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0. Introducticn

A sigmficant part of post-Friedberg recursion theory has been successfully
generalized to recursion theory on an admissible ordinal «. Such a recursion
theory has two properties seemingly important for prionty arguments it i1s an
“mfinite”” theory and its doman is recursively wellordered Kresel ([5], pp
172-173) has asked (with some persistence — see his reviews of [6] and [13] in
Zentralblatt 1973 and 1976 respectively) whether these properties are sigmificant
for the existence of incomparable r.e degrees Recently Sy Friedman {4] has
considered the first property by doing recursion theory over an arbitrary limit
ordinal B, thus dropping the admissibility criterion His mam result 1s the existence
for many 3 of a pair of sets %, over L(B) such that nerther 1s B-recursive m the
other We, on the other hand, are keeping admussibility while relaxing the
requirement of a wellordered domain to that of a prewellordered domain, that 1s
we are essentially studying recursion theory over resolvable admissible sets with
urelements

However, rather than restricting our attention to rev.olvable admissible sets, our
approach 1n this paper 1s axiomatic Starting with a piecomputation theory in the
sense of Moschovakis [6] with a computable selection operator, we add two
axioms to obtain an mfinite computation theory The rst asserts the existence of
a prewellorder whose mitial segments are umformlyr“ﬁmte", while the second
msures that all “computations” can be effectively generated and that this genera-
tion 1s matched up with the complexity of the domain as expressed by the
prewellorder The class of infinite computation theories cotncides with the class of
Friedberg theories as defined in {6]

It 1s doubtful (see Simpson [14]) whether the axioms for an nfinite theory are
quite adequate for giving a positive solution to Post’s problem.' A trivial but

*This paper 1s based on the author’s Ph D thesis (Toronto 1973) written under the direction of
Professor D A Clarke

'L Harnngton has recently shown the followmg Con(ZF)= Con(ZFC +Post’s problem has a
negative solution tor HX,) ={X [TC(X)|<R,}) It 1 sull open (not assurmng A’ ) whether there 1s a
resolvable admissible set with a negative solution to Post’s problem
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agnificant observation for a-recursion theory (or for any recursively wellordered
infinite theory) 15 that any e-r ¢ set bounded strictly below «”, the projectum of
a. s a-finite We call an mnfinite computation theory adequate whenever the
analogous theorem holds For adequate theories we prove a strong form of Sacks’
«phtting theorem {7, 101, thereby supporting the conjecture that any of the usual
finite 1njury priority arguments can be carried out for such theories

In Section 1 we give the axtoms for an infinite computation theory and prove
some clementary results Section 2 mtroduces different notions of relative com-
putability and gives sufficient conditions n terms of regularity and hyperregularity
for the notions to comcide Shore’s blocking technique using X, functions 1s
developed 1 Section 3 while the proot of the sphtting theorem. along with some
ot the usual corollaries, 1s given 1n Section 4

SG Simpson (see [14] and [13]) has independently studied 1ecursion theory
over resolvable admissible sets In particular, he was the first to note that Shore’s
blocking techmque could be used to obtain a version ot the Friedberg-Muchmk
theorem for what he calls thin admissible sets

1. Infinite computation theories

We will be dealing with partial multrvalued functions and functionals on some
set U An n-ary partial multivalued function 1s just an n+ l-ary relation
Fo'lowing the notation of Moschovakis [6] we mean by f(x,,  .x,)— z that the

paittal multivalued function f has z as one of 1ts values at x, L. 1€
(v,. .2, 2)1san element of the defining relation for f In case | 1 singlevalued
we may without confusion write f(x,, LX) =z oior f(y, .4 )=z In this

paper partial multivalued functions on U will simply be called funciions, whereas
2 1otal singlevalued function will be called a mapping

The notation used should easily be understood from the context keeping the
tolluwing loosely defined conventions 1n mind Functions on U are denoted by
fow h, . P q. a, 3 are reserved for ordinals and ¢ §. nt, n tor elements m
N Remaming lower case latin and greek letters (except A o and v which will
have therr usual meanings) denote elements of U

A computation domain 1s a structure N =(U, N, s, M. K, L) where U 1s a set,
N < U, (N, s | N) 15 1somorphic to the natural numbers with the successor func-
tion, M 15 a paring function and K and L are mverses to M The latter means
that f Al(x, vi=1z, then K{(z)=x and L(z)=v From M, K and [. we define the
tupling tunction () and its 1th mverse (), m the usual fashion

Aset @ J{U" n=2} s called a computation set on? For a computation set
@ we define he reletion

{etoixy— =z iff thix=n & (e x,2)e0®

where Th(x) denotes the length of the sequence x Thus {e}, defines an n-ary
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function for each e ¢ U and ne N An n-ary function t on U 1s @-computable 1f
there 15 £ & U such that f={e}, 1n which casc ¢ 15 a @-ndex for f An n-ary
relation R on U 1s @-semucomputable (-5 ¢ ) with a @~ ¢ index ¢ if R 1 the
domain of a @-computable function with @-index & R 1s @-comnputable with
@-ndex e 1n case its characteristic mapping ¢ 15 @-computable with @-index ¢
Finally we say that a consistent functional F(f,, . fis X), where f, varies over
n,-ary functions. is @-computable with @-index 8 if

VEI'- - EL X, Z(F({El}zfﬂ ,{Ek}'(:f,x)""’z

©{5}:\-}‘”(F:- LB X)) Z)

The first step 1n pu.ting some structure on a computation set @ 15 to require @
to be a precomputation theory in the sense of Moschovakis For a precise definition
we refer 1o [6] Roughly spcaking, @ 15 a precomputation theory if the constant
mappings, the dentity mapping, M, K, L and s are ®-computable Furthermore
the @-computable functions must satisfy the usual closure and enumeration
conditions 1 a uniform way A basic fact of precomputation theories 1s the second
recursion theorem

The existence of a @-computable selection operator 1s normally assumed 1n
order for the @-s ¢ relations to behave nicely A selection operator for @ 1s a
function ¢ such that (henceforth dropping n and © from {e}}, whenever possible)

gtey ) @Ix{el )|
and
Vaigle)— zledzn |)

wheie * L means 15 defined ® Note that the ewistence of a selectton operator
implies the ewistence of a uniform selectioh operator That 1s there exsts a
@-computable mapping p{n) such *hat for each ne N, p(n) 1s a @-index for an
n-ary selection operator ¢" The usual v notation for a umform selection operator
will be used, namely

vzlely' Mz .x ) =q"(e.x)

For a precomputation theory & with a @-computable selection operator, the
©-s ¢ relations are closed under disjunctions and existentital quantification and a
relation 13 @-computable 1ff 1t and 1ts complement are @-s¢ Furthermore
®-computable functions can be defined by cases in a general way

In this setting one can define a well behaved notion of “fimite” Following
Moschovakis we say that a set K 18 @-fintte 1if the consistent functional

0 f AxncKfx)—0),

E’*"””’L H Vve K (fiv)— 1)

1s ®-computable A @-index for E 1 said to be a canonical @-index for the
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@-fimte set K The usual properties (see [6]) of a generalized notion of faite hold
uniformly

