FINITE INJURY ARGUMENTS IN INFINITE COMPUTATION THEORIES*

Viggo STOLTENBERG-HANSEN
Unuerstty of Oslo, Oslo, Norwav

Recesved 9 July 1977

0. Introductien

A significant part of post-Friedberg recursion theory has been successfully generalized to recursion theory on an admissible ordinal α. Such a recursion theory has two properties seemingly important for prority arguments it is an "infinite" theory and its doman is recursively wellordered Kressel ([5], pp 172-173) has asked (with some persistence - see his reviews of [6] and [13] in Zentralblatt 1973 and 1976 respectively) whether these properties are significant for the existence of incomparable r.e degrees Recently Sy Friedman [4] has considered the first property by doing recursion theory over an arbitrary limit ordinal β, thus dropping the admissibility criterion His main result is the existence for many β of a pair of sets Σ_{1} over $L(\beta)$ such that neither is β-recursive in the other We , on the other hand, are keeping admissibility while relaxing the requirement of a wellordered domain to that of a prewellordered domain, that is we are essentially studying recursion theory over resolvable admissible sets with urelements

However, rather than restricting our attention to rerolvable admissible sets, our approach in this paper is axiomatic Starting with a piecomputation theory in the sense of Moschovakis [6] with a computable selection operator, we add two axioms to obtain an infinite computation theory The irst asserts the existence of a prewellorder whose initial segments are uniformly'"finite", while the second insures that all "computations" can be effectively generated and that this generation is matched up with the complexity of the domain as expressed by the prewellorder The class of infinte computation theories concides with the class of Friedberg theories as defined in [6]

It is doubtful (see Simpson [14]) whether the axioms for an infinite theory are quite adequate for giving a positive solution to Post's problem. ${ }^{1}$ A trivial but

[^0]ugmficant observation for α-recurston theory (or for any recur's.lvely wellordered infinte theoty) is that any $\alpha-r e$ set bounded strictly below α^{*}, the propectum of α. s α-fimite We call an infinte computation theory adequate whenever the analogous theorem holds For adequate theories we prove a strong form of Sacks' uphting theorem [7,10], thereby supporting the conjecture that any of the usual finite injury prionity arguments can be carried out for such theories

In Section 1 we give the axioms for an infinite computation theory and prove some elementary results Section 2 introduces different notions of relative computability and gives sufficient conditions in terms of regularity and hyperregulanty for the notions to comcide Shore's blocking echnique using Σ_{2} functions is developed in Section 3 while the proot of the splitting theorem. along with some of the usual corollaries, is given in Section 4

S G Simpson (see [14] and [13]) has independently studied recusion theory over resolvable admissible sets In particular, he was the first to note that Shore's blocking techntque could be used to obtain a verson of the Friedberg-Muchmk theorem tor what he calls thin admissible sets

1. Infinite computation theories

We will be dealing with partial multivalued functions and functionals on some set U An n-ary partial multivalued function is just an $n+1$-ary relation Fo'lowing the notation of Moschovakis [6] we mean by $f\left(x_{1}, \quad, \lambda_{n}\right) \rightarrow z$ that the paitial multivalued function f has z as one of its values at $x_{1}, \quad, x_{n}, 1 \mathrm{e}$ ($x_{1}, \quad, \lambda_{n}, z$) is an element of the defining relation for f In case f is inglevalued we may without confusion write $f\left(x_{1}, \quad, x_{1}\right)=z$ ior $f\left(i_{1}, \quad, x_{n}\right) \rightarrow z$ In this paper partial multivalued functions on U will simply be called functions, whereas a total singlevalued function will be called a mapping

The notation used should easily be understood from the context keeping the tollowing loosely defined conventions in mind Functions on U are denoted by $f g, h, \quad, p, q, r, \quad \alpha, \beta$ ate reserved for ordinak and i, f, m, n for elements in N Remaming lower case latm and greek letters (except $\lambda \mu$ and ν which will have their usual meanings) denote elements of U

A computaton domain is a structure $\geqslant \|=\langle U, N, s, M, K, L\rangle$ where U is a set, $N \subseteq U,\langle N, s \mid N\rangle$ is isomorphic to the natural numbers with the successor function, M is a paring function and K and L are inverses to M The latter means that if $M(x, y)=z$, then $K(z)=x$ and $L(z)=v$ From M, K and I. we define the tupling function \rangle and its the merse () in the usual fashon

A set $\Theta \subseteq \bigcup\left\{U^{n} n \geqslant 2\right\}$ is called a computation set on \because For a computation set Θ we define he relation

$$
\{\varepsilon\}_{\in \rightarrow}^{\prime}(x) \rightarrow z \quad \text { iff } \quad \text { hh }(x=n \quad \& \quad(\varepsilon x, z) \in \Theta
$$

where $\ln (x)$ denotes the length of the sequence \boldsymbol{x} Thus $\{\varepsilon\}_{\}}^{\prime \prime}$ defines an n-ary
function for each $\varepsilon \in U$ and $n \in N$ An n-ary function f on U is Θ-computable if there is $\varepsilon \in U$ such that $f=\{\varepsilon\}_{\Leftrightarrow}^{\prime \prime}$, in which case ε is a Θ-index for f An n-ary relation R on U s Θ-semicomputable ($\Theta-\mathrm{sc}$) with a $\Theta-\mathrm{s}$ c index ε if R is the doman of a Θ-computable function with Θ-index εR is Θ-computable with Θ-index ε in case its characteristic mapping c_{R} is Θ-computable with Θ-index ε Finally we say that a consistent functional $F\left(f_{i}, \quad, f_{k}, \boldsymbol{x}\right)$, where f_{1} varies over n_{i}-ary functions, is Θ-coniputable with Θ-index δ if

$$
\begin{aligned}
& \forall \varepsilon_{1}, \quad, \varepsilon_{k}, x . z\left(F\left(\left\{\varepsilon_{1}\right\}_{(\mathcal{H}}^{\prime \prime}, \quad,\left\{\varepsilon_{k}\right\}_{\mathcal{G}}^{n_{2}}, x\right) \rightarrow z\right. \\
& \left.\Leftrightarrow\{\delta\}_{\Leftrightarrow-1}^{h+12}\left(\varepsilon_{1} . \quad ., \varepsilon_{k}, \boldsymbol{x}\right) \rightarrow z\right)
\end{aligned}
$$

The first step in pu.ting some structure on a computation set Θ is to requre Θ to be a precomputation theory in the sense of Moschovakis For a precise definition we refer to $[6]$ Roughly speaking, Θ is a precomputation theory of the constant mappings, the identity mapping, M, K, L and s are Θ-computable Furthermore the Θ-computable functions must satisfy the usual closure and enumeration conditions in a uniform way A basic fact of precomputation theories is the second recursion theorem

The existence of a $\boldsymbol{\Theta}$-computable selection operator is normally assumed in order for the $\Theta-\mathrm{s}$ c relations to behave nicely A selecton operator for Θ is a function q such that (henceforth dropping n and Θ from $\{\varepsilon\}_{\Theta}^{n}$ whenever possible)

$$
q(\varepsilon) \downarrow \Leftrightarrow \exists x_{\{ }\{\varepsilon\}(x) \downarrow
$$

and

$$
\forall z(q(\varepsilon) \rightarrow z \Rightarrow\{\varepsilon\}(z)) \downarrow)
$$

wheie ' \downarrow " means 'is defmed' Note that the existence of a selection operator implies the evistence of a uniform selection operator That is there exists a Θ-computable mapping $p(n)$ such that for each $n \in N, p(n)$ is a Θ-mdex for an n-ary selection operator q^{n} The usual ν notation for a unitorm selection operator will be u'sed, namely

$$
\nu z\left(\{\varepsilon\}_{\Theta, \prime}^{\prime \prime,}(z, x \downarrow)=q^{n}(\varepsilon, x)\right.
$$

For a precomputation theory Θ with a Θ-computable selection operator, the Θ-s c relations are closed under disfunctions and existential quantification and a relation is Θ-computable iff it and its complement are $\Theta \rightarrow c$ Furthermore Θ-computable functions can be defined by cases in a general way

In this setting one can define a well behaved notion of "finte" Following Moschovakis we say that a set K is Θ-finute if the consistent functional

$$
E_{K}(f) \rightarrow\left\{\begin{array}{lll}
0 & \text { if } & \exists x \in K(f(x) \rightarrow 0), \\
1 & \text { if } & \forall x \in K(f(x) \rightarrow 1)
\end{array}\right.
$$

is Θ-computable $A \Theta$-index for E_{h} is sand to be a canonical Θ-index for the
Θ-finite set K The usual properties (see [6]) of a generalized notion of finte hold uniformly

Having asserted the existence of a selection operator it is too restrictive to require Θ to be a single-valued theory as this would exclude some of the intended models However when considering functions whose values are (canonical \mathcal{O} indices for Θ-finite sets, then Θ is essentially single-valued. In the lemma stated beiow let $K_{\text {, }}$, Jenote the Θ-finte set with canonical Θ-index η in case η is such an index

Lemma 1.1. Suppose r is a Θ-computable function whose values are canontal Θ-indices such that $\forall x, \xi, \eta\left(r(x) \rightarrow \xi \quad \& \quad r(x) \rightarrow \eta \Rightarrow K_{\xi}=K_{\eta}\right)$

Then there is a Θ-computable mapping q obtained unformly from r such that $\forall x, \eta\left(\boldsymbol{r}(x) \rightarrow \eta \Rightarrow K_{\eta}=K_{q(x)}\right)$

We now list two additional axioms making Θ into an infinte computation theory

Axiom 1 There is a Θ-computable prewellorder \leqslant on U such that intial segments of \leqslant are unformly Θ-finite

Given a prewellorder \leqslant we let $x<y$ denote $\neg(y \leqslant x)$ and $x \sim y$ denote $x \leqslant y \&$ $y=\lambda$

Definition 1.2. A (\leqslant)-enumeration of a set W is a Θ-computable mapping $\lambda \sigma W^{*}$ (whose values are canonical Θ-indices for the Θ-finite sets $W^{\prime \prime}$) such that
(1) $\tau \leqslant \sigma \Rightarrow W^{\top} \subseteq W^{\top}$,
(11) $W=\bigcup\left\{W^{\sigma} \sigma \in U\right\}$

Axiom 2 There is a Θ-computable mapping $p(n)$ such that for each $n \in N, p(n)$ is a Θ-index tor a (\leqslant)-enumeration of the set

$$
T_{n}=\{\langle\varepsilon, x, y\rangle\{\varepsilon\}(x) \rightarrow y \quad \& \quad \operatorname{lh}(x)=n\}
$$

Definition 1.3. Let Θ be a computation set over a computation domain $\mathfrak{A l} \Theta$ is an infinte computation theory if
(i) Θ is a precomputation theory
(1i) Equality on U is a Θ-computable relation
(iii) Θ has a computable selection operator
(iv) Axiom 1 and Axiom 2 hold for some prewellorder \leqslant on U

A basic fact of infinite recursion theories, eg recursion on an admissible ordinal α, is that computations can be coded effectively into the domain in such a
way that the complexity of the domain corresponds to the complexity of the coded computations It therefore seems reasonabic to assert the existence of a Θ computable partal order \leqslant whose intial segments are well-founded and uniformly Θ-finite Here we restrict ourselves to the case where < w a prewellorder Axiom 2 then stipulates that all "computations" $\{\varepsilon\}(x) \rightarrow y$ can be effectively generated and that this generation is matched up with the complexity of the domain Note that U is not Θ-finite for an infinite computation th sory

Following the notation of Barwise [1], let \mathscr{A}_{u} be a resolvable admissible set with urelements relative to a language $\mathrm{L}^{*}=\mathrm{L}(\epsilon$, , By combining Moschovakis' characterization theorem for Friedberg theortes with Gandy's theorem tor Σ_{1} inductive defintions over admissible set, (see Barwise [1] p 208), it is easily verified that $s l_{"}$ constitutes an infinte computation theory

J Stavi (unpublashed) has shown the converse of Gandy's theorem to be false for some transtive sets However, for resolvable transitive structures \mathscr{A} (closed under parting and satistying Δ_{0}-separation) the converse k true, ic for such \mathscr{A}, \mathscr{A} s admussible iff every Σ, inductive operator over σ has a Σ, fixed point This result, due to A Nyberg [16], gives some fusification for Axiom 1

In the sequel Θ will dlways denote an infinte computation theory ove1 some computation domain \because

