there  is a pe rmanen t  e - r e q m r e m e n t  with 

argument  x for each =_L h'l~ T,, is O-finite by adequacy and hence there  is 

o"  ~ o-2 by which stage all such requi rements  are created 

Suppose there Is 3,<1~<1 ~ such that  ff an ~ - A  requi rement  in R A .  Is created 

beyond tr" then Its argument  is less than 3, Then the existence of o-~ >~ o-" follows 

just as in the former  case. 

Suppose no such 3' exists For each ,¢ ~ k I" I~' let 

q(~) = ve[(3o- >~ ~r" ) (3w ~ R'~ . -  R ~.'~,) 

( ( w h = v  & ( w L . ~ x  & e~M,~)]  

Then q L ~" ~" --. M~ IS total, F~x e ~/V/~ If there is a pe rmanen t  e - r equ i r emen t  

w~th argument  ~ for each x ~ L  I'~', then q t ( e ) = 0  by our  c ' lol(e oI tr '  Else there  

is ~ <  i~-I "~ such that there is no pe rmanen t  e - r e q u l r e m e m  with argument  x If 
x ~ U [ M .  /3<~c~}, then q ~(e)c - lJ{M~ [3<~a}, else q 9 e ) ~ _ L %  ~ In ei ther  

case q t (e) is bounded  strictly below I~<1 ~ But then cof (1<~ I'*) < I~ <1", contradict ing 
our case hypothesl~ 

Finally we show the existence of o- ~> o-~ beyond which no a - A r e q m r e m e n t  m 

Ra  z is created First note that  an a -  A reduction procedure  mactive at some 

>~ o-~ will remain inactive forever,  since no e~ - A requi rement  is injured beyond  
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07 T h e  se t  o t  ~ - A  r e d u c t i o n  p r o c e d u r e s  wh i ch  b e c o m e  mact~ve b e y o n d  ¢r~ ~s 

O - s  c a n d  h e n c e  (9 - f imte  T h u s  thin e ts (ra .Lr,(r~ b e y o n d  w h i c h  no  c~ - A  r e d u c t i o n  

p r o c e d u r e  is m a d e  react ive  

S u p p o s e  ~ra ~ r < r  a n d  t(~r) -- t i t )  =-c¢ F r o m  t he  chozce o f  or4 It IS ea s i ly  s e e n  

t ha t  H " < ~ I F  ( l e  x ~ _ H "  & y~ H ¢ ~ . v )  M o r e o v m ,  l ! a n a - A  r e q u i r e m e n t  

is c r e a t e d  at ~r, t h e n  H "  < H ¢ It fo l lows  t ha t  e i t h e r  t he  se t  o f  oe - A r e q u i r e m e n t s  

Is O- f in i t e  o r  for  e a c h  ~ D  t h e i e  IS a p e r m a n e n t  e ~ - A  r e q m r e m e n t  (e,  x ' .  F )  

w h e r e  v ' ~  ~ a n d  e is a r e d u c t i o n  p r o c e d u r e  ac t ive  b e y o n d  ~-a If t h e  l a t t e r  w e r e  

t he  case  D w o u l d  be  6 ) - c o m p u t a b l e  c o n t r a r y  to o u r  h y p o t h e s i s  For  t h e n  

v~  D<:>(3r  >~ o-d(3  ~' -- x )(~<,~, x',  F)  ~ R;x 2 - S~x) 

( " e  ~s a n  a c t w e  a -  ,4 r e d u c t l o n  p r o t . c d u l e  at  g ) 

Th i s  c o m p l e t e s  t he  p r o o f  tha t  t he  se t  o f  a - A  r e q u i r e m e n t s  ~s (9 - f imte  U s i n g  

the  r egu la r i t y  of  C c h o o s e  cr,,.>(r) suff ic ient ly  la rge  fo~ all ¢x - A  r c q m r e m c n t s  to 

hav~ b e e n  c r e a t e d  ant i  s u c h  l h a t  i lo  ( '~ will m e e t  an  a - A  r e q u i r e m e n t  for  -r ~ crs 

N o  ~ -  B r e q m r e m e n t  ~s m lu red  b e y o n d  cy~ s ince  f x l r ) >  o~ w h e n e v e r  r >~ cr~ T o  

s h o w  tha t  the  set  of  o e -  B r e q u i r e m e n t s  ~s O- f in i t e  we can  t h u s  r e p e a t  t h e  a b o v e  

a r g u m e n t  wi th  B m place  e l  A s t a r t i n g  wi th  ¢y~ in p lace  of  cr~ 

Lemma 4.7.  A aml  B air  Ilxi~e)lcglda) 