Having asserted the existence of a selection operator it is too restrictive to
require @ to be a single-valued theory as this would exclude some of the intended
models However when considering functions whose values are (canonical O-
indices for' @-finite sets, then @ is essentially single-valued. In the lemma stated
beiow let &, Jenote the @-fimte set with canonical @-index % m case n is such
an index

Lemma 1.1. Suppose r 1s a @-computable function whose values are canonical
@-indices such that Vx,En(r(x)—> ¢ & r(x)—n>K.=K,)

Then there 1s a @-computable mapping q obtained uniformly from r such that
Vx, nir(x) = n> K, = Ky)

We now list two additional axioms making @ into an infimte computation
theory

Axiom 1 There 1s a @-computable prewellorder < on U such that ntial
segments of < are uniformly @-fintte

Given a prewellorder < we let x< y denote —1(y< x)and x~y denote x<y &
Yy

Diefinition 1.2. A (<)-enumeration of a set W 1s a @-computable mapping Ao W*
(whose values are canonical @-indices for the @-finite sets W) such that

1) 102> W W,
(1) W= }{W°’ oecU}

Aviom 2 There 1s a @-computable mapping p(n) such that for each ne N, p(n) 1s
a @-ndex tor a (<)-enumeration of the set

T.={e.x y) {e}x)—>y & lh({x)=n}

Definition 1.3, Let @ be a computation set over a computation domamn % € 1s
an mfinite computation theory if

(1) © 1s a precomputation theory
(i) Equaltty on U 1s a @-computavle relation
(1) © has a computable selecticn operator
(1v) Axiom 1 and Axiom 2 hold for some prewellorder < on U

A basic fact of infinite recursion theories, e g recursion on an admissible
ordmal a, 1s that computations can be coded effectively into the domain 1n such a
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way that the complexity of the domain corresponds to the complexity of the coded
computations [t therctore seems reasonable to assert the cxmistence ot a @-
computable partial order < whose nitial segments are well-founded and um-
formly @-fimte Hcre we restrict ourselves to the case where < 1 a prewellorder
Axiom 2 then stipulates that all “computations” {e}(x)— y ceh be effectively
generated and that this generation is matched up with the compiexity of the
domamn Note that U 15 not @-fimte for an infinite computation th :ory

Following the notation of Barwise [1], let sf, be a resolvable admissible <ct
with urelements relative to a language L* =1.(e¢, ) By combinmng Moschovakis’
characterization theorem for Friedberg theories with Gandy’s theorem tor ¥,
inductive defimtions over admissible sets (see Barwise [1] p 208), 1t 1s easily
verified that &/, constitutes an mfinite computation theory

J Stavi (unpublished) has shown the converse of Gandy's theortem to be false
for some transttive sets However, for resolvable transitive structures & (closed
under pamtag and satistying A,-separation) the converse i true, 1 ¢ for such of, of
15 admiussible 1ff every ¥, inductive operator over & has a ¥, fixed point This
result, due to A Nyberg [16], gives some jusitfication for Axiom |

In the sequel @ will always denote an infinite computation theory over some
computation domain N

Lemma 1.4. Suppose f 15 a @-computable function Then there 1s a ®-computable
function g obtaned uniformly from f such th.at dom g =dom {, g = f, and for each
O-fintte set K <=dom f there 1s a O-fintte set N obtained uniformly fiom K and f
such that gtKyc N < f(K)

Before proceedmg with the proof we need to introduce the p-operator By
pzR(z, x) we mean a function whose values for x are some mimmal z such that
R(z,x) In particular, f R s @ computable we set

pzR(z, x)=vz(R(z.x) & (Vy<z)1R(y.x))

Proof of Lemma 14. let AcW® be a (<)-enumeration of 7T, ==
{(e, 5, ¥) {elx) =y} and let h(x)=pol(Fy<o)(e.x,y)e W’)] where & 1s a
@-index for f Whenever f(x) 1s defined let N, ={y <h(x) (e, v, y)e W"*'} Note
that N, 1v well-defined since h(ha)— o & h(x)—> Do ~71 It follows from
LLemma 11 that a canonical @-index for N, 1s obtained uniformly and single-
valuedly from ¢ and « Let g(x)=vy(yeN,) If @-fimte K< dom/{, let N=
UAIN, xeKj}

An mmediate corollary to Lemma 1 4 1s the existence ot a “selection operator™
which single-valuedly chooses a canomical @-mde. for a non-empty subset of a
non-empty &-<c sct It is such a “selection operator”, rather than the mulu-
valued once we assumed, which 15 ueeded for our argruvents In [3] Fenstad gives
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axioms for mfimte computation theories which do not assert the existence of a
selection operator, but where the exsstence of a “selection operator™ as above
nonetheless 1s a theorem Thus Fenstad may and does restrict himself to <ingle-
valued theorics

Definition 1.5. A (<)-parametrization o1 O@-s ¢ scts 18 a @-computable mapping
AeaWY{ such that

) Ve, r.o(r <o Wic W?),

(n) for each @-s ¢ set W there 1s an & such thatW = (J{W? oe U}

Axiom 2 asserts the existence of a (<)-parametrization of @-s ¢ sets Consider-
mg a fived (<)-parametrization, we let W, denote |J{W? o U}. Note that a
@-s ¢ muex for W, 1s obtamned uniformly from &, using the selection operator
Indices from a (<)-parametrization can therefore be used n e .phcit defimtions of
©&-computable functions

Definition 1.6. (1) A projection into W 1s a total @-computable fuiction |, whose
range 15 a subset of Wosuch that if a# v then p/x)Np(yy=¢¥ (Heie p(x) denotes
the set {z p(x)—z})

(1) O 1s projectible into W f thete is a projection mio W

Lemma 1.7. (1) Let W=1¢ W, =} for a gruen (X)-parametrization of @-s ¢ sets
Then © s projectible ito W

() Suppose p s a projection Then there 1s a (<X)-parametrization of @-s ¢ sets
such that {e W. =0}cranp

Proof. (1) Define

f)=pol@e<a)Xre W & (Vye Wiy =x))]
and let
pla=refae Wi & (Vye W)y = )]

Then p i dearly a projection mto W
() Let AeoVY be any (¥)-parametnization of @-s.c sets Using Lemma 1 4 we
have a wollection of @-finite sets K., each obtained uniformly from x, such that
B# K cpv) Let W={}{K, veU} and let A\cW* be a (<)-enumeration of W
Define
wlee K] o seWe,
He.o)= {

0 if ez WY
Letting
W= { Vi, 1 eeWe,
0 if egWv

we obtain a (€)-parametrization with the required property
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Due to the negative result in Smmpson [14] 1t 1s reasonable to formulate yet
another condition which isolates a subclass of mnfinite computation theories for
which the prionity argument can be carn:ed out The problem in the general case 1s
that tor any (<)-parametrization the set {&¢ W, # (0} may be too **‘wide” Lemma
1 7 reduces the problem of finding a “narrow” (<X)-parametrization to that of
finding a “"narrow™ projection

A O-fintte et K 15 said to be strongly O-finite if every @-s ¢ subset of K 15
) -finte

Definition 1.8. An infinite computation theory @ 1s said to be adequate t O 15
projectible nto the field ot a @-sc¢ prewellorder whose mtial segments are
uniformly strongly @-finite

In the sequel we assume that the prewellorder of Definition 1 8 1s < or an
matial segment of <, for some s satisfying Axtom | and Axiom 2 The modifica-
tions necessary for the general case are left to the reader

iet p be the umque order-preserving map from U onto the ordinal |<| Often
we will be imprecise and write x when we mean p_(x)} Thus x< a where « 15 an
ordmal and stands for p (x)<a Throughout the paper we use the following

Convention. LY ={xc U x<g}

Definition 1.9. (1) The projectum (<), denoted |<|*, 1s the least ordinal 8 such
that @ 1s projectible 1nto L

(1) The r e -projectum (<), denoted |<|", 15 the least ordinal 8 for which there
15 a @-s ¢ non-@-finite set Wegl?