Lemma 1.4. Suppose f is a Θ-computable function Then there is a Θ-computable function g obtained unformly from f such that $\operatorname{dom} g=\operatorname{dom} f, g \subseteq f$, and for each Θ-finte set $K \subseteq \operatorname{dom} f$ there is a Θ-finte set Λ obtained unuformly from K and f such that $g(K) \subseteq N \subseteq f(K)$

Before proceeding with the proof we need to introduce the μ-operator By $\mu z R(z, x)$ we mean a function whose values for x are some minimal z such that $R(z, x)$ In particular, if R is Θ computable we set

$$
\mu z R(z, x)=v z(R(z, x) \quad \& \quad(\forall y<z) \neg R(y, x))
$$

Proof of Lemma 1.4. Let $\lambda \sigma W^{\prime}$ be a (₹)-enumeration of $T_{1}=$ $\{\langle\varepsilon, x, y\rangle\{\varepsilon\}(x) \rightarrow y\}$ and let $h(x)=\mu \sigma\left[(\exists y<\sigma)\left((\varepsilon, x, y\rangle \in W^{\prime x}\right)\right]$ where ε is a Θ-index for f Whenever $f(x)$ is defined let $N_{x}=\left\{y<h(x)\langle\varepsilon, x, y\rangle \in W^{\text {htt }}\right\}$ Note that N, is well-defined since $h(\lambda) \rightarrow \sigma \& h(\lambda) \rightarrow \tau \Rightarrow \sigma \sim \tau$ it follows from Lemma 11 that a canonical Θ-mdex for N_{n} is obtaned unformly and singlevaluedly from ε and x Let $g(x)=\nu y\left(y \in N_{\checkmark}\right)$ If Θ-finte $K \Upsilon^{-} \operatorname{dom} f$, let $N=$ $\bigcup\{N, \quad x \in K\}$

An immedtate corollary to Lemma 14 is the existence of a "selection operator" which single-valuedly chooses a canonical Θ-nde; for a non-empty subset of a non-empty Θ-s c set It is such a "selection opc, "ator", rather than the multivalued one we assumed, which is ueeded for our argunents In [3] Fenstad gives
axioms for infinte computation theories which do not assert the existence of a selection operator, but where the existence of a "selection operator" as above nonetheless is a theorem Thus Fenstad may and does restrict himself to cinglevalued theorics

Definition 1.5. A (\leqslant)-parametrization or Θ-s c sets is a $\boldsymbol{\Theta}$-computable mapping $\lambda \varepsilon \sigma W_{c}^{c}$ such that
(1) $\forall \varepsilon, \tau, \sigma\left(\tau \leqslant \sigma \Rightarrow W_{\xi}^{\tau} \subseteq W_{\xi}^{\sigma}\right)$,
(11) for each $\Theta-\mathrm{s} \mathrm{c}$ set W there is an ε such that $W=\bigcup\left\{W_{*}^{\sigma} \sigma \in U\right\}$

Axiom 2 asserts the existence of a (\leqslant)-parametrization of Θ-s c sets Considering a fixed (\leqslant)-parametrization, we let W_{ε} denote $\cup\left\{W_{t}^{\sigma} \sigma \in U\right\}$. Note that a $\Theta-s$ c inuex for W_{t} is obtaned uniformly from ε, using the selection operator Indices trom a (\leqslant)-parametrization can therefore be used in e , plicit definitions of Θ-computablk functions

Definition 1.6. (1) A projection into W s a total Θ-computable fuction p whose range is a subset of W such that of $x \neq v$ then $\left.p^{\prime} x\right) \cap p(y)=\emptyset$ (Here $p(x)$ denotes the set $\{z p(x) \rightarrow z\}$)
(11) Θ is projectible into W if thete is a projection into W

Lemma 1.7. (1) Let $W=\{\varepsilon \quad W \neq \emptyset\}$ for a given (\leqslant)-parametrization of $\Theta-\mathrm{s} \mathrm{c}$ sets Then Θ ぃ prosectuble into W
(1i) Suppose p is a projection Then there is $a(\leqslant)$-parametrization of $\Theta-\mathrm{s} \mathrm{c}$ sets such that $\left\{\varepsilon W_{t} \neq\{ \} \subseteq \subseteq \operatorname{ran} p\right.$

Proof. (1) Define

$$
f(x)=\mu \sigma\left[(\exists \varepsilon<\sigma)\left(x \in W_{t}^{s} \quad \& \quad\left(\forall y \in W_{t}^{\prime}\right)(y=x)\right)\right]
$$

and let

$$
p(\lambda)=u^{\prime} \varepsilon\left[x \in W_{r}^{(x)} \quad \& \quad\left(\forall y \in W^{\prime(x)}\right)(y=x)\right]
$$

Then p is clearly a propection mto W
(11) Let $\lambda f \sigma V_{i}^{*}$ be any (\leqslant)-parametazation of $\Theta-\mathrm{s}, \mathrm{c}$ sets Using Lemma 14 we have d collection of Θ-tinte sets K_{x}, each obtaned uniformly from x, such that $\eta \neq K_{\wedge} \subseteq p(v)$ Let $W=U\{K, ~ x \in U\}$ and let $\lambda \sigma W^{c}$ be a (\leqslant)-enumeration of W Define

$$
r(\varepsilon, \sigma)=\left\{\begin{array}{ccc}
\nu \lambda\left[\varepsilon \in K_{\star}\right] & \text { if } & \varepsilon \in W^{\sigma} \\
0 & \text { if } & \varepsilon \notin W^{\sigma}
\end{array}\right.
$$

Letting

$$
W_{t}^{,}=\left\{\begin{array}{ccc}
V_{r t, 0}^{\prime \prime} & \text { if } & \varepsilon \in W^{\prime} . \\
(\emptyset & \text { if } & \varepsilon \in W^{*}
\end{array}\right.
$$

we obtain a (\leqslant)-parametrization with the required property

Due to the negative result in Simpson [14] it is reasonable to formulate yet another condition which isolates a subclass of infinite computation theones for which the prionty argument can be carised out The problem in the general case is that tor any (\leqslant)-parametrization the set $\left\{\boldsymbol{\varepsilon} \mathcal{W}_{t} \neq \emptyset\right\}$ may be too "wide" Lemma 17 reduces the problem of finding a "narrow" (\leqslant)-parametrization to that of finding a "narrow" projection

A Θ-finite set K is said to be strongly Θ-finite if every Θ-s c subset of K is Θ-finite

Definition 1.8. An infinite computation theory Θ is sald to be adequate if Θ is projectible into the field of a $\Theta-s$ c prewellorder whose intial segments are unitormly strongly Θ-finite

In the sequel we assume that the prewellorder of Definition 18 is \leqslant or an inttal segment of \leqslant, for some * satisfying Axiom 1 and Axiom 2 The modifications necessary for the general case are left to the reader

Let ρ be the unque order-preserving map from U onto the ordinal $|\leqslant|$ Often we will be imprecse and write x when we mean $\rho_{-}(x)$ Thus $x<\alpha$ where α is an ordual and stands for $\rho(x)<\alpha$ Throughout the paper we use the following

Convention. $L^{\beta}=\{x \in U \quad x<\beta\}$
Definition 1.9. (1) The projectum (\leqslant), denoted $|\leqslant|^{\dagger}$, is the least ordinal β such that Θ is projectible into L^{β}
(i1) The $r e$-projectum (\leqslant), denoted $|\leqslant|^{+}$, is the least ordinal β for which there is a Θ-s c non- Θ-finite set $W \subseteq L^{\beta}$

Since the range of a projection is a Θ-s c non- Θ-finte set if follows that
 and only if $\left|\leqslant\left.\right|^{\prime}=|\leqslant|^{\circ}=\right.$ limit ordinal

Every computably wellordered Θ is adequate since for such theories every Θ-s c non- Θ-finte set is the range of an injective Θ-computable mapping Any (chorceless) standard model of ZF constitutes a (non-wellorderable) adequate theory relative to the power set operator \mathscr{P} We may also use urelements to give some further examples of non-wellorderable adequate theornes. Let $\mathcal{A}=\langle M\rangle$ be an infinte structure u ithout relations or let $\mathcal{M}=\langle M,<\rangle$ be a dense linear ordering Then HYP ${ }_{u}$, the smallest admissible set above \mathcal{M} (defined in [1]), as well as $\operatorname{HYP}\left(\mathrm{HYP}_{4}\right)$, $\operatorname{HYP}^{\left(H Y P\left(\mathrm{HYP}_{4}\right)\right) \text { and so on, can be shown to be adequate }}$

2. Relative computability

Equivalent notions of Turing reducibility for ordinary recursion theory become distinct when considering recursion theory on an arbitrary admissible ordinal α. As Kresel [5] emphasizes, the different notions tall into essentally two
categories those concerned with computability and those concerned with definability Below, a notion fiom each will be defined (along with some auxiliary notions) corresponding to $\leqslant a$ and \leqslant, for α-recursion theoly We will then show that, as in the case of α-recussion theory, the notions agree on regular hyperregular sets

By an enumeration of Θ-finte sets we mean a Θ-computable mapping $\lambda \xi K_{t}$ with the property that for each Θ-finte set K there is ξ such that $K=K_{\xi}$ Such an enumeration alvays exists since every Θ-finite set is $W_{t}^{\prime r}$ for some ε and σ An enumeration can of course be chosen with somewhat care, e g we may require $K_{\varepsilon} \subseteq L^{2}$

Definition 2.1. Let A and B be sets, f a tunction and $\lambda \xi K_{z}$ a fixed enumeration of Θ-finte sets
(1) f is weakly Θ - omputable in B (denoted $f \leqslant{ }_{n} B$) if there is a Θ-s cet W such that for all $\boldsymbol{x}, \boldsymbol{y}$,

$$
\left.f(\boldsymbol{x}) \rightarrow y \Leftrightarrow \exists \xi, \eta(\langle\boldsymbol{x},\rangle, \xi, \eta\rangle \subset \mathbf{W} \quad \& \quad K_{z} \subseteq B \quad \& \quad K_{\eta} \cap B=\emptyset\right)
$$

A is weakly Θ-computable in $B\left(A \leqslant_{w} B\right)$ in case $c_{A} \leqslant_{n} B$
(1) A is Θ-computable in B (denoted $A \leqslant B$) if there is a Θ-s c set W such that for all γ, δ

$$
K_{\gamma} \subseteq A \quad \& \quad K_{\delta} \cap A=\emptyset \Leftrightarrow \exists \xi \cdot \eta\left(\langle\gamma, \delta, \xi, \eta\rangle \in W \quad \& \quad K_{\xi} \subseteq B \quad \& \quad K_{\eta} \cap B=\emptyset\right)
$$

The defintions are independent of the particular enumeration of Θ-finite sets We define the upper semb-lattice of degrees in the usual way using the transitive reducibility $\leqslant A \equiv B$ denote, $A \leq B \& B \leq A$ The jon of $\operatorname{deg}(A)$ and $\operatorname{deg}(B), \operatorname{deg}(A) \vee \operatorname{deg}(B), i \operatorname{deg}(A \oplus B)$ where

$$
A \oplus B=\{\langle x, 0\rangle x \in A\} \cup\{\langle x, 1\rangle x \in B\}
$$

The notions of weakly $\Theta-5$ (H and $\Theta-5$ c in ate eassly dostracted from (i) and (1) of Defintion 21 Thus $A \rightsquigarrow \Theta-c$ in B it there sa $\Theta-5 c$ set W such that for each γ

$$
K_{\gamma} \subseteq A \Leftrightarrow \exists \xi, \eta\left(\langle\gamma \xi, \eta\rangle \in W \quad \& \quad K_{\xi} \subseteq B \quad \& \quad K_{\eta} \cap B=\emptyset\right)
$$

The sets weakly Θ-se in B are enumerated by putting

$$
W_{\varepsilon}^{\prime 3}=\left\{\imath \exists \xi, \eta\left(\langle\imath, \xi, \eta\rangle \in W_{*} \quad \& \quad K_{\varepsilon} \subseteq B \quad \& \quad K_{\eta} \cap B=\emptyset\right)\right\}
$$

It follows momediately from the defintions that a set is (weakly) Θ-computable in B ift both it and its complement are (weakly) $\Theta-s c$ in B, and that a set 3 . weakly $\Theta-s c$ in B iff it is the doman of a tunction weakly Θ-computable in B