Pre,oL T h e  p roo l  sph t s  rote  t h r e e  cases  

Case 1 I~<t" = I<-I S u p p o s e  t t c_  W x w h e r e  H is O- f in i t e  W e  n e e d  to s h o w  the  

e x i s t e n c e  o f  r sud~ tha t  1:3[ ~ ~,V~ x Recal l  t ha t  o m  ( % ) - p a r a m e t n z a t l , ) n  ot  O - s  c 

se t s  was  c h o s e n  to be repe t i t ive  C h o o s e  /3(~ s u c h  tha t  H c  U{/V/.~ y < / 3 o }  a n d  

c h o o s e  ce >//3,, for  wh ich  t he r e  is 8 e NI. sm .h  t ha t  W~ = W~ Le t  o- be  suf f ic ien t ly  

large  tot  all a - A  r e q m r e r a e n t s  to  n a v e  se t t l ed  d o w n  T h e n  for  e a c h  r ¢ H t h e r e  

is a p e r m a n e n t  8 - r e q t n l e m e n t  w~th a r g u m e n t  x m R ' ~ .  For  If th is  was  n o t  t he  

case  t o t  s o m e  ~ ~ H, c h o o s e  71 s u c h  t ha t  ~ ,  ~1)¢ Wa a n d  K., N A  = 0  Le*. r > ~ r  be  

s u c h  tha t  / ( r}  =oe and  {v, 'q) , -~V~ T h e n  ( 8 , : , ) e K  ~ so  a 8 - 1 e q u l r e m e n t  wi th  

a r g u m e n t  ~ wo~fld be  pu t  rote  R \ ~ )  c o n t r a d i c t i n g  t he  cho ice  ot  ~ Le t  x c H a n d  

c h o o s e  (8. x. F),~ R'~ . -  S'~ T h e n  t h e r e  is r) s u c h  t h a t  (v, -q)c  Wg a n d  K.. c_ F B u t  

(& x. F) is a p e r m a n e n t  l e q t u r e m e n t  so  F f q A  = 0 .  l e x ~ W 2  T h u s  H ~ _ " W ; "  

Choo~e  r s u c h  tha t  W"~_c W [  T h e n  H c _ ' W ,  x 

Belo re  p r o c e e d m g  to  the  r e m a i n i n g  ca se s  we n o t e  t h a t  by e a s y  m a n i p u l a t i o n s  

us ing  a p r o j e c h o n  f u n c t i o n  o n e  can  s h o w  t he  fo l l owing  It I g P <  I-<]. t h e n  a se t  A 

is h y p e r r e ~ u l a r  tff for  e v e r y  e, L I.t' ~ W x ~ 3 < r ( L i  r _c "IV, x) 

Case  2 C o t t l < . l ' ) = l v ' l  ' <f~ . t  S u p p o s e  12 -1 ' _cw ,  x a n d  let  e e M .  C h o o s e  o- 

s u l ~ c m n t l y  large  for  all a -- A r e q u n e m e n t s  to  h a v e  s e t t l ed  d o w n  Reca l l  f r o m  t h e  

c o n s t r u c t i o n  tha t  in th is  case  we a t t e m p t e d  to p r e s e r v e  c o m p u t a t i o n s  o n  init ial  

s e g m e n t s  of  L ~" '~ T h u s  u s i n g  a n  a r g u m e n t  s imi l a r  to  t h e  o n e  a b o v e  t h e r e  is for  
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each  x ~ L ~ ~" a p e r m a n e n t  e - r e q m r e m c n t  w~th a rgumen t  x m R~ o preserving a 
correc t  computa t ion  x ~ W~ Thus  I ~ i* _c_,,W~ 

Case  3 Cof ( l~ lq<[~<[~ '< l -~  [ Let col ( [<14)=3  ' and let q I. ~'t' - - > l J  be as m 

Defini t ion 4 5 ,  Reca lhng  the  remark  to l lowmg that  d e h n m o n  we wew q ~(x) as a 

set  O-f imte  uniformly in x Define the  t0 -computab le  mapp ing  )tv,:rV7 by 

V'/= V,,Lk{(x, ~ ) ~ L ~ × L "  {Vy~_q ~(,~))(~'<o-)((7.~}~ WT & K~_K,~)} 

where  

V.={(x.n~,) x ~ L " & q  ~(x)=fl} and  K . , ,=~  

Clam~: Ll"l' ~ W,~Cr~IJ ~ V/~ 

To prove  the clann,  assume 1 ~ I ~W/X and let x~_L~, If q ~(~J---0, then  

x e V~ x. Suppo,,c q ~(x)¢ f~ Then  q ~(x) ~s b o u n d e d  smct ly  below I<~! ~ Let  a ,  

and  cz,, be such tha t  q ~ ( x ) ~ U { M .  [3~a}.8~_M~ and V~->~o-,,(W~=W~) 
Choose  o->~ ~r u suff ioent ly large for all a - A  requ i rements  to have set t led down 