Since the range of a projection is a @-sc¢ non-@-fimte set if follows that
l<]" =|<|* Thus, modulo our assumption after Defimtion 1 8, @ 15 adequate 1f
and only iIf |€|' =|<|” =lmt ordnal

Every computably wellordered @ 1s adequate since for such theories every
@-s ¢ non-O-finite set 1s the range of an njective @-computable mapping Any
(choiceless) standard model of ZF constitutes a (non-wellorderable) adequate
theory relative to the power set operator ? We may also use urelements to give
some further examples of non-wellorderable adequate theories. Let A = (M) be
an nfinite structure without relations or let # =(M, <) be a dense hinear order-
g Then HYP,, the smallest admissible set above #( (defined in [1]), as well
as HYP(HYP ), HYP(HYP(HYP,)) and so on, can be shown to be adequate

2. Relative computnbility
Equivalent notions of Turing reducibility tor ordinary recursion theory become

distinct when considering recursion theory on an arbitrary admissible ordinal a.
As Krewsel [5] emphasizes, the different notions tfall into essentially two



64 V' Stoltenberg-Hansen

categories those concerned with computability and those concerned with defina-
bility Below, a notion fiom each will be defined (along with some auxibary
notions) corresponding to =, and =< for a-recursion theory We will then show
that, as n the case of a-recursion theory. the notions agree on regular hyperregu-
lar sets

By an enumeranon of @-fintte sets we mean a @-computable mapping A¢K,
with the property that for each @-fimite set K there 1s £ such that K = K, Such an
enumeration alwvays exists since every @-fimite set 1s WY for some & and o An
enumeration can of course be chosen with somewhat care. e g we may require
K. cL*

Definition 2.1. Let A and B be <cts. f a tunction and AEK, a fixed enumeration
ot @-finite sets

(1) f 1s weakly ©&-_ omputable in B (denoted f=<, B) if there 1s a @-s¢ set W
such that for all x, y,

Hx)—ySIE v &EmcW & K.ecB & K,NB={{)

A 15 weakly @-computable n B(A<_B) n case (<, B
(1) A s @-computable in B (denoted A < B) if there 1s a O-s ¢ set W such
that for all v, 8

K,cA & K NA=¢o3Eqyd.6neW & K.cB & K, NB=f)

The defin tions are independent ot the particular enumeration of @-finite
sets We define the upper semr-lattice of degrees n the usual way using the
transitive reducibility < A =B denotes A<B & B= A The joa of deg(A) and
deg(B). deg(A)vdeg(B), 1~ deg( AP B) where

ABB={x.0) ve AU 1) xeB}

The notions uf weakly -5 ¢ u: and ©-5 ¢ n aic easily abstracted from (1) and
(1) of Defintion 2 1 Thus A 1 @-s ¢ 1 B there 1s 2 @~ ¢ set W such that for
cach vy

K.cAeIny EmeW & KB & K, NB=0)
The sets weakly @-s ¢ n B are enumerated by putting
We={ e n(EneW, & K.cB & K, NB=%)}

1t follows mmediately trom the defimtions that a set 15 (weakly) @-computable
in B 1ift both 1t and its complement aie (weakly) @-s¢ i B, and that a sct 1
weakly @-5 ¢ m B iff 1t 15 the domain of a tunction weakly @-computable mn B

To dehine a reducibihity notion cortesponding to definabihity 1s technically somc
what more comphicated From an infinite theory @ and a set B < U we construct a
new theory ©{B] and say that f<,B if f 1s G[Bl-computable In addition to the
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obvious requirement that @[B] should have the usual closure and enumeration
properties, 1¢ that @[B] should be ~ prccomputation theory, we want B to be
®[BJ-computable, @< @[B] (= 1 the relation between precomputation theories
given m [6)), and quantification over mmtal scgments of < to be O[B}-
computable The latter means that the tunctional E  should be & 8 }-computable
where

0 f Ix<z(flx)—0),

Et(fv 2)—){1 lf V.X <Z(f(x)—‘)1)

Furthermore @[B] should have a computable selection operator n order for the
O[B1-s ¢ relations and @[Bl-fimte sets to behave properly

The theory @[B] will be the least fised point of an inductive operator I” defined
by clauses 0-VIII Clause 0 introduces the characteristic function of B and clause
I makes @< @[B] using Axiom 2 for & Clauses li-VI correspond to clauses
IX'-XIH in [6] Finally, clauses VII and VIII introduce the functional £ and a
selection operator respectively Having already opted tor multi-valued theories we
make the selection operator take all its possible values

The @-th iteration of I" 1 defined as G#[B]=I'(0© “[B]) where @ °[B]=
U{©"[B] y<B} Thus the least fixed pomt of I' 1s O[B]=J,0"[B]

There 1s no need to give the detailed construction We only note that all clauses
have the following important property A tuple (¢, x, z) 15 added to ®*[B] only if
€. x, z and (e, x, ) are elements of L® For (e, x, z)€ OF[B], et lg, x, z|ops =least
ordmnal 8 such that (¢ x, z)e @®[3] Using this notion of length of compuiations,
O[B] 1s a computation theory 1n the sense ot Moschovakis One can show that
O[B] 1s either an mfinite theory or a Spector theory (defined m [3] and [6])
depending on whether U 1s @[Bl-infinite or @[ Bl-finite

In [9] Sacks defines a-recursion relative to a set B S a to be X, -recursion on «
relative to the structure (L{(a, B), €. B), where L{a, B) 1 the result of relativizing
L(a) to B by adding » € B to the atomic formulas We regard the theory @[B] as
the relativization of an infinite theory ® to a set B Suppose @ 1s a formulation of
a-tectiston theory Then one can show that @{B]1s an infinite theory 1t aad only
if (L{a, B), €. B) 15 admisaible, 1in which case the notions of @[Bl-finite and
@[B]-s ¢ agree with a-B-fimite and a-B-r¢