To detne a reducibilty notion cortesponding to definability is technically some what more complicated From an infinte theory Θ and a set $B \subseteq U$ we construct a new theory $\Theta[B]$ and say that $f \leqslant_{d} B$ if f is $\Theta[B]$-computable In addition to the
obvious requirement that $\Theta[B]$ should have the usual closure and enumeration properties, 1 e that $\Theta[B]$ should be ${ }^{\circ}$ ptccomputation theory, we want B to be $\Theta[B]$-computable, $\Theta \leqslant \Theta[B]$ (\leqslant is the relation between precomputation theories given in [6]), and quantification over inital segments of \leqslant to be $\Theta[B]$ computable The latter means that the functional E should be $\Theta[B]$-computable where

$$
E^{\Sigma}(f, z) \rightarrow\left\{\begin{array}{lll}
0 & \text { if } & \exists x<z(f(x) \rightarrow 0) \\
1 & \text { if } & \forall x<z(f(x) \rightarrow 1)
\end{array}\right.
$$

Furthermore $\Theta[B]$ should have a computable selection operator in order for the $\Theta[B]$-s c relations and $\Theta[B]$-finite sets to behave properly

The theory $\Theta[B]$ will be the least fixed point of an inductive operator Γ defined by clauses 0 -VIII Clause 0 introduces the characteristic tunction of B and clause I makes $\Theta \leqslant \Theta\lceil B\rceil$ using Axiom 2 for Θ Clauses II-VI correspond to clauses IX'-XIII' in [6] Fmally, clauses VII and VIII introduce the functional E^{*} and a selection operator respectively Having already opted for multi-valued theortes we make the selection operator take all its possible values

The β-th iteration of Γ is defined as $\Theta^{\beta}[B]=\Gamma\left(\Theta^{-\beta}[B]\right)$ where $\Theta^{-\beta}[B]=$ $\bigcup\left\{\Theta^{\gamma}[B] \gamma<\beta\right\}$ Thus the least fixed point of I is $\Theta[B]=\bigcup_{\beta} \Theta^{\mu}[B]$
There is no need to give the detaled construction We only note that all clauses have the following important property A tuple (ε, x, z) is added to $\Theta^{\beta}[B]$ only if $\varepsilon, \boldsymbol{x}, z$ and $\langle\varepsilon, \boldsymbol{x}, z\rangle$ are elements of L^{β} For $(\varepsilon, \boldsymbol{x}, z) \in \Theta^{\beta}[B]$, set $|\boldsymbol{\varepsilon}, \boldsymbol{x}, z|_{\Theta[\beta}=$ least ordinal β such that ($\varepsilon \boldsymbol{x}, z) \in \Theta^{\beta}[\beta]$ Using this notion of length of computations, $\Theta[B]$ is a computation theory in the sense of Moschovakis One can show that $\Theta[B]$ is either an infinite theory or a Spector theory (defined in [3] and [6]) depending on whether U is $\Theta[B]$-infinite or $\Theta[B]$-finte

In [9] Sachs defines α-recursion relative to a set $B \subseteq \alpha$ to be Σ_{1}-recursion on α relative to the structure $\langle\mathrm{L}(\alpha, B), \epsilon, B\rangle$, where $\mathrm{L}(\alpha, B)$ is the result of relativizing $\mathrm{L}(\alpha)$ to B by adding $\lambda \in B$ to the atomic formulas, We regard the theory $\Theta[B]$ as the relativization of an infinite theory Θ to a set B Suppose Θ is a formulation of α-recuision theory Then one can show that $\Theta[B]$ is an infinte theory it and only if $\langle\mathrm{L}(\alpha, B), \in, B\rangle$ is admissible, in which case the notions of $\Theta[B]$-finite and $\Theta[B]$-s c agree with $\alpha-B$-finite and $\alpha-B$-r c

Definition 2.2. (1) $f \leqslant_{d} B$ if f is $\Theta[B]$-computable
(i1) $A \leqslant{ }_{d} B$ if c_{A} is $\Theta[B]$-computable
Lemma 2.3. $A \leqslant{ }_{d} B$ if and only if $\Theta[A] \leqslant \Theta[B]$

Corollary. \leqslant_{d} is transtive
The proof of the lemma is standard The required mapping p is defined by cases using the second recursion theorem for $\Theta[B]$ The "ff" direction of
$(\varepsilon, x, z) \in \Theta[A] \Leftrightarrow(p(\varepsilon, n), x, z) \in \Theta[B]$ is shown by induction on $|p(\varepsilon, n), x, z|_{\Theta[B \mid}$. while the "only if" direction is shown by induction on $|\boldsymbol{\varepsilon}, \boldsymbol{x}, z|_{\boldsymbol{\omega}|\mathrm{A}|}$

Using the corollary we define d-degrees by

$$
d-\operatorname{deg}(A)=\left\{B \quad A \leqslant d B B \leqslant_{d} A\right\}
$$

The d-degrees form an upper semi-lattice in the usual way
Lemma 2.4. $f \leqslant_{\mathrm{w}} B \Rightarrow f \leqslant_{\mathrm{d}} B$
Proof. Let $\lambda \xi K_{c}$ be an enumeration (in Θ) of Θ-finte sets It follows from the $\Theta[B]$-computability of E^{*} and $\Theta \leqslant \Theta[B]$ that $K_{\epsilon} \subseteq B$ and $K_{\eta} \cap B=\emptyset$ are $\Theta[B]-$ computable relations Suppose $f \leqslant{ }_{w} B$ using $W, 1 e$,

$$
f(\boldsymbol{x}) \rightarrow y \Leftrightarrow \exists \xi, \eta\left(\langle\boldsymbol{x} \cdot y, \xi, \eta\rangle \in W \& K_{\varepsilon} \subseteq B \& K_{\eta} \cap B=\emptyset\right)
$$

Recalling that ν takes all its possible values in $\Theta[B]$ we have

$$
f(x)=\left(\nu v\left[\left(x,(y)_{1},(y)_{2},(y)_{7}\right\rangle \in W \& K_{(w)} \subseteq B \& K_{(\cdots,} \cap B=\emptyset\right]\right)_{1}
$$

From the lemma wc conclude that $A \leqslant B \Rightarrow A \leqslant 1 B \Rightarrow A \leqslant{ }_{11} B$ None of the implications can be ruversed since Driscoll [2] has shown that \leqslant weed not be transitise even on Θ-s c sets

We now introduce the analogues of two notions due to Sachs [8] Recalling the defimition of W_{t}^{13} let

$$
{ }^{"} W_{t}^{\mathrm{B}}=\left\{\mathrm{i} \exists \xi, \eta\left((x, \xi, \eta\rangle \in W_{+}^{*} \& K_{\varepsilon} \subseteq B \& K_{,} \cap B=\emptyset\right)\right\}
$$

Definition 2.5. (1) A set B is regular if $B \cap K$ is Θ-finite whenever K is Θ-finite
(ii) A set B shypenegular if wheneves $K \subseteq W_{6}^{13}$ and K is Θ-finte then there is σ such that $K \leq{ }^{\circ} W_{+}^{\text {i }}$

Hyper regularity has the following equivalent formulation in terms of functions B is hyperregulan if and only at whenever $f \leq_{n} B, K \subseteq$ dom \mid and $K \Leftrightarrow \Theta$-fmite, then $\exists z(\forall x \in K)(\exists y<z)(f(x) \rightarrow y)$

Every \Leftrightarrow-computable set $\&$ hyperregular (Lemma 14) and eveny hyperregular $\Theta-$ c set is regular (pioved in [15]) A usetul characterization of the regular $\Theta-\wedge$ s sets is the following Suppose $\lambda \sigma W^{* r}$ is a (\leqslant)-enumeration of a set W let $V^{\prime \prime}=W^{\prime r}-\bigcup\left\{W^{\tau} \tau<\sigma\right\}$ For obvious reasons we say that $\lambda \sigma V^{\sim \pi}$ is a disjoint (s)-enumeration of W Then W is regular if and only if

$$
(\forall \beta<1 \leqslant \eta)(\exists \sigma)(\forall \tau>\sigma)\left(V^{\tau} \cap L^{\beta}=\emptyset\right)
$$

The problem of non-regularity can be avoided in the usual way when studying $\Theta-\mathrm{s}$ c degrees tor adequate theornes

Theorem 2.6. Suppose Θ is an adequate theory Then for every Θ-s c set B there is
a regular Θ-s cet D such that $B \equiv D$ may be chosen such that $\because(\forall y \sim x)(x \in D \Rightarrow y \in D)$

The theorem is due to Sacks [8] for α-recurston theory. Its proof (which we omit) in our more general setting is modelled on Sacks origmal proof in [8] A proof of a weaker, but for our purposes sufficient, version of Thcorem 26 can be found in [15]

Now we set out to show that for any sets A and $B, A \leqslant B \Leftrightarrow A \leqslant{ }_{d} B$ if B is regular and hyperregular Given disjoint sets B_{1} and B_{2} we obtam a theory $\Theta\left[B_{1}, B_{2}\right]$ by altering clause 0 in the definition of $\Theta[B]$ as tollows

$$
\begin{array}{ll}
\text { If }\langle 0,0\rangle, x, 0,\langle\langle 0,0\rangle, x, 0\rangle \in \mathrm{L}^{\beta} \quad \& \quad & x \in B_{1}, \\
& \text { then }(\langle 0,0\rangle, x, 0) \in \Theta^{\prime}\left[B_{1}, B_{2}\right] \\
\text { If }\langle 0,0\rangle, x, 1,\langle\langle 0,0\rangle, x, 1\rangle \in \mathrm{L}^{\beta} \quad \& \quad x \in B_{2}, \\
& \text { then } \quad(\langle 0,0\rangle, x, 1) \in \Theta^{\beta}\left[B_{1} B_{2}\right]
\end{array}
$$

Thus $\Theta[B]=\Theta[B, U-B]$ For each σ, ξ, η and m define

$$
{ }^{m} H_{\varepsilon, n}^{\sigma}=\left\{\langle\varepsilon, \boldsymbol{x}, y\rangle(\varepsilon, \boldsymbol{x}, y) \in \Theta^{\rho}\left(\sigma \cdot\left[K_{\varepsilon}, K_{n}\right], \operatorname{lh}(x)=m\right\}\right.
$$

Lemma 2.7. ${ }^{\text {" }} H_{\xi}^{\sigma}$ is Θ-finite uniformly in m, σ, ξ, η
Proor. ${ }^{m} H_{\xi \eta}^{s}$ can be defined by mduction on σ with respect to \leqslant considering all cases 1r: the definition of $\Theta\left[K_{\epsilon}, K_{\eta}\right]$

By an easy induction on σ we have

Lemma 2.8. If $\langle\varepsilon, \boldsymbol{x}, y\rangle \in^{m} H_{\varepsilon}^{(}{ }_{\eta}$ 文 $K_{\varepsilon} \subseteq B \& K_{\eta} \cap B=\emptyset$, then $(\varepsilon, x, y) \in \Theta^{\rho}{ }^{(\boldsymbol{v})}[B]$

Theorem 2.9. Let B be a regular set Then (1)-(in) below are eriuivalent
(1) B is hyperregular,
(i1) $\Theta[B]$ is an infinite theory,
(iii) $\ell^{\prime} f\left(f \leqslant_{w} B \Leftrightarrow f \leqslant_{d} B\right)$

Proof. (1) \Rightarrow (in) To show $\Theta[B]$ is an infinite theory it suffices to show $\Theta^{1 \leqslant}[B]=$ $\Theta^{\lll}[B]$ Since $|\leqslant|$ is a limit ordinal we need only consider the case of unversal quantification whose inductive clause is

$$
\text { If } \begin{aligned}
\langle 7,0\rangle, x,\langle\langle 7,0\rangle, \varepsilon, x, 1\rangle \in \mathrm{L}^{\beta} \quad \& \quad & (\forall y<\lambda)\left[(\varepsilon, y, 1) \in \Theta^{-\beta}[B]\right], \\
& \text { then }(\langle 7,0\rangle, \varepsilon, x, 1) \in \Theta^{\beta}[B]
\end{aligned}
$$