T h e n  as m the first case there  ~s a p e r m a n e n t  8 - r e q m r e m e n t  in R'.'xo w~th 

a rgumen t  y to r  each vt=q t(x) Let 

K . = U { F  (& y.F)6R' /x , , -S '~ & yc-q '(x)~ 

T h e n  (x. ~) ~ V~ for  ~- ~>~r and r > ' O  Fur the rmore  K .  A A  = 0  since only pe rma-  
nen t  r e q m r e m e n t s  were used to obta in  K .  It follows that  x ~ V~ x 

Converse ly  assume LYe_ V, x and  let y 6 L "  I' Choose  x , ~  and  tr such tha t  

y c q *(y). (x, ~ ) e  V /  and K., V/A = ~ Then  there  is ~ such that  (y, ~) ~ W~" and  

K~cK~,  Thus  v E " W ~  
Suppose  L I" ¢ c_ W~ By the  clmm. L"~_ V, x Choose  a and  5 such tha t  L ~ c 

U{M~3 /3~<a}. 8 6  M.  and  V~-=W,s By the  usual a rgumen t  there  is tr such tha t  
"v ~r A L ~_ Wa Let  r be such tha t  W;'~_V~" T h e n  L "c_ 'V~ ~ so by the last hal l  of the  

proof  of the clmm, L ~ ~'~_'W~ 'x 

Lemma 4.8. O[A ] and O[ B ] ate adequate theories 

Proof .  O[A] is an mfimte theory  by T h e o r e m  2 9 since A ~s hype~,~gular and  
regular  Clearly I~<1">~ * I~lolA1 W e s h o w  ~<+ >~ -<* V ~ L  ~ O [ A ] - s c  I I,-,I,,1-1~1,-, Let  be  a 
set  whe re /3  <1~<[* Then .  again using T h e o r e m  2 9, V is weakly O-s  c m A Let  
~x and  8 be such tha t  Vc_l.J{Mt~ ~<~a~. ,3~M,, and  V = W ;  x A p e r m a n e n t  

5 - r e q u i r e m e n t  with  a rgumen t  x is pu t  into  R a o  for each x c V Let  cr be  

sufficiently large for  all a - r e q u i r e m e n t s  to have  se t t led  down T h e n  

x ~ Ve~(~w ~ R;~ ,~- S'~)((w)~ = 8 & (w)2 = x). 

so V Is O-f imte  and  hence  O I B  ]-finite 
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L e n n n a  4 .9 .  A'  =-- B' ~ 0' 

Proof .  As aheady ~ e m m k e d ,  ~t ~u f i ce s  to s h o w  A'~,,,O' Let  

q(e ) =/.t~rfV~" > cr t(Vw e ( R , \  - R,~ ~) U ( S ~  - S~ f ) ) ( (w  h > e )] 

q ~s def ined on  all ol L " :  by L e m m a  4 6  F u r t h e r m o r e  q ~ w 0 '  s ince  q ts a 

s2 -1unct ton  Clear ly  e ~ A'C:~e • ( R ~ ' - S ~ I ) I  and h e n c e  A ' ~ < , . 0  ' 

Lemma 4.10. D ~ A and D ~,, B 

Proof .  S u p p a s e  ( L I - D )  W ~  x C h o o s e  a and  art, such  that e E M . ,  all ( ~ - A  

requtrement~  have  se t t l ed  d o w n  by  , ,tage or. and  no  $ ¢ M~ b e c o m e ~  an m a c n v e  

a -  A reduct ion  p r o c e d u r e  b e y o n d  or. N o t e  that e is an ac t ive  ( x -  A reduc t i on  

p r o c e d m e  al o-., for e l se  an e r r o n e o u s  c o m p u t a n o n  w o u l d  be p r e s e r v e d  C h o o s e  a 

m]mmal  x¢' D ~uch that there  ~s no  x ' ~  ~¢ for w h i c h  (& .x', F)~ R':~' 2 - S',,i' w h e r e  t$ 

~ an a c u v e  a - A  r e d u c n o n  p r o c e d u r e  at or. By  the  regular i ty  of D t h e l e  ts 

(r] >I (r~. 'inch that L' fq D = L' ~ D '~, Let  -r >~ tr~ be  such  that t E "W. ~ and ~l v) = a 

T h e n  H * = l x '  t ' ~ x ]  and ( e .~ ) c -N-  It f o l l ows  that an e - r e q m r e m e n t  w~th 

a r g u m e n t  t wdl  be  crea ted  at 1-, contrad~c 'mg the  fact that r ~ r .  
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