Definition 2.2. (1) f<,B if f 1s O[Bl-computable
(m A<,B1f ¢, 1s @[Bl-computable

Lemma 2.3. A<, B if and only if @[A]<O[B]
<orollary. <, 15 transitive

The proof of the lemma 1s standard The required mapping p 1s defined by
cases using the second recursion theorem for @[B] The “if” direction of
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(e.x%, 2)€ O[A]S (p(e, n), x, z)€ O[B] 1s shown by iduction on {p(e, n), %, zlus)-
while the “only 1if” direction 1s shown by induction on |g, X, zlga;
Using the corollary we define d-degrees by

d-deg(A)={B A=,B & B=,A}

The d-degrees form an upper semi-lattice in the usual way
Lemma 24. f<, B> f<,B

Proof. Let AZK, be an enumeration (in @) of @-finite sets It follows from the
@[ Bl-computability of E* and ® <®[B] that K, < B and K, "B = are @[B}-
computable relations Supnose f=_ B using W, 1e,

fx)—> veIEnUx. v.EMeW & K, cB & K,NB=)
Recalling that » takes all its possible valucs in @{B] we have

foo) = v, (DL (Vs (y)pe W & K, €B & K, NB =§)),

From the lemma wc conclude that ASB>A < _B=>A<,B None of the
implications can be rcversed sice Driscoll [2] has shown that <, need not be
transitive even on @-s ¢ sets

‘We now mtroduce the analogues ot two notions due to Sacks [8] Recalling the
defimuon of W let

TWE={\ FE(x. & MeW & K. B &K, NB =M}

Definition 2.5, (1) A sct B 1s regular :f BN K 15 O-finite whenever K 1s @-fimte
1) A set B 1s hiyperregular 1f whenever K < WP and K 15 @-fimite then there 15
o such that K "W¥"

Hyperregulanty has the following equivalent formulation 1n terms of functions B
15 hyperregular of and only it whenever f <, B, Kcdom f and K 1» @-fintte, then
Fz(Mr e K)3y <z Ufix)—y)

Every &-computable «ct 1 hyperregular (Lemma 1 4) and every hyperregular
(-5 ¢ set s regular (proved n [15]) A usetul characterization of the regular
G- ¢ sets 1y the following Suppose AaW” 1s a (<)-enumeration of a set W Let
VY= W7 - J{W™ r<0g} For obvious reasons we say that AoV’ 1s a disjont
(=)-cnumeranton of W Then W s regular if and oaly if

(VB < <hHHoNVT >NV NLE =)

The problem of non-regularity can be avoided 1n the usual way when studying
O-s ¢ degrees tor adequate theories

Theorem 2.6. Suppose O 1s an adequate theory Then for every @-s ¢ set B there 1s
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a regular @-sc set D such that B=D D may be chosen such that
Y (Wy~x)xeD>ye D)

The theorem is due to Sacks [8] for a-recursion theory. Its proof (which we
omit) in our more general setting is modelled on Sacks’ ongmal proof in [8] A
proof of a weaker, but for our purposes sufficient, version of Theorem 2 6 can be
found in [15]

Now we set out to show that for any sets A and BBA<B&OA <, B if B s
regular and hyperregular Given disjomnt sets B, and B, we obtamn a
theory @[B,, B,] by altering clause O in the definttion of @[B] as tollows

o If (0,00, x,0.40,0), x,0el? & xeB,,
then ({0, 0), x,0)e @"[B,, B, |
If (0,00, x 1,(0,0, x,)eL® & xeB,.
then ({0,0),x, 1)e O°[B, B.]
Thus\@[B]——‘ O[B, U-B] For each o, & n and m define

"HY,={e x,v) (e,x.v)e O “[K, K, ], Ihix)=m}

Lemma 2.7. "HY, s O-finite untformly in m, 0, & m

Proox. "HY , can be defined by mduction on o with respect to < considering all
cases 111 the defimtion of O[K,, K,,]

By an easy induction on ¢ we have
Lemma 2.8. If (e, x, y)e™HY{, X K, 2B & K, NB =, then (¢.x, y)€ @° “’[B]

Theorem 2.9. Let B be a regular set Then (1)—-(in) below are emuvalent
(1) B ts hyperregular,
() O[B] 1s an nfinite theory,
(m) Yf(f=,Befs B)

Proof. (1)=>(n1) To show @O[B] s an infinite theory 1t suffices to show @'~ [B]=
@<'<TB] Since |<| is a limit ordinal we need only consider the case of unmiversal
quantification whose inductive clause 1s

I (7,0, . (7,00, e, x, DeL? & (Vy<x)(e, y. Ne O~°[B]],
then ((7,0). ¢, x,1)e @°[B]

So suppose (g, y, 1)e @='<[B] for each y<x It follows from the regularity of B
that for each y <x there are o, £ 1 such that (e, y, 1)e 'Hg,, where K, < B and
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K,NB=0 Letting
W ={v.&mel” (e v e ‘Hirn}‘

this can be reformulated as L* < W” where AcW* 1s a (<)-enumeration of W By
the hyperiegulanty of B, L' = "W?* for some 7 But then (g, v, 1) ©°77[B] tor
cach v<1x by Lemma 2 8, and hence ((7,0),¢,x. )€ ©®~'=I"B]

an=(n) Suppose f 15 OBl-computable with a @{Bl-index ¢ Then by (u),
Lemma 2 8 and the regularity of B,
flix)— v AR <|<|((e, x, vIE ®F[B]
©do, & nle x vEe™HY, & K,=cB & K,NB=¢

It follows that { = B

(m=(1) Assume (m) Then every O[B}s ¢ set has a (s)-cnumeration mn
®[B] For suppose V i1s @[Bl-s ¢ Then V= W" tor some @-s ¢ W by (i) Put

Vi={i<g BEn<olr £EneW” & K,ecB & K,NB~=M}

Then ASV? 1 a (<)-enumeration 1 O[B] of V It follows that U 1» @] Bl-nfinrte
(.nd n fact that @[B] 15 an infimte theory) Suppose a @-finite set K< W L2t
Hv) = pof v €“WP] Then for each xe K L' s @[ B]-fimitc uniformly m + Thus
M= [{L'Y ve K} s OB]-finite end hence bounded by some o Then K< "W/,
s0 B hypetregular

Note that regularity was not needed in going trom (i) via (11) to (1) ‘The regular
hyperegular sets can be characterized as those sets B for which every O Bl-finite
set 15 @-fantte Of course, whenever (m) holds for B it follows that As<sB&
A= B Just let

tyd=0ah,cA & A.OA=(

y ==

Before detming the jump of a set we nttoduce yet another notion of
reducibibit

Definition 2.10. A set A 15 manv-one teducible to a set B, A=<_ B, if there 15 a
G -computable mapping AxH, whose values are (canonic.d @-indices for) non-
empty O-finic sefs such that

M re AH B
M \v¢ASH NB=6

Note that A, B>A<Band A<, B& B, CoA=C

Following Shore [12] and Simpson [ 13] we want the jump of a set B tobe a =
complete set B” weakly @-s¢ 11 B, 1¢ whenever A 15 weakly ©-< ¢ n B, then
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A=_B' Letung AeW, be a (not necessarily the) standard (€)-parametrization of
@-s ¢ sets we make the following definition,