So suppose $(\varepsilon, y, 1) \in \Theta^{-<\leqslant i}[B]$ for each $y<x$ It follows from the regularity of B that for each $y<x$ there are σ, ξ, η such that $\langle\varepsilon, y, 1\rangle \in^{1} H_{\varepsilon \eta}^{\sigma}$ where $K_{\varepsilon} \subseteq B$ and
$K_{n} \cap B=0$ Letting

$$
W^{d}=\left\{\langle v, \xi, \eta\rangle \in L^{\prime \prime}\langle\varepsilon, v, 1\rangle \in^{\prime} H_{e_{\eta}^{r}}^{\tau}\right\}
$$

this can be reformulated as $L^{2} \subseteq W^{B}$ where $\lambda \sigma V V^{\sigma}$ is a (\leqslant)-enumeration of W By the hyperiegularity of $B, L^{*} \subseteq{ }^{\top} W^{B}$ for some τ But then $(\varepsilon, y, 1) \in \Theta^{\rho *(\tau)}[B]$ tor each $v<i$ by Lemma 28 , and hence $\left.(\langle 7,0\rangle, \varepsilon, x, 1) \in \Theta^{-1 \leqslant \mid r} B\right\rceil$
$(11) \Rightarrow$ (in) Suppose f is $\Theta[B]$-computable with a $\Theta[B]$-index \& Then by (in), Lemma 28 and the regularty of B,

$$
\begin{aligned}
f(x) \rightarrow v & \Leftrightarrow \exists \beta<|\leqslant|\left((\varepsilon, x, v) \in \Theta^{\beta}[B]\right) \\
& \Leftrightarrow \exists \sigma, \xi, \eta\left(\langle\varepsilon \boldsymbol{x} v\rangle \in^{\prime \prime} H_{\varepsilon}^{\sigma}, \quad \& \quad K_{z} \subseteq B \quad \& \quad K_{n} \cap B=\emptyset\right)
\end{aligned}
$$

It follow that $f \leqslant{ }_{u} B$
$(111) \Rightarrow$ (1) Assume (mi) Then every $\Theta[B]-$ c set has a (\leqslant)-enumeration in $\Theta[B]$ For suppose V is $\Theta[B]-\mathrm{sc}$ Then $V=W^{t}$ tor some $\Theta-\mathrm{s} \mathrm{c} W$ by (in) Put

$$
V^{\prime}=\left\{1<\sigma \quad \exists \xi, \eta<\sigma\left(\langle x \xi, \eta\rangle \in W^{*} \& K_{t} \subseteq B \& K_{\eta} \cap B=()\right\}\right.
$$

Then $\lambda \delta V^{\circ}$ is a (\leqslant - -enumeration in $\Theta[B]$ of V It follows that U is $\Theta[B]$-mininte (.nd in fact that $\Theta[B] \rightsquigarrow$ an infinite theory) Suppose a Θ-finite set $K \subseteq W_{r}^{B 3} L \geq t$ $t(x)=\mu \sigma\left[x \in^{"} W_{t}^{\prime 3}\right]$ Then for each $x \in K \quad L^{\prime \prime \prime \prime}$ is $\Theta[B]$-finite uniformly in , Thus $M=\bigcup\left\{L^{\prime \prime \prime}, \in K\right\} \wedge \Theta[B]$-finte and hence bounded by some σ Then $K \subseteq " W_{i}^{\prime \prime}$. s B फhyperregular

Note that reguiarity was not needed in gomg from (in) vid (n) to (i) The regular hypernegular sets can be characterized as those sets B for which every $\Theta[B]$-finte set is Θ-finte Of course, whenever (in) holds for B it follows that $A \leqslant B \Leftrightarrow$ $A \leqslant{ }_{d} B$ fust let

$$
\gamma \gamma, \delta \mid=0 \Leftrightarrow K_{\nu} \subseteq A \quad \& \quad k_{n} \cap A=\emptyset
$$

Betore defong the fump of a set we intioduce yet another notion of seducibilt"

Definition 2.10. A set $A \mathrm{k}$ manv-one reducible to a set $E, 4 \leqslant_{m} B$, if there is a Θ-computable mapping $\lambda x H_{2}$ whose values are (canonic, 4Θ-indices for) nonempty Θ-finite sets such that
(1) $x \in A \Leftrightarrow H_{2} \subseteq B$
(11) $\backslash \notin A \Leftrightarrow H, \cap B=\emptyset$

Note that $A \leqslant_{\mathrm{m}} B \Rightarrow A \leqslant B$ and $A \leqslant_{\mathrm{w}} B \& B \leqslant_{\mathrm{w}} C \Rightarrow A \leqslant_{\mathrm{w}} C$
Following Shore [12] and Simpson [13] we want the fump of a set B to be a $\leqslant m$ complete set B^{\prime} weakly $\Theta-s c$ in B, ie whenever A is weakly Θ-s c in B, then
$A \leqslant_{m} B^{\prime}$ Leting $\lambda \varepsilon W$ be a (not necessarily the) standard (\leqslant)-parametrization of $\Theta-s c$ sets we make the following definition.

Definition 2.11 The jump of a set B is the set

$$
B^{\prime}=\left\{\varepsilon . \exists \xi, \eta\left(\langle\xi, \eta\rangle \in W_{t} \& K_{\varepsilon} \subseteq B \& K_{n} \cap B=\emptyset\right\}\right.
$$

Our only requirement on the (\leqslant)-parametrization used in the defintion is that (ii) in Proposition 212 below must hold This is certanly the case for a (\leqslant)-parametrization obtained from the standard one as in Lemma 17

Proposition 2.12. (1) $B \leqslant_{m} B^{\prime}$ but not $B^{\prime} \leqslant_{w} B$ (so $B<B^{\prime}$)
(i1) $B \approx D \Leftrightarrow B^{\prime} \leqslant_{11} D^{\prime}$
(in) D is weal ly Θ-s c in $B \Leftrightarrow D \leqslant_{\mathrm{m}} B^{\prime}$
(iv) B^{\prime} is weahly Θ-s c in B

Thus the jum, is well defined and increasing on degrees However, it may not be increasing of: d-degrees as is readily seen by considering a non-hyperregalar d-degree This is not surprising since \leqslant_{d} in general is a much stronger reducibihty notion than \leqslant The proper notion of "semi-computable in B " tor \leqslant_{d} is $\Theta[B]-\mathrm{sc}$ Thus we want the jump (in this sonnection called d-jump) of a set B to be a complete $\Theta[B]$-; c set

Definition 2.13. The d-jump of a set B is the set

$$
B^{d}=\left\{\langle\varepsilon, \lambda\rangle\{\varepsilon\}_{(\in|B|}(\lambda) \downarrow\right\}
$$

It is easuly venfied that the analogue for the d-jump of Proposition 212 holds Of course, in cese B is regular and hyperregular, then $B^{\prime} \approx_{\mathrm{m}} B^{d}$

3. Σ_{2}-functions

It is clear thit in case the domain of an infinite computation theory is not coraputably wellordered, one cannot consider a unique requirement at a given stage of a prior ty construction There is thus a need to consider a Θ-finte block of requirements at each stage The obvious way to block requirements is in terms of the levels of the given prewellorder retting each level make up one block This method suffices for Θ-finte injury arguments where elements in at most one set of requirements can be mjured more than a fixed finte number of times In particular, a weak positive solution to Post's problem was obtamed in [15] for every adequate theory using this method

In proving the splitting theorem for an admissible ordinal α, Shore [11] developed a techmque of blocking requirements into $\sigma 2 c f(\alpha)$ many α-finite sets S G Simpson [14] was the first to note that this technique could also be used to
prove a version of the Filedber ${ }_{k}$ Muchnik theorem for thin admissible sets This led us to develop Shote's blocking technique for adequate theories Θ

A set A is said to be Σ_{10} and Π_{0} if it is Θ-computable A is Σ_{n+1} if $x \in A \Leftrightarrow \exists y(\langle x, y\rangle \in B)$ where B is Π_{n}, and A_{1} is Π_{n+1} if its complement is Σ_{n+1} A function f is Σ_{n} if its graph $G_{f}=\{\langle\boldsymbol{x}, \boldsymbol{y}\rangle f(\boldsymbol{x}) \rightarrow y\}$ is Σ_{n}

Let \mathscr{L} be the class of functions on U satisfying

$$
f\left(x_{1}, \quad . x_{t}, \quad, x_{n}\right) \rightarrow z \quad \& \quad f\left(x_{1}, \quad, x_{1}^{\prime}, \quad, \lambda_{n}\right) \rightarrow z^{\prime}
$$

$$
\& \quad x_{1} \sim x_{1}^{\prime} \Rightarrow z \sim z^{\prime}
$$

Functions in \mathscr{L} will be identified in the obvious way with partial single-valued functions on $|\leqslant|$ Thus by a function in $\mathscr{S} \cap \Sigma_{n}$ we will interchangeably mean a Σ_{n}-function in \mathscr{L} or a function on $|\leqslant|$ induced by a Σ_{n}-function in \mathscr{S} It is shown in [15] that $|\leqslant|$ is admissible and that every $|\leqslant|$-recursive tunction is in $\mathscr{L} \cap \Sigma$,

Let , $\left(\alpha, \gamma\right.$ ' be a partial single-valued function on $|\leqslant|$ Then $\lim _{\alpha} f^{\prime}(\alpha . \gamma)=\delta$ iff $\exists \beta(\forall \alpha \geqslant \beta)\left(f^{\prime}(\alpha, \gamma)=\delta\right)$ For $f, f^{\prime} \in \mathscr{L}$ we say that $\lim _{d} f^{\prime}(\sigma, x) \simeq f(x)$ if this is the case for the induced functions on $|\leqslant|$, where $=$ has its usual meaning

Lemma 3.1. Let Θ be an adequate theory Suppose $f \in \mathscr{L} \cap \Sigma_{2}$ is total (on $|\leqslant|$) Then thete' is a total Θ-computable function $f^{\prime} \in \mathscr{E}$ such that $\lim _{\text {co }} f^{\prime}(a, x) \simeq f(x)$

Proof. Since G_{1} is Σ_{y} it follows that $t \leqslant_{u} A$, say using W, where A is Θ-s c and by Theorem 26) regular Let $\lambda \sigma A^{*}$ and $\lambda \sigma W^{*}$ be (\leqslant)-enumerations of A and W respectively Let N_{0}, be the Θ-finite set of minimal $\eta<\sigma$ such that

$$
(\exists y<\sigma)\left(\exists x^{\prime} \sim x\right)\left(\left\langle x^{\prime}, y, \eta\right\rangle \in W^{s} \& K_{n} \Gamma, A^{\prime}=\emptyset\right)
$$

Define

$$
f^{\prime}(\sigma, \lambda)= \begin{cases}\mu \nu\left[\left(\exists \eta \in N_{,}^{*}\right)\left(\exists \lambda^{\prime}-\imath\right)\left(\left\langle x^{\prime}, y, \eta\right\rangle \in W^{\prime r}\right)\right. & \text { if } \left.N_{x}^{\sigma} \neq \emptyset\right) \\ \sigma & \text { else }\end{cases}
$$

Then $f^{\prime} \rightsquigarrow$ total and in $\mathscr{J}^{\prime} \cap \Sigma_{1}$
Suppose $f(\alpha)=\beta$ (on $|\leqslant|$) Choose x, y such that $\rho(x)=\alpha, \rho,(y)=\beta$ and $f(\lambda) \rightarrow v$, and choose η such that $\langle x, y, \eta\rangle \in W \& K_{\eta} \cap A=\emptyset$ By the regularity of A we can choose σ sufficiently large so that $y<\sigma .\langle x, y, \eta\rangle \in W^{\sigma}$ and $(U-$ A) $\cap L^{\prime \prime}=\left(U-A^{\sigma}\right) \cap L^{\eta}$ Suppose $\tau \geqslant \sigma$ Then $N_{\lambda}^{\tau} \neq \emptyset$ since η is a candidate Let $\xi \in N^{-}$, There is $x^{\prime} \sim x$ and y^{\prime} such that $\left\langle x^{\prime}, y^{\prime}, \xi\right\rangle \in W^{-} \& K_{\varepsilon} \cap A^{\top}=\emptyset$ Since $\xi \leqslant \eta$ and iwe may assume our enumeration of Θ-finte sets to satisfy) $K_{\xi} \subseteq L^{\ell}$, $K_{\varepsilon} \cap A=\emptyset$ But then $\left\langle x^{\prime}, y^{\prime}, \xi\right\rangle$ is a correct computation of f, 1e $f\left(x^{\prime}\right) \rightarrow y^{\prime}$ Since $f \in f^{\prime}$ and $x^{\prime} \sim x$, we must have $y^{\prime} \cdots y$ Thus $\lim _{t r} f^{\prime}(\sigma, \alpha)=\beta$

Definition 3.2. The $\Sigma_{2}-\operatorname{cof}(\alpha)$ is the least ordinal β for which there is a function $f \in \mathscr{Y} \cap \Sigma_{2}$ with domain β and range unbounded in α

Lemma 3.3. Let Θ he an adequate theory Then $\Sigma_{2}-\operatorname{cof}(|\leqslant|)=\Sigma_{2}$-cof $\left(|\leqslant|^{+}\right)$

