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Abstract

Let R and S be commuting n-tuples of operators. We will give some spectral relations between RS and
SR that extend the case of single operators. We connect the Taylor spectrum, the Fredholm spectrum and
some other joint spectra of RS and SR. Applications to Aluthge transforms of commuting n-tuples are also
provided.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Let X be a Banach space and let £(X) denote the Banach algebra of all bounded linear
operators on X. For T € L(X), let o(T), ker(T) and Im(7T) denote the spectrum of 7', the null
space and the range space of T, respectively.

Anoperator T = (T4, ..., T;) € L(X)" is called a commuting n-tuple if 7; T; = T; T; for every
1 < i, j < n. Spectral properties of commuting n-tuples received important attention during last
decades. Systematic investigations have been carried out to extend (and to apply) known results
for single operators to commuting n-tuples.
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It is well known that for any single operators R and S, the following equality holds:
o (RS)\ {0} =0 (SR)\ {0}. )

It has also been shown that RS and SR share, except perhaps at zero, all their spectral and
local spectral properties, see [2—4] for example.

Equation (1) has been extended to criss-cross commuting n-tuples. That is operators R and S
that satisfy R; S; Ry = Ry SjR; and S; RSk = SgR;S; for every 1 <i, j, k < n. The spectrum in
this context is taken to be the Taylor spectrum [8,17].

We study in this paper common spectral properties of the n-tuples RS and SR when R and
S are commuting n-tuples satisfying some commutation relations. Here R = (Ry, ..., R,;) and
S=(S1,...,8,), and we write RS = (R Sy, ..., R, S,).

We mention at this stage that the commutativity condition under scope here can be stated even
if R and S do not have the same length or are elements in an arbitrary Banach algebra.

We introduce in Section 2 basic definitions of Taylor spectrum, Fredholm spectrum and related
properties of the associated Koszul complex.

In Sections 3 and 4, we show that if R=(Ry,..., R;) and S = (S, ..., S,) are commuting
n-tuples such that

R;S;j=S8;R; foreveryi # j, &

then RS and SR are commuting n-tuples. Moreover, for A = (A1, ..., A,) such that ]_[l- A #0,
we have that A — RS is Taylor (respectively Taylor—Fredholm, Weyl) invertible if and only if
A —SRis.

This yields the following extension of Eq. (1) for commuting n-tuples:

X (RS)\ [0] =X (SR) \ [0], 3)

where X stands for the Taylor spectrum, the Taylor—Fredholm spectrum or the Taylor—Weyl
spectrum of the commuting n-tuples SR and RS, respectively and where

[0] = {AG(C": ]‘[x,» =o}.

i=1

We notice in passing that the commutativity condition considered here does not imply the
criss-cross commutativity and vice versa. In fact, if R or S has the identity operator as one
of its coordinates, then criss-cross commutativity implies RS = SR, while the commutativity
condition (2) does not take in account identity coordinates. On the other hand, the n-tuples
R=(R,...,R) and S=(S,..., S) are always criss-cross commuting, while the commutativ-
ity condition (2) holds only in the trivial case RS = SR. On the other hand, if R = (S}, ..., S})
then commutativity condition (2) is just double commutativity while criss-cross commutativity
will require R; to be quasi-normal.

Note also, as shown by Example 1 (Section 3), that (1) is not valid generally in our context.

It is shown in Sections 3 and 4 that Eq. (3) is valid for Taylor and Fredholm spectra. Section 5
is devoted to split spectra, as a consequence we derive that (3) is valid for the joint approximate
point spectrum, defect spectrum and other joint spectra.

The last section is focused on applications, we retrieve some results from [6,7,13] given for
Aluthge transforms of doubly commuting n-tuples. Concluding remarks, concerning possible
extensions end this paper.
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2. Basic definitions

Let e = {ey, e2, ..., e,} be indeterminates and define A,[e] to be the exterior algebra on the
generators ey, €2, .. ., e,. That is the linear space over the complex plane C endowed with an anti-
commutative exterior producte; Ae; = —ejAe; (1 <i, j<n).ForF ={iy,...,i,}C{l,...,n}

withi| <.+ <i,, we write ep =e;; A--- A €, The exterior algebra over C is then given by
Ayle]l = {ZapeF: er=ej N---Nej, andar € (C}.
F

We let here ey to be the identity element for the exterior product. If we denote A’; [e] =
{Z\F|:k arer: af € C}, where | F| is the cardinal of F, then clearly dim A’nc[e] = C,]f for every
k<n, Ak[e] A Al[e] = Akt [e] and A, [e] = D]_, AX.

Given a Banach space X, the exterior algebra over X is defined to be

e, X1= {prep ep=ej N Nej, andxFeX}.

The subspaces Alle, X1 = {ZIFI —pXFEeF: XF € X}, for p < n are given in a similar way. Natu-

rally Ag[e, X], An[e, X] and All[e, X] can be identified with X, X" and X, respectively.

Since no confusion is possible we will omit any reference to the indeterminate e1, ez, ..., e,
and for short we will write Al,j[X] and A, [X] for Aﬁ[e, X]and A,[e, X], respectively.