Definition 2.11 The jump of a set B 1s the set
B'={e.3&n((E MeW, & K,cB & K,NB=0

Our only requsrement on the (<)-parametrization used 1n the definition 1s that
(1i) i Proposition 2 12 below must hold This 18 certamnly the case for a
(<)-parametnization obtained from the standard one as in Lemma 17

Proposition 2.12. (1) B<,_, B’ but not B's, B (so B<B")
() B=D& B <,D
() D s weally ®s¢c m B&D=<_ B’
(vi B" 15 weakly ®-s¢ mn B

Thus the jum 15 well defined and increasing on degrees However, it may not
be increasing ou: d-degrees as 1s readily seen by considering a non-hyperreg.lar
d-degiee This 1s not surprising simce =, in general 1s a much stronger reducibihity
noton than < The proper notion of “semi-computable in B tor <, 158 @[B]-s ¢
Thus we want the jump (in this connection called d-jump) ot a set B to be a
complete @[B]-s ¢ set

Definition 2.13. The d-jump of a set B 15 the set
B = HERY {S}w(n (x) i

1t 15 easily verified that the analogue for the d-yump of Proposition 2 12 holds
Of course, 1n cese B 1s regular and hyperregular, then B'=_ B*

3. X, -functions

1t 15 clear that in case the domain of an infimte computation theory 1s not
coraputably wellordered, one cannot consider a unique requirement at a given
stage of a prior ty construction There 1s thus a need to consider a @-finite block
of requirements at each stage The obvious way to block requirements 1s i terms
of the levels of the given prewellorder ietting each level make up one block This
method suffices for @-finite 1njury arguments where elements in at most one set
of requirements can be mjured more than a fixed fimte number of times In
particular, a weak positive solution to Post’s problem was obtamed in [15] for
every adequate theory using this method

In proving the spliting theorem for an admissible ordinal «. Shore [11]
developed a techmque of blocking requirements 1nto o2¢f(a) many a-finte sets
S G Simpson [14] was the first to note that this techmque could also be used to
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prove a version of the Fricdber, Muchnik theetem for thin admissible sets This
led us to develop Shoie’s blocking techmque for adequate theories @

A set A s said to be X, and I, if 1t v @-computable A 15 3, ,, if
xre A dy((x.y)e B) where B s I1,, and A 1s I, ., of its complement s 3,,, A
function f 1s X, if 1ts graph Gy ={(x, v} f(x)—>y}is X,

Let ¥ be the class of functions on U satisfying

flv,  oxe oyt —2z & fix,, AL a0 —Z2
& x,~x!Dz~z

Functions 1n ¥ will be 1dentified in the obvious way with partial single-valueu
functions on || Thus by a function in £ N Y, we will mterchangeably mean a
5, -function in & or a function on |<| induced by a X, -function mn ¥ It 1 shown
i {15] that | <] 15 admussible and that every | < |-recurstve function 1s m £NY,

Let (e, v be a partial single-valued function on |<| Then lim_ f'(c. v) =& 1off
AB(Va=B)i'ta.v)=8) For f. f '€ L we say that im,, (o, x)=f(x) of this 1s the
case for the mduced functions on |<|, where == has 1ts usual meaning

Lemma 3.1. Ler @ be an adequate theory Suppose fe ¥NX, 15 total (on |<|)
Then there 15 a total @-computable function '€ ¥ such that hm, f'(a, x) = f(x)

2roof. Since G, 15 X, 1t follows that f <, A, say using W, where A 18 @-s ¢ and
by Theorem 2 6) 1egular Let AdA” and AoW* be (<)-enumerations of A and
W respectively Let N7 be the @-finite set of mimimal % <o such that

(Fy <oWIa~ ULy, meW” & K,NA” =)
Define
, py[(Fne NOEV ~ O vo e Wy f NY#§
flo,a)= {
o else
Then f 15 total and in YN Y,

Suppose fla)=p (on |<]) Choose v,y such that p (x)=a, p. (y)=8 and
fix)— v, and choose 7 such that {x, y. n)e W & K, N A =§ By the regulanty of
A we can choose o sufficiently large so that v<o.{(x,y, > W* and (U-
A)NL"=(U-A")NL" Suppose 7=¢ Then NTI#{ since q 1s a candidate Let
£e N| There 1s »'~x and y' such that (. y', £)e W™ & K,NA" =8 Since <7
and {we may assume our enumeration of @-fimte sets 10 satisty) K, <L,
K, MA =9 But then (x’,y, &) 1s a correct computation of {,1¢ f(x')— y’ Smce
feZ and v'~\, we must have y'-~y Thus im, {'(o, @)=

Definition 3.2, The X,-cof(a) 15 the least ordinal 8 tor which there 1s a function
fe#NX, with domain B and range unbounded In «

Lemma 3.3. Let @ be an adequate theory Then 3,-cof (|<]) = 3,-cof (I<|*)
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Proof. Let ke ¥ be a total @-computable funcuion with sange 1n |<|” such that
{B.k(B)<a} 1~ bounded for each a<|<|* Such a k can be defined from a
{<)-enumeration of a @~ ¢ non-@-computable set W< L' Suppose fe LN X,
with domain B 1s unbounded 1n |<| Then gla)=k(f(a)) 15 an LN X, tunction
unbounded in <|” Thus X,-cof (|< ") =< 3,-cof (|<|)

For the converse mequality suppose fe £ N3, with domain 8 15 unbounded in
|<* Let g(x) = uolVr Z o(f(x) < k(7))] Then ge ¥ and ¢ 15 unbounded n || It
follows from Lemma 3 1 and some easily shown closure properties of 3, and 1T,
sets that g s &,

By a (£)-seqtence of @-s ¢ sets we mean a ®@-computable mapping r such that
VovD Wr(xb: Wv(\*

Lemma 3.4. Suppose a < 3,~-cof (|<|) and {I, r<a) 15 a (-$)-sequence of @-sc
sets such that for each x <a, I, 15 O-finue Then J{I, x<a}1s O-finue

Proof. Let o be least for which such a sequence exists whose union 1s not
O-fimte Let W= J{I, .x <a} and let \dW" be a (<)-enumeration of W Define
g(x)=uoll, cW°] Then ge¥NI, and g 15 defined on L* But g(L*) 1s
unbounded n U since W 1s not @-finite. 1e X,-cot (|<))=x

Assume for the remaining part of this section that @ is an adequate theory We
are gong to divide the projectum L7 nto 3,-cof (|<]) many @-fimte blocks M,,
each bounded strictly below {<|" Clearly 3,-cof (|<))<|<|* Suppose first that
S.-cof (<P =|<|" In this case we let M, = MJ={x v~a} tor each a<|<|”
Then each M, 15 O-fimte unformly 1n

Now suppose %»-cot (|<D)<<!<|* We are going to define @-fimte approxima-
tions My to our blocks M, unitormly from o and a Furthermore

(Va < X, -cot (SN WVrZo VB <a)(Mj=M,;),

1 ¢ our approsimation will be “tame”