Proof. Let $k \in \mathscr{F}$ be a total Θ-computable function with range in $\mid \leqslant 1^{*}$ such that $\{\beta . k(\beta)<\alpha\}$ is bounded for each $\alpha<|\leqslant|^{*}$ Such a k can be defined from a (\leqslant)-enumeration of a $\Theta-s c$ non- Θ-computable set $W \subseteq L^{\wedge=1}$ Suppose $f \in \mathscr{L} \cap \Sigma_{2}$ with domain β is unbounded in $|\leqslant|$ Then $g(\alpha)=k(f(\alpha))$ is an $\mathscr{L} \cap \Sigma_{2}$ function unbounded in $\leqslant \mid$ Thus $\Sigma_{2}-\operatorname{cof}\left(|\leqslant|^{*}\right) \leqslant \Sigma_{2}-\operatorname{cof}(|\leqslant|)$

For the converse mequality suppose $f \in \mathscr{L} \cap \Sigma_{2}$ with doman β s unbounded in
 follows from Lemma 31 and some easily shown closure properties of Σ_{n} and I_{n} sets that $\mathrm{g} \mathrm{M}_{2}$

By a (\leqslant)-sequence of $\Theta-\mathrm{sc}$ sets we mean a Θ-computable mapping r such that

Lemma 3.4. Suppose $\alpha<\Sigma_{2}$ - $\operatorname{cof}(|\leqslant|)$ and $\left\langle I_{1} \lambda<\alpha\right)$ is $a(-5)-$ sequence of $\Theta-5 \mathrm{c}$ sets such that for each $x<\alpha, I_{8}$ is Θ-finite Then $\cup\left\{I_{2} x<\alpha\right\}$ is Θ-finute

Proof. Let α be least for which such a sequence exists whose union is not Θ-finte Let $W=\bigcup\left\{I_{x}, x<\alpha\right\}$ and let $\lambda \sigma W^{* *}$ be a (\leqslant)-enumeration of W Define $g(x)=\mu \sigma\left[I_{1} \subseteq W^{\sigma}\right]$ Then $g \in \mathscr{L} \cap \Sigma_{2}$ and g is defined on L^{α} But $g\left(L^{\alpha}\right)$ is unbounded in U since W is not Θ-fimite, ie Σ_{2} - $\cot (|\leqslant|) \leqslant x$

Assume for the remaining part of this section that Θ is an adequate theory We are going to divide the projectum $L^{k=1^{*}}$ into Σ_{2} - $\operatorname{cof}(|\leqslant|)$ many Θ-finite blocks M_{α}, each bounded strictly below $\mid \leqslant 1^{2}$ Clearly $\Sigma_{2}-\operatorname{cof}(|\leqslant|) \leqslant 1 \leqslant 1^{*}$ Suppose first that $\Sigma_{2}-\operatorname{cof}(|\leqslant|)=|\leqslant|^{-}$In this case we let $M_{\alpha}=M_{\alpha}^{\sim}=\{x \quad x \sim \alpha\}$ for each $\alpha<1 \leqslant\left.\right|^{\infty}$ Then each $M_{c x}$ is Θ-finite unformly in α

Now suppose $\Sigma_{,},-\cot (|\leqslant|)<1 \leqslant 1^{+}$We are going to define Θ-finte approximathons $M_{c z}^{r}$ to our blocks $M_{c z}$ unitormly from σ and α Furthermore

$$
\left(\forall \alpha<\Sigma_{2}-\cot \left(|\leqslant| n(\exists \sigma)(\forall \tau \geqslant \sigma)(\forall \beta<\alpha)\left(M_{\beta}^{-}=M_{\beta}\right),\right.\right.
$$

1e our approximation will be "tame"
Let $g \Sigma_{2}-\operatorname{cof}(|\leqslant|) \rightarrow \mid \leqslant 1^{*}$ be a $\mathscr{P} \cap \Sigma_{2}$ function unbounded in $\mid \leqslant 1^{+}$, and let $g^{\prime} \in \mathscr{L}$ be Θ-computable such that $\lim _{\sigma} g^{\prime}(\sigma, \alpha)=g(\alpha)$ and ran $g^{\prime} \subseteq L^{i=i^{+}}$These functions exist by Lemma 31 and Lemma 33 Define

$$
h(\sigma, \alpha)=\mu \gamma\left[(\forall \beta<\alpha)\left(g^{\prime}(\sigma . \beta)<\gamma\right)\right]
$$

and put $M_{\alpha}^{\sigma}=\{\varepsilon h(\sigma, \alpha) \leqslant \varepsilon<h(\sigma, \alpha+1)\}$ Note that a canonical Θ-index for M_{α}^{*} is obtamed umformly from α and σ and that each M_{α}^{s} is bounded strictly below $1 \leqslant 1^{*}$ To show $\lambda \alpha \sigma M_{\alpha,}^{*}$ is taine, let

$$
I_{\beta}=\left\{\sigma \quad(\exists \tau>\sigma)\left(g^{\prime}(\tau, \beta) \not \mathrm{g}^{\prime}(\sigma, \beta)\right)\right\}
$$

FIX $\alpha<\sum_{2}-\operatorname{cof}(\mid \leqslant 1)$ Then $\left\langle I_{\beta} \beta<\alpha+1\right\rangle$ is a (\leqslant)-sequence of Θ-s c sets such that
each I_{β} is Θ-finte Applying Lemma $3+$ we obtain

$$
\begin{aligned}
& \exists \sigma(\forall \beta \leqslant \alpha)(\forall \tau \geqslant \sigma)\left(g^{\prime}(\tau, \beta) \sim \mathrm{g}^{\prime}(\sigma . \beta)\right), \\
& \exists \sigma(\forall \beta<\alpha)(\forall \tau \geqslant \sigma)\left(M_{\beta}^{\tau}=M_{\beta}^{\tau}\right)
\end{aligned}
$$

Let $M_{\beta}=M_{\beta}^{\sigma}$ for sufficiently large σ It remains to show

$$
\bigcup\left\{M_{\beta} \beta<\Sigma_{2}-\operatorname{cof}(|\leqslant|)\right\}=L^{l=\left.\right|^{*}}
$$

Fix $\varepsilon<|\leqslant|^{*}$ and choose least α for which $\varepsilon<h(\sigma, \alpha)$ where σ is fixed and sufficiently large Such α exists since g is unbounded in $|\leqslant|^{*}$ By the definition of h there is $\beta<\alpha$ such that $\varepsilon \leqslant g^{\prime}(\sigma, \beta)$ But then $\varepsilon<h(\sigma, \beta+1)$, so by the choice of $\alpha, \alpha=\beta+1$ and $h(\sigma, \beta) \leqslant \varepsilon$

4. The splitting theorem

For parts (1) and (11) of our main theorem we need assume Θ has a reasonable pain ing function By this we mean that for each $\alpha<|\leqslant|^{*}$ there is $\beta<1 \leqslant 1^{2}$ such that $L^{\alpha} \times L^{\alpha}=\left\{\langle x, y\rangle \quad x, y \in L^{\alpha}\right\} \subseteq L^{\beta}$ Surely any adequate Θ that comes to mind has a reasonable pairing function

Theorem 4.1. Suppose Θ s an adequate theory with a reasonable pairing function Let C be a regular $\Theta-\mathrm{sc}$ set and let D be a $\Theta-\mathrm{sc}$ non- Θ-computable set Then dhere are $\Theta-\mathrm{sc}$ sets A and B such that $C=A \cup B, A \cap B=\emptyset, A \leqslant C, B \leqslant C$ and
(1) $\Theta[A]$ and $\Theta[B]$ are adequate theortes (so in parttcula) A and B are hyperregular),
(ii) $A^{\prime} \equiv B^{\prime} \equiv 0^{\prime}$.
(ii1) $D \not{ }_{w} A$ and $D \not *_{w} B$

Before proving 'Theorem 41 we state some of its usual corollanes First we need the following ' muma

Lemma 4.2. If A and B are disjoint regular $\Theta-\mathrm{s} c$ sets, then $\operatorname{deg}(A \cup B)=$ $\operatorname{ceg}(A) \vee \operatorname{deg}(B)$ and $\mathrm{d}-\operatorname{deg}(A \cup B)=\mathrm{d}-\operatorname{deg}(A) \vee \mathrm{d}-\operatorname{deg}(B)$

Proof. Clearly $A \cup B \leqslant A \oplus B$ For the converse we note that

$$
U-A=(U-A \cup B) \cup B
$$

Using the regularity of B we have

$$
K_{\gamma} \cap A=\emptyset \Leftrightarrow \exists \eta\left(K_{\eta} \subseteq K_{\gamma} \& K_{\gamma}-K_{\eta} \subseteq B \& K_{\eta} \cap(A \cup B)=\emptyset\right)
$$

1 e $A \leqslant A \cup B$ The proof for d-degrees does not use regularity

Let $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}$ vary over $\Theta-\mathrm{s} \mathbf{c}$ degre s (Θ-s c. d-degrees) and let \mathbf{a}^{\prime} denote the fump (the d-jump) of a

Corollary 4.3. (1) $(\forall c>0)(\exists a, b)(c=a \vee b \& a<c \& b<c \& a \mid b)$,
(11) $\left(\forall d_{f}^{\prime}\left(0<d<0^{\prime} \Rightarrow \exists a\left(d \mid a \& a^{\prime}=0^{\prime}\right)\right)\right.$

The proofs are entirely similar to the ones found in [10] and [11], using the main theorem and Lemma 42

Corollary 4.4. (1) $\exists \mathbf{a}, \mathbf{b}\left(0<\mathbf{a}<\mathbf{b} \& \mathbf{a}^{\prime}=\mathbf{b}^{\prime}\right)$,
(i1) $\exists \mathbf{a}, \mathbf{b}\left(0<\mathbf{a}<\mathbf{b} \& \mathbf{a}^{\prime}<\mathbf{b}^{\prime}\right)$,
(iii) $\exists \mathbf{a}, \mathbf{b}\left(\mathbf{a} \mid \mathbf{b} \& \mathbf{a}^{\prime}=\mathbf{b}^{\prime}=(\mathbf{a} \vee \mathbf{b})^{\prime}\right)$
(iv) $\exists \mathbf{a}, \mathbf{b}\left(\mathbf{a} \mid \mathbf{b} \& \mathbf{a}^{\prime}=\mathbf{b}^{\prime}=\mathbf{a} \vee \mathbf{b}\right)$

We now proceed with the proof of Theorem 41 Our description of the construction will be in terms of A only whenever the description in terms of B is analogous In case $\lambda \sigma H^{\prime \prime}$ is a (\leqslant)-enumeration of Θ-finite sets we use the notation $H^{~}{ }^{\sigma}=\bigcup\left\{H^{\top} \quad \tau<\sigma\right\}$ By Theorem 26 we may assume D to be regular and satisfy $\forall x(\forall y \sim x)(x \in D \Rightarrow y \in D)$ Let $\lambda \sigma D^{\sigma}$ be a (\leqslant)-enumeration of D and let $\lambda \sigma C^{\sigma}$ be a disjoint (\leqslant)-enumeration of C We are gning to define (\leqslant)enumerations $\lambda \sigma A^{\sigma}$ and $\lambda \sigma B^{\sigma}$ of A and B inductively on the prewellorder \leqslant If $\sigma \sim \tau$, then the set constructions at stage σ and stage τ will be identical though the indices used may differ At stage σ, C^{σ} will be added to preciseiy one of $A^{-\sigma \sigma}$ and $B^{<\sigma}$ Thus A and B will be $\Theta-s c, C=A \cup B$ and $A \cap B=\emptyset$ Furthermore $A \leqslant C$ and $B \leqslant C$ For let $q(\xi)=\mu \sigma\left[\left(K_{\xi}-C^{\alpha \sigma}\right) \cap C=\emptyset\right]$ Then $q \leqslant_{w} C$ and q is total by the regularity of C Clearly $K_{\xi} \cap A=\emptyset \Leftrightarrow K_{\xi} \cap A^{q(\xi)}=\emptyset$, so $A \leqslant C$