Let g S.-cof (<)) = |<|" be a NI, tunction unbounded m {<!*, and let
g'e ¥ be @-computable such that lim, g'(o, &) =g(a) and ran g’ =L™" These
functions exist by Lemma 3 1 and Lemma 3 3 Define

hio. &)= py[(VB <a)g'(o. B)<vy}]

and put MZ={¢ h(o.a)<e<hlo, a+1)} Note that a canonical @-index for M,
15 obtaimned uniformly from @ and ¢ and that each M, 1s bounded strictly below
[<|* To show AaoM 15 tame, let

I, =lo @r>a)g'(r, B)+ g'(a. B}

Fix a <X.-cof (|<]) Then({l; B<a+1)1sa(<)-sequence of @-s ¢ sets such that
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each I; 15 @-fimte Applying Lemma 3 4 we obtam
Jo (VB <=a)(¥V7 Zo)(g'(r, B)~g'(a. B)),
1e Ao (VB < a)Vr Z o)M= Mjp)
Let M,; = M} for sufficiently large o It remains to show
U{M, B<Ss-cof (j<}=L""

Fix & <|<[*¥ and choose least a for which < h(o, @) where o 1s fixed and
sufficiently large Such a exists since g is unbounded m |<|* By the definition
of h there 1s B<a such that £ <g'(o, B) But then e <h(a, B+1), so by the
choice of o, =B +1 and h(o.B)<e

4. The splitting theorem

For parts (1) and (1) of our mam theorem we need assume @ has a reasonable
paning function By this we mean that for each « <|<{* there 1s 8 <|<|” such that
Lo XL ={x y) v.yeL*}cL? Surely any adequate @ that comes to mind has a
reasonable pairing function

Theorem 4.1. Suppose @ 15 an adequate theory with a reasonable painng function
Let C be a regular @-s ¢ set and let D be a ®-s ¢ non-@-computable set Then
there are @-s ¢ sets A and Bsuchthat C=AUB, ANB=¢0,A<C,B=Cand

(1) ®[A] and O[B] are adequate theories (so wn partucular A and B are
hyperregular),

(m A'=B'=0,
(m) DZ, A and D% B

Before proving Theorem 4 1 we state some of 1ts usual corollaries First we
need the tollowing '_nima

Lemma 4.2. If A and B are disjoint regular @-sc sets, then deg(AUB)=
ueg(A)vdeg(B) and d-deg (A UB)=d-deg (A)vd-deg(B)

Proof. Clearly AUB=< A®B For the converse we note that
U-A=(U-AUB)UB
Using the regularity of B we have
K NA=03n(K, =K, & K,~-K,cB & K,N(AUB)=0),
re A=<AUB The proof for d-degrees does not use regulanty
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Let a, b, ¢, d vary over @-s ¢ degre :s (@-s c. d-degrees) and let @' denote the
jump (the d-jump) of a

Corollary 4.3. (1) (Ve>0)(3a,b)c=avb & a<e & b<c & a|b),
(1) (Vd)(0<d<0'>Tad|a & a'=0)

The prdofs are entirely similar to the ones found in [10] and {11], using the
main theorem 2nd Lemma 4 2

Corollary 4.4. (1) Za,b(0<a<b & a'=b),
(n) Ja,b(t<a<b & a'<b’),
(in) Ja,b(a|b & a’=b'=(avh))
(iv) 3a,b(alb & a’=b'=avbh)

We now proceed with the proof of Theorem 4 1 Our description of the
construction will be 1n terms ot A only whenever the description n terms of B 1s
analogous In case AcH” 15 a (<)-enumeration of @-finite sets we use the
notation H “={J{H" 7< ¢} By Theorcm 2 6 we may assume D to be regular
and satisfy Vx(Vy ~x)(xe D=y e D) Let AoD” be a (<)-enumeration of D and
et AgC” be a disjoint (<)-enumeration of C We are gomng to define (x)-
enumerations AcA” and AogB” of A and B inductively on the prewellorder < If
o ~ 7. then the set constructions at stage o and stage v will be identical though the
indices used may differ At stage o, C” will be added to preciseiy one of A™ and
B~ Thus A and Bwillbe @-sc, C=AUB and ANB=§¢ Furthermore A=C
and B=C For let q(&) = pol(K,—C™")NC=0] Then q=<,C and q 1s total by
the regularity of C Clearly K,NA =S K, NAY=0,s0 AsC

In order to satisfy (1) and (1) of the theorem, some care is needed 1n choosing a
(<)-parametrization AeoW? of @-sc sets, besides requring {¢ W, =@ LI
First of all we want AecW? to be repetitive 1 the following sense For each
a, £ <|<|* there 1s § <|<|* and o such that « <8 and V7> o(W]=W;) Then we
want Defimtion 2 11 of the jump to make sense for our choice of (<)-
parametrization Let AeoVY be a (<)-parametrization obtamned as in Lemma 17
from the standard one, such that {¢ V, #@}cL'="" Let WJ =V, Then AecW?
has the required properties

To make O[A] and O[B] into adequate theories, the construction 1s split mto
two cases

Definition 4.5. Suppose § <{<|. Then
cof (B) = pa[3@-computable q LP — L* such that
VeeL*3y<p(q '(e)c L]
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Remark Since B<|<l|,q '(¢) may be considered & @-finite set with an index
obtaimed uniformly from € Note that dom g=L"

It j=im=|%| or |=|'<|x| and cot (<)< |<|* then attempts are made to
preserve computations ve W fot a < In case |€F <|g| and cof (|g]")=[<}*,
additional attempts are made to preserve computations on mitial segments of

o
).

Assume we have shown A=<,0' A’ 1s weakly &-sc in A by Propositicn
2 12 By the hyperregularity of A, A’ 15 1n fact @-s ¢ n A and hence @-s¢ 1
Let A” denote the jump of A using the standard (<)-parametrization AeV, Then

KsNA =0 (@ne ULV, e KK, NA=0)
S He e A

where f 15 a @-computable mapping giving a standard index for {J{V, e X}
Thus (17— A" 1s weakly @-<c in ) ff (U~A% 15 @-.c in (' Both A" and A°
satisfy Proposttion 2 12 (1) and (1v), so A'=_A" Thus A'= 0 since A’ (),
and hence (U— A" 1s &-<c¢ m ¢ But then (agamn using A'=, A (U-A't s
O-s¢c m 0 Since both A’ and 1ts complement are @-s¢ m 0, A's0’ Thus 1t
suffices to make A'=<, 0 i order to satwty (1)

To make A'= V), attcmpts are made to preserve computations showing £ € A’
Ly creating a requirement for such a computation Then one can effectively from
(/ look through the list of requirements to determine whether or not e A’

Fmally, to msure that for no g, (U—D)= W2, we use the usual apprcach of
trying to preserve computations x € W* for minimal x notin D In case (U—-D)=
W for some ¢ we would eventually preserve a correct computation for each
ve W' 1e W? would be @-s ¢ Thus computations x&€ W/ will eventually stop
being preserved However we need have @-finite blocks of requirements to settle
down by some stage of the construction Towards this end we use Shore’s
technique of letting each block play the role of a single requirement 1n trying to
preserve a computation x € W7 for x¢ D and some & 1n the block considered
Furthermore, to avoid the problem of never finishing creating requirements with
arguments from a fised level of <, we utihze the fact that D was chosen to have
the property Vx(Vy ~ x)ixe D>y e D) Thus there 1s a nced to create a require-
ment preserving a com.pitation x € W onty if no other computation y e W2 for
v~ 15 bemg preserved

Let My, and M, for o < X,-cof (<) be the @-fimte blocks described in Section
3 Wc will create sets R, ,{Ry,) of requirements tor 1 <3 R, will insure that
O[A] s adequate, R, |, that A'<,(/, and R, » that D %, A S, denotes the sct of
A-requirements (1e requirements m |_J{R,, !<3}) mnjured during the construc-
ton R\, and §7 denote the @-fimte parts of R, , and §, obtamed by stage o
Each requirement will be of the form (¢, x, F) where F 1s (a canonical ©@-mdex
for) a ©-fimite set Such a requirement in R, , 1s called an £ — A requirement or
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an a— A requirement (at o) in case e € M, (e € M) It 1s said to have argument
x Incase FNA” =0 1t 1s said to be active at o, else 1t is active £ e M? 15 an
thactive a — A reduction procedure at o 1n case there 1s an active € — A require-
ment in R% , preserving a computation x € W7 for some xe& D”, 1¢ there 15

(e, x, ) e RA%~8." st In<olx,meWI& K, cF & xeD’)

If no such requirement exists, then £ 1s an active a — A reduction procedure at o
Let r |<|— X,-cof (|<|) be a @-computable function such that

(Va < 3,-cof (IKPHVBYEy>B)r(V) = a),

where «, B and y vary over |<| The function r indicates which part of the con-
struction {0 concern ourselves with at a given stage

The construction at stage o Suppose r(o)=a We describe only the construc-
tion of A-requirements, the construction of B-requirements being analogous

First we construct requirements making @[A] adequete The construction is
split mto two cases

Case I || =5 or cof (<MY <|<]* <|<]* Let
K™ ={{e, ) e MIX(UIMg B<a)) @n<ollx.nde W

& K,NA™ =0) & (Ywe RX,—SR7)((w), # & v (w) # x)}
Thus (&, x)e K” only 1f there 1s a computation xe W~ which is not already

being preserved by an active requirement A requirement for each (e, x)e K pre-
serving such a computation wili be created. Letting

Foo= UK, umeW? & K,NA™ =@}
we put
2o= RIGUKe x, F7) (e, x)e K7}

Case II Cof(j<[® =" <|<| Let
Ko ={e, x)e M{xL"" @n<o)(x,me WI & K,NA™ =§)
& (Vwe REZ—SOUW) # e v(w)#x)
& [(Vy<x)Bwe RXG~SNw),=¢
& twh=y)vxe U{M; B=all;
To show that A is hyperregular in this case, we need preserve computations on
initial segments of L'=” In addition, 1 order to show @[ A]is adequate, we need

preserve computations x € W2 for x € {M,; B=a}. F{, and R}, are defined as
in the previous case
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Next we construct requirements making A'<, 0" Let

IP={ee M, @ne WHK,NAT" =}
& (Vwe R —SA)w), #e)}

Letting GY = {K, ne W/ & K,NA™7 =} we put
=R} UKe 0,GY) eI}

Finally we construct requirements making DA Let H” be the @-finite set
of minmmal v such that tor each ' ~x, 2’2 D” and —1(3(e, V. F)e R, —S) ("¢
1s an active o — A reduction procedure at ¢”') Next let

N7 ={{s, \ye MIX H" *g1san active & — A reduction procedure at ¢’
&En<aune W& K, NA™" = @)}
Lcnmg F“:: U{Kn (B.X GH")«\, n>€ W:y& KTI NA~" 2(0)} we put

o

A= RITU{e, x, F) (e, W)e N7}
To establish our priorities let
Ji={e. 2. F)ER —-S" FNC"#¢} where R9={R", 1<3}

J7% 18 the set of acuve A-requirements which would be njured 1n case ¢ were
added to A Using the notation (H), ={(w), weH}, define {, (o=
wBNJI) MM # @3] 1n case such B exists and let f, (o) =|<| otherwise It 1s clear
from the definition ot the blocks MY (considering the split in that definition) that
fy and fy; may be viewed as @-computable functions If f (o)<s[f,(o). let
B =B ™"UCY and A= A7 If fylo)<f (o), let A“=A""UC” and B =
R
To complete the construction, let ST ={(e 1, F)e Ry FNA”#{}

Lemma 4.6. For each a <X,-cot (|<|, the set of « — A and « — B requirements 1s
@-finute

Preof. The proot 1s by induction on & Fix a < ¥,-cof (|<|) and assume the set of
B - A and BB requirements 15 @-fimte for each 8 <« By the tameness of our
blocking there 15 a stage o, by which all blocks M for 8 <a have settled down
Let

Iu = {0'> Fyy @we R YURE—-R3"U REW)((W)l c MZ)}

Then I, 15 ©-fimite for each B <a by our induction hypothesis so UJ{l, B<a} s
O-fimte by Lemma 34 Thus, using the regularity of C, we can assert the
exwstence of o) » oy, such that all B-requirements for 8 <a have been created by
o, and no such B-requirement will meet C* for r =, It follows that f.(7)=a
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and fp(r)=a for >0, and hence, by our priorities. no a ~ A requrement will
be myured beyond o,

Now we show the exstence of o, Z ¢y beyond which ne & — A requirement 1n
R, ,  created Let

T, ={ecM, (Fo zo)Bwe RL  — RID(w), =2 )}

T, 15 ®- ¢ and hence, by the adequacy of @, @-finitec After o, only permanent
a— A requiremeats are created As 1s readily seen from the definition of I, at
most one permanent -requirement 1s created for each ¢ € M, Thus the existence
of ¢, follows from T, being @-fimte

Next we show the existence of o3 % g, beyond which no a — A requirement n
R, 415 created We need consider two cases

Case A |<|" =|<| or cot (I<["y<[<]" <|<| The set
{(e.)e M, x UM, B<a} Bo>o)@we R\~ RLY)
(tw)y=¢ & (w),=x)}

15 O-finite by adequacy and the assumption on the pairing function The existence
of o, then follows as above

Case B Cof (|| =gl <{<} Let

To={ee M, (V<3 3we Ao S
(w),=¢ & (W =2a)}

T, 15 the set of e M, for which there 1s a permanent &-requirement with
argument 1 for each =L"™" T, 1s @-finite by adequacy and hence there 1s
0% Z o, by which stage all such requirements are created

Suppose there 1s y <{<[" such that if an « — A requirement 1n R, , 1s created
beyond o then its argument 1s less than y Then the existence of o, = g% follows
just as in the former case.