In order to satisfy (1) and (11) of the theorem, some care is needed in choosing a (\leqslant)-parametrization $\lambda \varepsilon \sigma W_{\varepsilon}^{c}$ of Θ-s c sets, besides requiring $\left\{\varepsilon W_{\varepsilon} \neq \emptyset\right\} \subseteq L^{|\leqslant|^{*}}$ First of all we want $\lambda \varepsilon \sigma W_{\varepsilon}^{\sigma}$ to be repetitive in the following sense For each $\alpha, \varepsilon<|\leqslant|^{*}$ there is $\delta<|\leqslant|^{*}$ and σ such that $\alpha<\delta$ and $\forall \tau>\sigma\left(W_{t}^{\tau}=W_{s}^{-}\right)$Then we want Defintion 211 of the jump to make sense for our choice of (\leqslant)parametrization Let $\lambda \varepsilon \sigma V_{\varepsilon}^{c r}$ be a (\leqslant)-parametrization obtained as in Lemma 17 from the standard one, such that $\left\{\varepsilon \quad V_{\varepsilon} \neq \emptyset\right\} \subseteq \mathrm{L}^{\varepsilon \leqslant 1^{*}}$ Let $W_{\varepsilon}^{\sigma}=V_{(\varepsilon),}^{\sigma}$ Then $\lambda \varepsilon \sigma W_{\varepsilon}^{\sigma}$ has the requred properties

To make $\Theta[A]$ and $\Theta[B]$ into adequate theories, the construction is split into two cases

Definition 4.5. Suppose $\beta<|\leqslant|$. Then

$$
\begin{aligned}
\operatorname{cof}(\beta)=\mu \alpha[\exists \Theta \text {-computable } q & \mathrm{L}^{\beta} \rightarrow \mathrm{L}^{\alpha} \text { such that } \\
& \left.\forall \varepsilon \in \mathrm{L}^{\alpha} \exists \gamma<\beta\left(q^{-1}(\varepsilon) \subseteq \mathrm{L}^{\gamma}\right)\right]
\end{aligned}
$$

Remark Since $\beta<1 \leqslant 1, q^{1}(\varepsilon)$ may be considered: Θ-finite set with an index obtaned uniformly from ε Note that dom $q=L^{\beta}$

If $\left|\leqslant\left.\right|^{r}=|\leqslant|\right.$ or $| \leqslant\left.\right|^{1}<|\leqslant|$ and $\cot \left(|\leqslant|^{*}\right)<|\leqslant|^{*}$, then attempts are made to preserve computations $t \in W_{+}^{\wedge}$ to $\lambda<\varepsilon$ In case $|\leqslant|^{+}<1 \leqslant 1$ and $\operatorname{cof}\left(|\leqslant|^{+}\right)=|\leqslant|^{*}$, additional dttempts are made to preserve computations on mitral segments of $L^{2}{ }^{14}$

Assume we have shown $A \leqslant_{u} 0^{\prime} A^{\prime}$ is weakly Θ-s c in A by Proposition 212 By the hyperregulanty of A, A^{\prime} is in fact $\Theta-\mathrm{sc}$ in A and hence Θ-s c in 0^{\prime} Let A^{\prime} denote the jump of A using the standard (\leqslant) -parametrization $\lambda \varepsilon V_{t}$ Then

$$
\begin{aligned}
K_{\delta} \cap A^{\prime}=\emptyset & \Leftrightarrow \neg\left(\exists \eta \in \cup\left\{V_{,} \quad \varepsilon \in K_{\delta}\right\}\right)\left(K_{n} \cap A=\emptyset\right) \\
& \Leftrightarrow f(\delta) \in A^{\prime}
\end{aligned}
$$

where f is a Θ-computable mapping giving a standard index for $\left.\bigcup_{\left\{V_{t}\right.} \varepsilon \in K_{\delta}\right\}$ Thus ($U-A^{\prime}$) is weakly $\Theta-s c$ in $)^{\prime}$ iff $\left(U-A^{\prime}\right)$ is $\Theta-$-.c in 0^{\prime} Both A^{\prime} and A^{\prime} satisfy Proposition 212 (in) and (iv), so $A^{\prime} \equiv_{m} A^{\prime}$ Thus $A^{\prime} \leqslant{ }_{w} 0^{\prime}$ since $A^{\prime} \leqslant_{w} 0^{\prime}$, and hence $\left(U-A^{\prime}\right)$ is $\Theta-$ c in 0^{\prime} But then (again using $\left.A^{\prime} \equiv_{\mathrm{m}} A^{\prime}\right)\left(U-A^{\prime}\right)$ is $\Theta-\mathrm{sc}$ in 0^{\prime} Since both A^{\prime} and its complement are Θ-s c in $0^{\prime} . A^{\prime} \leqslant 0^{\prime}$ Thus it suffices to make $A^{\prime} \leqslant{ }_{u} 0^{\prime}$ in order to satisty (in)

To make $A^{\prime} \leqslant{ }_{w}{ }^{\prime}{ }^{\prime}$, attempts are made to preserve computations showing $\varepsilon \in A^{\prime}$ t'y creatong a requirement for such a computation Then one can effectively from ($)^{\prime}$ look through the list of requirements to determine whether or not $\varepsilon \in A^{\prime}$

Finally, to msure that for no $\varepsilon,(U-D)=W_{F}^{A}$, we use the usual approach of trying to preserve computations $x \in W^{A}$ for mınımal x not in D In case $(U-D)=$ W_{t}^{\prime} for some ε we would eventually preserve a correct computation for each $x \in W_{r}^{\prime}$, ie W_{+}^{A} would be $\Theta-s c$ Thus computations $x \in W_{+}^{A}$ will eventually stop being preserved However we need have Θ-finte blocks of requrrements to settle down by some stage of the construction Towards this end we use Shore's technique of letting each block play the role of a single requirement in trying to preserve a computation $x \in W_{*}^{A}$ for $x \notin D$ and some ε in the block considered Furthermore, to avoid the problem of never finishing creating requirements with arguments from a fixed level of \leqslant, we utilize the fact that D was chosen to have the property $\forall x(\forall y-x) \backslash x \in D \Rightarrow y \in D)$ Thus there is a nced to create a requirement preserving a compatation $x \in W_{f}^{A}$ only if no other computation $y \in W_{*}^{A}$ for $v \sim$ ィ 4 beng preserved

Let $M_{\alpha \alpha}^{* r}$ and M_{α} for $\alpha<\Sigma_{2}$-cof $(|\leqslant|)$ be the Θ-finite blocks described in Section 3 Wc will create sets $R_{v_{1}}\left(R_{B_{1}}\right)$ of requirements tor $1<3 \quad R_{\text {Ao }}$ will insure that $\Theta[A]$ is delequate, $R_{A 1}$ that $A^{\prime} \leqslant_{w} 0^{\prime}$, and $R_{A 2}$ that $D \not *_{\mu} A S_{A}$ denotes the set of A-requirements (1 e requirements in $\bigcup\left\{R_{A}, 1<3\right\}$) injured during the constructhon R_{A}^{\prime}, and S_{\wedge}^{*} denote the Θ-finte parts of R_{A} and S_{A} obtained by stage σ Each requrement will be of the form $\langle\varepsilon, x, F\rangle$ where F is (a canonical Θ-index for) a Θ-finite set Such a requirement in R_{A}, is called an $\varepsilon-A$ requirement or
an $\alpha-A$ requirement (at σ) in case $\varepsilon \in M_{\alpha}\left(\varepsilon \in M_{\alpha}^{\sigma}\right)$ It is sald to have argument x In case $F \cap A^{\sigma}=\emptyset$ it is said to be active at σ, else it is inactive $\varepsilon \in M_{\alpha}^{\sigma}$ is an inactive $\alpha-A$ reduction procedure at σ in case there is an active $\varepsilon-A$ requirement in $R_{A 2}^{\sigma}$ preserving a computation $x \in W_{i}^{\wedge}$ for some $x \in D^{\sigma}$, ie there is

$$
\langle\varepsilon, x, F\rangle \in R_{A}^{<\sigma}-S_{A}^{*}{ }^{*} \quad \text { s.t } \quad \exists \eta<\sigma\left(\langle x, \eta\rangle \in W_{\varepsilon}^{\sigma} \& K_{\eta} \subseteq F \& x \in D^{\sigma}\right)
$$

If no such requirement exists, then ε is an active $\alpha-$ A reduction procedure at σ
Let $r|\leqslant| \rightarrow \Sigma_{2}-\operatorname{cof}(|\leqslant|)$ be a Θ-computable function such that

$$
\left(\forall \alpha<\Sigma_{2}-\operatorname{cof}(|\leqslant|)(\forall \beta)(\exists \gamma>\beta)(r(\gamma)=\alpha),\right.
$$

where α, β and γ vary over $|\leqslant|$ The function r indicates which part of the construction to concern ourselves with at a given stage

The constructon at stage σ Suppose $r(\sigma)=\alpha$ We describe only the constructhon of A-requrements, the construction of B-requrements being analogous

First we construct requirements making $\Theta[A]$ adequate The construction is split into two cases

Case $1\left|\leqslant\left.\right|^{*}=1 \leqslant\right|$ or $\operatorname{cof}\left(|\leqslant|^{*}\right)<1 \leqslant\left.\right|^{+}<1 \leqslant 1$. Let

$$
\begin{aligned}
K^{\sigma}=\{(\varepsilon, \lambda) & \in M_{\alpha}^{s} \times\left(\bigcup\left\{M_{\beta}^{\sigma} \beta \leqslant \alpha\right\}\right)(\exists \eta<\sigma)\left(\langle x, \eta\rangle \in W_{\varepsilon}^{\sigma}\right. \\
& \left.\left.\& K_{\eta} \cap A^{<\sigma}=\emptyset\right) \&\left(\forall w \in R_{A}^{<\sigma}-S_{A}^{<\sigma}\right)\left((w)_{1} \neq \varepsilon \vee(w)_{2} \neq x\right)\right\}
\end{aligned}
$$

Thus $\langle\varepsilon, x\rangle \in K^{c}$ only if there is a computation $x \in W_{c}^{{ }^{-}}$which is not already being preserved by an active requirement A requirement for each $\langle\varepsilon, x\rangle \in K^{\sigma}$ preserving such a computation will be created. Letting

$$
F_{t}^{\prime}=\bigcup\left\{K_{\eta}\langle\lambda, \eta\rangle \in \mathcal{W}_{\varepsilon}^{s} \& K_{\eta} \cap A^{\alpha \tau}=\emptyset\right\}
$$

we put

$$
R_{A O}^{\sigma}=R_{A 0}^{-\sigma} \cup\left\{\left\langle\varepsilon, x, F_{1}^{\sigma}\right\rangle\langle\varepsilon, x\rangle \in K^{\sigma}\right\}
$$

Case II $\operatorname{Cof}\left(|\leqslant|^{*}\right)=1 \leqslant\left.\right|^{x}<1 \leqslant 1$ Let

$$
\begin{aligned}
K^{\sigma}=\left\{\langle\varepsilon, x\rangle \in M_{\alpha}^{\sigma} \times L^{\mid<i^{*}}\right. & (\exists \eta<\sigma)\left(\langle x, \eta\rangle \in W_{\varepsilon}^{\sigma} \& K_{\eta} \cap A^{<\sigma}=\emptyset\right) \\
& \&\left(\forall w \in R_{A 0}^{<\sigma}-S_{A}^{<\sigma}\right)\left((w)_{1} \neq \varepsilon \vee(w)_{2} \neq x\right) \\
& \&\left[(\forall y < x) (\exists w \in R _ { A 0 } ^ { < \sigma } - S _ { A } ^ { - \sigma }) \left((w)_{1}=\varepsilon\right.\right. \\
& \left.\left.\left.\&(w)_{2}=y\right) \vee x \in \bigcup\left\{M_{\beta}^{\sigma r} \beta \leqslant \alpha\right\}\right\}\right\}
\end{aligned}
$$

To show that A is hyperregular in this case, we need preserve computations on initral segments of $L^{|\leqslant|^{*}}$ In addition, in order to show $\Theta[A]$ is adequate, we need preserve computations $x \in W_{\varepsilon}^{A}$ for $x \in \bigcup\left\{M_{\beta} \beta \leqslant \alpha\right\} . F_{\varepsilon x}^{\sigma}$ and $R_{A, 0}^{\sigma}$ are defined as in the previous case

Next we construct requirements making $A^{\prime} \leqslant{ }_{w} O^{\prime}$ Let

$$
\begin{aligned}
I^{\alpha}= & \left\{\varepsilon \in M_{\alpha}^{\sigma r}\left(\exists \eta \in W_{\varepsilon}^{\alpha}\right)\left(K_{n} \cap A^{-\sigma}=\emptyset\right)\right. \\
& \left.\&\left(\forall w \in R_{\wedge_{1}^{*}}^{-\cdots} S_{\Lambda}^{-\sigma}\right)\left((w)_{1} \neq \varepsilon\right)\right\}
\end{aligned}
$$

Letting $G_{t}^{\sigma}=\bigcup\left\{K_{n} \quad \eta \in W_{t}^{\sigma} \& K_{\eta} \cap A^{-\sigma}=\eta\right\}$ we put

$$
R_{\wedge}^{\sigma}=R_{A}^{* \sigma} \cup\left\{\left\langle\varepsilon, 0, G_{\varepsilon}^{\sigma}\right\rangle \varepsilon \in I^{\sigma}\right\}
$$

Finally we construct requirements making $D \not *_{\text {w }} A$ Let H^{+}be the Θ-finite set
 1 s an active $\alpha-A$ reduction procedure at $\sigma^{\prime \prime}$) Next let
$N^{\sigma}=\left\{\langle\varepsilon, \imath\rangle \in M_{\alpha}^{\sigma} \times H^{\sigma r} \quad\right.$ " ε is an active $\alpha-A$ reduction procedure at σ^{*}

$$
\left.\&(\exists \eta<\sigma)\left(\langle\mathrm{t}, \eta\rangle \in W_{\mathrm{t}}^{\sigma} \& K_{n} \cap A^{-\sigma}=\emptyset\right)\right\}
$$

Leting $F_{t}^{\sigma}=\bigcup\left\{K_{\eta}\left(\exists \lambda \in H^{\sigma}\right)\left(\langle\lambda, \eta\rangle \in W_{+}^{*} \& K_{\eta} \cap A^{-\sigma r}=\emptyset\right)\right\}$ we put

$$
R_{A 2}^{\prime r}=R_{12}^{-r} \cup\left\{\left\langle\varepsilon, x, F_{t}^{r}\right\rangle\langle\varepsilon, t\rangle \in N^{*}\right\}
$$

To establish our priorities let

$$
J_{4}^{r}=\left\{\langle\varepsilon, \lambda . \dot{F}\rangle \in R_{s}^{\sigma}-S_{A}^{-\sigma} F \cap C^{\sigma} \neq \emptyset\right\} \quad \text { where } \quad R_{1}^{o}=\bigcup\left\{R^{\prime \prime}, l<3\right\}
$$

J_{A}^{5} is the set of active A-requirements which would be injured in case $C^{\circ r}$ were added to A Using the notation $(H)_{1}=\{(w), w \in H\}$, define $f_{A}(\sigma)=$ $\mu \beta\left[\left(J_{A}^{*}\right)_{1} \cap M_{\beta}^{*} \neq \emptyset\right]$ in case such β exists and let $f_{4}(\sigma)=|\leqslant|$ otherwise It is clear from the definition of the blocks M_{β}^{τ} (considering the split in that definition) that f_{s} and f_{B} may be vewed as Θ-computable functions If $f_{A}(\sigma) \leqslant f_{B}(\sigma)$, let $B=B^{-\sigma} \cup C^{\sigma x}$ and $A^{\sigma}=A^{* \sigma}$ If $f_{B}(\sigma)<f_{,}(\sigma)$, let $A^{\sigma}=A^{*} \cup C^{\sigma}$ and $B^{\sigma}=$ B^{-r}

To complete the construction. let $S_{A}^{r}=\left\{\langle\varepsilon \lambda, F\rangle \in R_{A}^{*} F \cap A^{*} \neq \emptyset\right\}$
Lemma 4.6. For each $\alpha<\Sigma_{2}-\cot (|\leqslant|$, the set of $\alpha-A$ and $\alpha-B$ requrements is Θ-finite

Proof. The proof is by induction on α Fix $\alpha<\Sigma_{2}$-cof $(|\leqslant|)$ and assume the set of $\beta-A$ and $\beta-B$ requirements is Θ-fimite for each $\beta<\alpha$ By the tameness of our blocking there is a stage σ_{i}, by which all blocks $\mathcal{M}_{\beta}^{\sigma}$ for $\beta \leqslant \alpha$ have settled down Let

$$
I_{\beta}=\left\{\sigma>\sigma_{0}\left(\exists w \in R^{\sigma} \cup R_{B}^{\sigma}-R_{A}^{<\sigma} \cup R_{B}^{<\sigma}\right)\left((w)_{1} \in M_{\beta}^{\sigma}\right)\right\}
$$

Then I_{13} is Θ-finite for each $\beta<\alpha$ by our induction hypothesk so $\bigcup\left\{I_{\beta} \beta<\alpha\right\}$ is Θ-finite by Lemma $3+$ Thus, using the regularity of C, we can assert the existence of $\sigma_{1}>\sigma_{0}$ such that all β-requrements for $\beta<\alpha$ have been created by σ_{1} and no such β-requirement will meet C^{τ} for $\tau \geqslant \sigma_{1}$ It follows that $f_{A}(\tau) \geqslant \alpha$
and $f_{B}(\tau) \geqslant \alpha$ for $\tau \geqslant \sigma_{1}$ and hence, by our priorities. no $\alpha-A$ requrement will be infured beyond σ_{1}

Now we show the existence of $\sigma_{2} \geqslant \sigma_{1}$ beyond wheh no $\alpha-$ A requirement in $R_{A} ; \kappa$ created Let

$$
\left.T_{1}=\left\{\varepsilon \in M_{*}\left(\exists \sigma \geqslant \sigma_{1}\right) \exists w \in R_{A}^{\prime \prime}-R_{A}^{*}\right)\left((w)_{1}=\varepsilon\right)\right\}
$$

T_{1} is Θ-s c and hence, by the adequacy of Θ, Θ-finte After σ_{1} only permanent $\alpha-A$ requirements are created As is readily seen from the definition of I^{σ}, at most one permanent ε-requirement is created for each $\varepsilon \in M_{r \varepsilon}$ Thus the existence of σ_{2} follows from T_{1} beng Θ-finte

Next we show the existence of $\sigma_{3} \geqslant \sigma_{2}$ beyond which no $\alpha-$ A requirement in $R_{\text {As }}$ is created We need consider two cases

Case A $|\leqslant|^{*}=1 \leqslant 1$ or $\cot \left(|\leqslant|^{+}\right)<1 \leqslant\left.\right|^{*}<1 \leqslant 1$ The set

$$
\begin{array}{r}
\left\{\langle r, \gamma) \in M_{v r} \times \cup\left\{M_{k} \beta \leqslant \alpha\right\}\left(\exists \sigma \geqslant \sigma_{2}\right)\left(\exists w \in R_{10}^{\prime \prime}-R_{A_{0}}^{-5}\right)\right. \\
\left.\left((w)_{1}=\varepsilon \&(w)_{2}=x\right)\right\}
\end{array}
$$

is Θ-finite by adequacy and the assumption on the pairing function The existence of σ, then follows as above

Case $B \operatorname{Cof}\left(|\leqslant|^{+}\right)=|\leqslant|^{+}<1 \leqslant 1$ Let

$$
\begin{aligned}
& T_{0}=\left\{\varepsilon \in M_{\alpha}\left(\forall \lambda<|\leqslant|^{*}\right)(\exists \sigma)\left(\exists v \in R_{A}^{\sigma}-S_{A}^{(r)}\right)\right. \\
& \left.\quad\left((w)_{1}=\varepsilon \&(w)_{2}=x\right)\right\}
\end{aligned}
$$

T_{0} is the set of $\varepsilon \in M_{\alpha}$ for which there is a permanent ε-requrement with argument λ for each $\subseteq \mathrm{L}^{1 / 4} \quad T_{11}$ is Θ-finite by adequacy and hence there is $o_{2}^{\prime} \geqslant \sigma_{2}$ by which stage all such requirements are created

Suppose there is $\gamma<1 \leqslant\left.\right|^{+}$such that if an $\alpha-A$ requirement in $R_{A 0}$ is created beyond σ_{2}^{\prime} then its argument is less than γ Then the existence of $\sigma_{3} \gtrsim \sigma_{2}^{\prime}$ follows just as in the former case.

Suppose no such γ exists For each $x \in \mathbf{L}^{1-\|^{*}}$ let

$$
\begin{aligned}
& q(x)=\nu \varepsilon\left[\left(\exists \sigma \geqslant \sigma_{2}^{\prime}\right)\left(\exists w \in R_{10}^{\prime \prime}-R_{A 0}^{<o}\right)\right. \\
& \left.\quad\left((w)_{1}=f \&(w)_{2} \nRightarrow x \& \varepsilon \in M_{\alpha}\right)\right]
\end{aligned}
$$

Then $q L^{L^{i t}} \rightarrow M_{c x}$ is total. Fix $\varepsilon \in M_{\alpha}$ If there is a permanent ε-requirement with argument $:$ for each $x \in L^{\prime=1^{*}}$, then $q^{-1}(\varepsilon)=\emptyset$ by our c'orce of σ^{\prime} Else there is $x<1 \leqslant i^{*}$ such that there is no permanent ε-requirement with argument x If $x \in \bigcup\left\{M_{\beta} \beta \leqslant \alpha\right\}$, then $q^{-i}(\varepsilon) \subseteq \bigcup\left\{M_{\beta} \beta \leqslant \alpha\right\}$, else $q^{\prime}(\varepsilon) \subseteq L^{0} \leqslant(x)+1$ In ether case $q^{\prime}(\varepsilon)$ is bounded strictly below $|\leqslant|^{*}$ But then $\operatorname{cof}\left(|\leqslant|^{*}\right)<|\leqslant|^{*}$, contradicting our case hypothess

Finally we show the existence of $\sigma \geqslant \sigma_{3}$ beyond which no $\alpha-A$ requirement in $R_{A}=15$ created First note that an $\alpha-A$ reduction proccdure inactive at some $\tau \geqslant \sigma_{1}$ will remain mactive forever, since no $\alpha-A$ requirement is injured beyond
σ_{i} The set of $\alpha-A$ reduction procedures whict become mactuve beyond σ_{i} is $\Theta-\mathrm{sc}$ and hence Θ-finte Thus thete $s \sigma_{+} \geqslant \sigma_{\text {; }}$ beyond which no $\alpha-A$ reduction procedure is made indetive

Suppose $\sigma_{4} \leqslant\left(\sigma<\tau\right.$ dad $f(\sigma)-\mathcal{H}(r)=\alpha$ From the chotee of σ_{4} it is casily seen that $H^{\prime \prime} \leqslant H^{\tau}\left(1 \mathrm{e} \lambda \in H^{*} \& y \in H^{+} \Rightarrow \lambda \leqslant y\right)$ Morcover, it an $\alpha-A$ requirement is created at σ, then $H^{*}<H^{\top}$ It follows that either the set of $\alpha-$ A requirements is Θ-finte or for each $\left\lfloor\notin D\right.$ there is a permanent $\alpha-A$ requirement $\left\langle\varepsilon, \lambda^{\prime}, F\right\rangle$ where $\mathrm{x}^{\prime} \sim \mathrm{x}$ and ε is a reduction procedure active beyond σ_{4}. If the latter were the case D would be Θ-computable contrary to our hypothesis For then

$$
\imath \notin D \Leftrightarrow\left(\exists \tau \geqslant \sigma_{1}\right)\left(\exists,^{\prime} \cdots \cup\left(\exists\left\langle\varepsilon, \imath^{\prime}, F\right\rangle \in R_{A_{2}}^{\top}-S_{A}^{\tau}\right)\right.
$$

(" ε is an active $\alpha-A$ reduction procedure dit τ
This completes the proof that the set of $\alpha-A$ requirements is Θ-finite Using the regularty of C choose $\sigma_{n}, \sim \sigma_{4}$ sufficiently large for all $\alpha-A$ requirements to hav been created and such that no ("will meet an $\alpha-A$ requirement for $\tau \geqslant \sigma_{5}$ No $\alpha-B$ requirement is mpured beyond σ_{a}, mee $f_{1}(\tau)>\alpha$ whenever $\tau \geqslant \sigma_{s}$ To show that the set of $\alpha-B$ requirements is Θ-finte we can thus repeat the above argument with $B \mathrm{in}$ place of A staring with σ, in place of σ_{1}