Suppose no such y exists For each ve L™ let

a()=ve[(FoZz o) (Fwe R, ,— RXY%)
(W) =¢ & (W) zx & eeM,)]

Then g """ — M, s total. Fix ec M, If there is a permanent e-requirement
with argument 1\ for each x € LI*", then q ‘() = by our choxe of o’ Else there
15 v<|<" such that there 1s no permanent e-requirement with argument x If
re UM, B=al, then q (e)= UM B<=a}, else g 'te)c L' In either
case g '(e)1s bounded strictly below [<|* But then cof (|<;") < |<|", contradicting
our case hypothesis

Finally we show the existence of ¢ * o, beyond which no & — A requirement 1in
R, - 1s created First note that an a — A reduction proccdure mactive at some
72 ¢, will remain mactive forever, since no « — A requirement 1s mjured beyond
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o, The set ot & —A reduction procedures whick become mactive beyond o 15
@-s ¢ and hence @-finite Thus there 1 o, =0, beyond which no @ — A reduction
procedure 18 made mactive

Suppose oy Ko<t and 1{a) - 1{7) =« From the chowce of o 1t 15 casuly scen
that H' <H" (1e 1 e H” & y« H"=>>a x v} Morcover, it an a« — A requirement
1s created at o, then H” <H7™ [t follows that either the set of & — A requirements
1s G-finite or for each v& D thete 1s a permanent a ~ A requirement {g, x', F)
where x'~ v and £ 15 a reduction procedure active beyond ¢, If the latter were
the case D would be @-computable contrary to our hypothesis For then

vEDSEHr=o M3V - e VL F)e R -~ 8T

(£ 18 an active o - A reduction procedure at )

This completes the proof that the set of o — A requirements 15 ©-finite Using
the regulanty of C choose o. - o, sufficiently large for all a ~ A requirements to
have been created and such that no ¢ will meet an @ — A requirement for + 2 o
No a - B requirement 1s mjured beyond o since f(1)>a whenever 1205 To
show that the set of & — B requirements 15 @-finite we can thus repeat the above
argument with B n place of A «tarting with o, n place ot o,

Lemma 4.7. A and B arc hvpenegula

Preof. The proot splits into three cases

Case 1 || =|%| Suppose H < W where H 15 ©-finite We need to show the
exstence of 7 such that HZ W, Recall that ouwr (%)-parametrization ot @- ¢
sets wds chosen to be repetitive Choose i, such that He UJ{M, y<g,} and
choose a = 3, for which there 15 8 € M, such that W, = W, Let o be sufficiently
large tor all @ — A requirements to nave setiled down Then for each x € H there
18 a permanent d-requirement with argument x m R%, For if this was not the
case tor some v & H, choose 7 such that (\, m)e W, and K, NA =§ Let >0 be
such that +(7) = and (\.m)- Wi Then (8,16 K™ <0 a §-1cquirement with
argument v would be put mto R, contradicting the choice ot ¢ Let x € H and
choose (8. \, F)= R, = 8", Then there 15  such that {1, nye Wy and K, < F But
(8, . F) 15 a permancnt tequurement so FNA =@, 1e ve°Wo Thus Ho W
Choose 7 such that W< W' Then He "W

Betore proceeding to the remaining cases we note that by easy manipulations
using a projection function one can show the following I |<|" <|<|. then aset A
1s hyperregular iff for cvery g, LM c W= Jo(l! Voo W)Y

Case 2 Cot (<" =|v" <{<| Suppose L'"< W* and let e e M, Choose o
sufficiently large for all o ~ A requuements to have settled down Recall from the
construction that 1n this case we attempted to preserve computations on nitial
segments of L' Thus using an argument sinular to the one above there 15 for
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each xe L™ a permanent e-requrement with argument » m RY% , preseiving a
correct computation x e W* Thus 1" ¢ wA

Case 3 Col (<] <<V <] Let Loi (Iil* =vyandlet g L7 — 1LY be as n
Definition 4 5, Recalling the remark tollowing that definttion we view g '(x) as a
set @-finite umiformly in x Definc the @-computable mapping AraV? hy

Vi=V,U{(x, me iy xL” (Vyeq '"GNIE<o)(y, e W & K. = K,)}
where
Vo={umy) xel¥&q "(x)=0 and K, =9

Clam: " s W oL g Vvh

To prove the clamm, assume 1 ' ¢ W2 and let xely I g Y(x)=§, then
x€ V>, Suppose ¢ '(x) A9 Then ¢ '(x) 15 bounded strictly below |<I* Let a, 8
and o, be such that q 'MeUM,; B=al 8eM, and VrZzo (W =W))
Choose o = g, sufficiently large for all @ — A requirements to have settled down
Then as it the first case there 1 a permanent S-requirement in R%, with
argument y tor each ve g '(x) Let

K,=U{F 6,v,F)e R, ,—S% & yeq '(x)}

Then (x. m) € V{ for 1 Z ¢ and 7>n Furthermore K, N A = since only perma-
nent requirements were used to obtain K, Tt follows that xe V,}

Conversely assume LY V" and let yeL™" Choose x,m and o such that
yeqg "(x), (x,myeV,/ and K,NA =@ Then there 15 £ such that (y, £y W and
K.cK, Thus v e"wp

bupposc """ W2 By the claim, L"2 V. Choose o and & such that L' ¢
U{M,; B=a},8eM, and V., =W; By the usual argument there 1s o such that
LY W2 let 7 be such that W< V7 Then LY ¢ "V,* so by the last halt of the
proof of the claim, L'V < W

Lemma 4.8. O[A] and O[B] are adequate theories

Proof. @[A] 15 an wfinite theory by Theorem 2 9 since A 1s hypencgular and
regular Clearly [<[5=|<[§ 4, We show |<]H4,=|<]§ Let VeL® bea O[A)sc
set where B <|<[|§ Then. agaimn using Theorem 29, V 15 weakly @-sc m A Let
a and & be such that Ve | {M, B=<a), 8eM, and V=W5 A permanent
8-requirement with argument x 18 put mmto R, for each xeV Let o be
sufficiently large for all a-requirements to have settled down Then

xeVe(3we R, ,—SW)((w), =8 & (w),=x)
so V 1s O-finite and hence @ B -finite
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Lemma 4.9. A’=B'=('

Proof. As alicady 1emaiked, 1t sufices to show A'= (" Let
q(e) = pol¥r oW Vwe (R~ RIDU(SLA— SANw), > e)]

q 15 defined on all of L™ by Lemma 46 Furthermore g=<,0' since ¢ » a
S.-tunction Clearly e€ A’© e e (R4 -S4, and hence A'< (/

Lemma 4.10. D£, A and D% B

Proof. Suppose (U—D) -W,* Choose o and a, such that eeM,, all a—A
requirements have settled down by «tage o, and no & € M, becomes an mactive
a — A reduction procedure beyond o, Note that £ 15 an active & — A reduction
procedure ai oy, tor ¢lse an erronieous computation would be preserved Choose a
minimal 1¢ D such that theie 1s no v/ ~ x for which (8. 7', F)e Ry, — 8§’y where 8
I an active a — A reduction procedure at o, By the regulanty of D there
o, Za,suchthat L' N D =L"ND" LetrZ o, besuchthat ve "W, and 1) =a
Then H™={x" \'~x} and (e.\)e N” It follows that an e-requirement with
argument 1 will be created at 7, contradic'ing the fact that 7 =,
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