Lemma 4.7. A and B anc haperregula

Preof. The proot splits into three cases

Case $1 \quad|\leqslant|=1 \leqslant 1$ Suppose $H \subseteq W^{\prime}$, where H is Θ-finite We need to show the existence of τ wh that $H \leq{ }^{7} W_{t}^{\prime}$ Recall that our (\because)-parametrization of $\Theta \rightarrow c$ sets was chosen to be repettive Choose β_{0} such that $H \subseteq \bigcup\left\{M_{\gamma} \gamma<\beta_{0}\right\}$ and choose $\alpha \geqslant \beta_{1}$ for which there is $\delta \in M_{\alpha}$ such that $W_{s}=W$, Let σ be sufficiently large tor all $\alpha-A$ requrements to nave settled down Then for each $x \in H$ there is a permanent δ-requirement with argument in $R^{\prime \prime}$, For if this was not the cdse tor some $: \in H$, choose η such that $(\lambda, \eta) \in W_{o}$ and $K_{\eta 1} \cap A=\emptyset$ Let $\tau>\sigma$ be such that $H(\tau)=\alpha$ and $\langle t, \eta\rangle \stackrel{-}{ } W_{\delta}^{r}$ Then $\langle\delta, x\rangle \in K^{\tau}$ so a δ-iequirement with argument 1 would be put mto R_{i}, contradicting the choice of σ Let $\lambda \in H$ and choose $\langle\delta, ~ \imath, F\rangle E R_{i}^{\prime \prime}-S^{\prime \prime}$, Then there $\rightsquigarrow \eta$ such that $\langle\imath, \eta\rangle \in W_{\delta}^{\prime \prime}$ and $K_{n} \subseteq F$ But $\langle\delta, \chi, F\rangle$ is a permanent tequirement so $F \cap A=\not \subset, 1 \mathrm{e} \quad \mathrm{v} \in^{\sigma} \mathrm{W}_{\delta}^{\wedge}$. Thus $H \subseteq{ }^{\circ} W_{\delta}^{A}$ Choose τ such that $W_{s}^{\prime r} \subseteq W_{:}^{*}$ Then $H \subseteq{ }^{\top} W_{s}^{*}$

Betore proceeding to the remanning cases we note that by easy manipulations using a projection function one can show the following If $\left|\leqslant\left.\right|^{\gamma}<|\leqslant|\right.$, then a set A is hyperregular iff for every $\varepsilon, \mathrm{L}^{1=1^{\prime}} \subseteq W_{1}^{\prime} \Rightarrow \exists \sigma\left(\mathbf{L}^{\prime \prime} \subseteq{ }^{\prime \prime} W^{\prime}{ }^{\prime}\right)$

Case $2 \operatorname{Cot}\left(|\leqslant|^{*}\right)=\left|\leqslant\left.\right|^{2}<1 \leqslant\right|$ Suppose $L^{1 \prime-1} \subseteq W_{1}^{*}$ and let $\varepsilon \in M_{\alpha}$ Choose σ sufficiently large for all $\alpha-$ - requnements to have settled down Recall from the construction that in this case we attempted to preserve computations on mitial segments of $\mathrm{L}^{1-1^{r}}$ Thus using an argument similar to the one above there k for
each $\lambda \in L^{L_{1 *}^{*}}$ a permanent ε-requrement with argument λ in $R_{A 0}^{\text {s. }}$ preseiving a correct computation $\lambda \in W_{t}^{\wedge}$ Thus $I^{1-l^{+}} \subseteq^{\prime} W_{i}^{A}$

Case $3 \operatorname{Cof}\left(|\leqslant|^{*}\right)<|\leqslant|^{2}<1 \leqslant 1$ Let $\cot \left(|\leqslant|^{+}\right)=\gamma$ and let $q L^{1-\left.\right|^{+}} \rightarrow L^{\gamma}$ be as in Definition 45 . Recalling the remark following that defintion we view $q^{1}(x)$ as a set Θ-finite uniformly in x Definc the Θ-computable mapping $\lambda \varepsilon \sigma V_{r}^{\sigma}$ by

$$
V_{*}^{\sigma}=V_{u} \cup\left\{(x, \eta\rangle \in \mathbb{L}^{\gamma} \times L^{\sigma} \quad\left(\forall y \in q^{1}(x)\right)(\exists \xi<\sigma)\left(\langle y, \xi\rangle \in W_{\xi}^{\sigma} \& K_{\xi} \subseteq K_{\eta}\right)\right\}
$$

where

$$
V_{0}=\left\{\left\langle x, \eta_{6}\right\rangle \quad x \in \mathcal{L}^{\gamma} \& q^{\prime}(x)=\emptyset\right\} \quad \text { and } \quad K_{\eta_{11}}=\emptyset
$$

To prove the clam, assume $I^{1} \subseteq W_{*}^{\wedge}$ and let $x \in \operatorname{L} \gamma$ If $q^{1}(x)=\emptyset$, then $x \in V_{1}^{A}$. Supporc $q^{\prime}(x) \neq \notin$ Then $q^{\prime}(x)$ is bounded strictly below $|\leqslant|_{1}^{p}$ Let α, δ and σ_{0} be such that $\left.q^{\prime}(x) \subseteq \bigcup_{\{ } M_{\beta} \beta \leqslant \alpha\right\}, \delta \subseteq M_{\alpha}$ and $\forall \tau \geqslant \sigma_{0}\left(W_{\varepsilon}^{\tau}=W_{\delta}^{\top}\right)$ Choose $\sigma \geqslant \sigma_{0}$ sufficiently large for all $\alpha-A$ requrements to have settled down Then as in the first case there is a permanent δ-requirement in $R_{A 0}^{\sigma}$ with argument y for each $y \in q^{\prime}(x)$ Let

$$
K_{n}=\bigcup\left\{F\langle\delta, y, F\rangle \in R_{\lambda, 1}^{r}-S_{i}^{r} \& y \in q^{\prime}(x)\right\}
$$

Then $\langle x, \eta\rangle \in V_{\varepsilon}^{\tau}$ for $\tau \geqslant \sigma$ and $\left.\tau\right\rangle \eta$ Furthermore $K_{n} \cap A=\emptyset$ since only permanent requrrements were used to obtain K_{n} It follows that $x \in V_{t}^{\text {' }}$

Conversely assume $L^{\gamma} \subseteq V^{\prime}$ and let $y \in L^{-1}$ Choose x, η and σ such that $y \in q^{\prime}(y),\langle x, \eta\rangle \in V_{t}^{s}$ and $K_{n}^{\prime} \cap A=\eta$ Then there is ξ such that $\langle y, \xi\rangle \in W_{t}^{s}$ and $K_{\varepsilon} \subseteq K_{\mathrm{v}}$ Thus $v \in^{c} W_{s}^{A}$

Suppose $\mathrm{L}^{\alpha^{\gamma}} \subseteq W_{t}^{\wedge}$ By the claim, $\mathrm{L}^{\gamma} \subseteq V_{i}^{\lambda}$ Choose α and δ such that $\mathrm{L}^{\gamma} \subseteq$ $\cup\left\{M_{\beta} \beta \leqslant \alpha\right\}, \delta \in M_{\alpha \alpha}$ and $V_{r}=W_{s}$ By the usual argument there is σ such that $L^{\gamma} \subseteq{ }^{\top} W_{\delta}^{A}$ Let τ be such that $W_{\delta}^{\tau \tau} \subseteq V_{t}^{\tau}$ Then $L^{\gamma} \subseteq{ }^{\tau} V_{*}^{*}$ so by the last halt of the proof of the clam, $L^{\kappa \alpha^{+}} \subseteq^{\tau} W_{+}^{A}$

Lemma 4.8. $\Theta[A]$ and $\Theta[B]$ are adequate theortes

Proof. $\Theta[A]$ is an infinte theory by Theorem 29 since A is hypenugular and regular Clearly $\left|\leqslant\left.\right|_{\| \rightarrow} ^{*} \geqslant|\leqslant|_{\Theta|A|}^{*}\right.$ We show $| \leqslant\left.\right|_{\leftrightarrow|A|} ^{+} \geqslant|\leqslant|_{\Theta}^{*}$ Let $V \subseteq L^{\beta}$ be a $\Theta[A]$-s c set where $\beta<1 \leqslant\left.\right|_{\Theta} ^{*}$ Then, again using Theorem $29, V$ is weakly Θ-s c in A Let α and δ be such that $V \subseteq \bigcup\left\{M_{\beta} \beta \leqslant \alpha\right\}, \delta \in M_{\alpha}$ and $V=W_{\delta}^{A}$ A permanent δ-requrement with argument x is put into $R_{A 0}$ for each $x \in V$ Let σ be sufficiently large for all α-requirements to have settled down Then

$$
x \in V \Leftrightarrow\left(\exists w \in R_{A}^{x}-S_{A}^{r}\right)\left((w)_{1}=\delta \&(w)_{2}=x\right)
$$

so V is Θ-finite and hence $\Theta|B|$-finite

Lemma 4.9. $A^{\prime} \equiv B^{\prime} \equiv 0^{\prime}$

Proof. As dicady remarked, it sufices to show $A^{\prime} \leqslant{ }_{w} O^{\prime}$ Let

$$
\left.q(\varepsilon)=\mu \sigma[\forall \tau>\sigma)\left(\forall w \in\left(R_{A}^{\tau}-R_{\lambda}^{\kappa \tau}\right) \cup\left(S_{A}^{\top}-S_{A}^{-\tau}\right)\right)\left((w)_{1}>\varepsilon\right)\right]
$$

q is defined on all of L^{*} by Lemma 46 Furthermore $q \leqslant w{ }^{\prime}$, wnce $q \mathfrak{a}$ a Σ_{2} - tunction Clearly $\varepsilon \in A^{\prime} \Leftrightarrow \varepsilon \in\left(R_{\wedge 1}^{4(f)}-S_{A}^{4(f)}\right)_{i}$ and hence $A^{\prime} \leqslant{ }_{w} 0^{\prime}$

Lemma 4.10. $D *_{\mathrm{w}} A$ and $D \not *_{\mathrm{w}} B$

Proof. Suppase $(U-D)$ - W_{+}^{\prime} Choose α and σ_{0} such that $\varepsilon \in M_{\alpha}$, all $\alpha-A$ requrements have settled lown by stage σ_{0}, and no $\delta \in M_{\alpha}$ becomes an indetive $\alpha-A$ reduction procedure beyond σ_{0} Note that ε is an active $\alpha-A$ reduction procedure at σ_{0}, for else an erroneous computation would be preserved Choose a minmal $¥ \notin D$ such that there is no $\imath^{\prime}-x$ for which $\left\langle\delta, \lambda^{\prime}, F\right\rangle \in R_{\wedge^{\prime \prime \prime}}^{\prime \prime}-S_{八^{\prime \prime}}^{\prime}$ where δ is an active $\alpha-A$ reduction procedure at σ_{0}, By the regulanty of D thete is $\sigma_{1} \geqslant \sigma_{1}$ such that $L^{\prime} \cap D=L^{\prime} \cap D^{\prime \prime}$ Let $\tau \geqslant \sigma_{1}$ be such that $L \in^{\top} W_{1}^{\prime}$ and,$(\tau)=\alpha$ Then $H^{\top}=\left\{x^{\prime} \ell^{\prime}-\lambda\right\}$ and $\langle\varepsilon, \lambda\rangle \in N^{-}$It follows that an ε-requirement with argument $\&$ will be created at τ, contradic ing the fact that $\tau \geqslant \sigma_{0}$,

References

[1/ K 1 Barmac Admmbible bet and Structures (Spronger Berlin 1975)
127 ((Drseoll it Vetercurstach enumerable sets and ther metadegres) Smmb 1 og 33 (1008) 38: 3 - 111

 $197^{7} 914^{2}-168$

[5] Ge Nrisel bome ridson for generdizing pecursion thtors in RO Gandy and C E M Yatcs

|o| Y N Vombowak Avoms for compatation theorm -- first draft m Gand and Yates ibid, 190.255

 (109, 811 23
 Mthodologe dad Phtosophy of socnce London Ontare 1975 (forthcoming)
[10] IR Shountuld Degrech of Unsolsabhity (North-Holland, Amsterdam 1971)
[11] R A Shore Spitting an α-recurswh cnumerable set Trans Am Math Soc 204 $11975167-78$
[12]R 1 shore On the jump of an o-recurshely cnumbrable set Trans Am Math Soc : 17 (1976) 351-302
 Cinteralad Recurvon Theory, (North-Holland Amsterdam, 1974) 165-193
[14] ל G; mpoon Post, moblem tor damssble sets in Fenstad and Hinman bid 437-4.4.
[15] V'coltenther-Hansen On pronity arguments in Frtedherg theories, Ph D thesis Ioronto (1973)
[16] A M Noberg Inductne operators on resolvable structures, Oslo (1975)

[^0]: * This paper is based on the author's Ph D thesis (Toronto 1973) writen under the direction of Professor D A Clarke
 ${ }^{1}$ L Harrngton has recently shown the following $\operatorname{Con}(\mathrm{ZF}) \Rightarrow \operatorname{Con}(\mathrm{ZFC}+$ Post's problem has a negative solution tor $H\left(\mathcal{K}_{2}\right)=\left\{X|T C(X)|<\mathcal{K}_{2}\right\}$) It is still open (not assumme A^{\prime}) whether there is a resolvable admissble set with a negative solution to Post's problem