If T € L(X), we keep the same symbol T to denote the operator defined on A,[X] by

T(ZXF6F> = ZTXFEF.
F F

For each i € {1,2,...,n}, let E;: A,,[X] - A,[X] be the left multiplication operator by
ei: Ei(er) = e; N er. It is usually called the creation operator. With any commuting n-tuple
T =(T1,...,T,) we associate the linear mapping defined over A,[X] by

ST—ZT RE;: ZXFEF%ZZTXFEZ/\ep

F i=1
Clearly,

n
5%()(}76[:) = Z TiTixpej Nej Nep = ZT[TJ'X(e,' Nej+ejNei) Nep =0.
i,j=1 i<j
It follows that 8% = 0 and hence that Im(§7) C ker(57). Since &t takes AI,‘,_I[X] to Aﬁ[X], the
last statement is equivalent to: Im((ST‘Aﬁ—l[X]) C ker(é7 \Aﬁ[X]) for every k < n.
Set 8!} := 81| zkx]- We construct a co-chain complex K (T), called the Koszul complex asso-
ciated with T on X as fOllOWS‘

71 1 n

—1
K(T):02, AO[X] N Al[X] R N AM[X] RN

The operator T is said to be non-singular, or Taylor invertible, if ker(Sk =Im 8k ! for k =
0, ..., n, equivalently ker 61 = Imt. The associated Koszul complex is sald to be exact in this
case. The Taylor spectrum of T on X" is then the set

or(T) = {1 € C": K(T — 1) is not exact}.
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The Taylor spectrum coincide with the usual spectrum in the case of single operators. We refer
to [19-22] for a detailed study of this spectrum.

The n-tuple T is said to be Fredholm, if ImcS’{fl is closed and kerSéﬁ/ImSéﬁl is finite
dimensional for every k =0, ..., n, equivalently Imdt is closed and kerdt/Imdt is finite
dimensional. At this point, we mention that the condition Im 8%‘1 is closed, derived from

dimker 8!} /Im 5!}_1 < 00 as observed in [22].
The Fredholm (called also the essential) spectrum is then

o7e(T) := {» € C": T — A is not Fredholm}.

Given a Fredholm n-tuple T, the index of T is defined by the Euler characteristic number of the
associated Koszul complex. Namely

ind(T) = Z(_l)k dim H*(T),
k=0

where H*(T) = ker 8% /Im 8%‘1, k=1,...,n, are the associated cohomology groups. A Fred-
holm operator is said to be Taylor—Weyl if ind(T) = 0 [12], and the Taylor—Weyl spectrum is

orw(T) :={» € C": T — A is not Taylor-Weyl}.
3. Taylor spectrum of RS and SR

In this section, we investigate the link of the switching operation and the stability of the Taylor
spectrum and other joint spectra of RS and SR. In the sequel, fori =1, ..., n, we set
SR(;} =(S1R1, 2Ry, ..., R Si, ..., SpRy).
(We put in the ith coordinate R;S; instead of S; R;.) Then, we have

Theorem 1. Let R and S be commuting n-tuples such that Ry S; = S; Ry for k # j. Then

(1) SR and RS are commuting n-tuples.
(2) Foreveryi e{l,...,n}, and A = (A1, ..., Ay) such that A; # 0, we have . — SR is Taylor
invertible if and only if A — SRy;) is.

The following lemma is crucial in our proof and is of independent interest.
Lemma 1. Let T= (T}, ..., T;) € L(X)" be a commuting n-tuple, then
T; = E;ST + (STE;
forevery j =1,...,n. In particular,
T; (ker(ét)) C Im(ér).
Proof. Recall from [22] that
ETE, + E;E =6;;1 (Kronecker delta).
Since 1 = Zj T; ® Ej, we have

EfSr+81E;=E}Y T, ®E+Y TOEE =Y T®8I=T;. 0O
i i i



C. Benhida, E.H. Zerouali/ J. Math. Anal. Appl. 326 (2007) 521-532 525

Proof of Theorem 1. We recall that T = (71, ..., T,) is Taylor invertible if and only if for every
x € ker §t there exists y € A, [X] such that

x =6ér(y).

Suppose now that T = (A1 — S{Ry,...,A; — SiRi, ..., Ay — Sy Ry) is Taylor invertible and let
T; =@A1=S1R1, ..., —R;Si, ..., Ay — SpRy). Since Sk Rj = R; Sy for every k # j, we obtain
the following intertwining relations:
Sidy = é1Si,
{ Sy Ri = Rid “)
T, i = RioT.
If x € kerd, then from Eq. (4), we have S;x € kerét and because &t is Taylor invertible, we
get S;x = &ty for some y € A[X]. We write the identity A;x = (A; — R; S;)x + R;S;x, then we
use Eq. (4) and Lemma 1 to conclude that

Aix = (A — R; Sip)x + 5T’/_ Riy e Im(ST;)

and since A; # 0, we get x € Im(dy/). Consequently T’ is Taylor invertible.
The reverse implication is obtained by symmetry. O

Let Z be a subset of {1, ..., n}, we associate with Z the “partially switched” operator SRz of
SR defined as follows:

SRz :=(01,..., On),

where Q; = R;S; if i € Z, and Q; = §; R; otherwise. Clearly SRy = SR while SRy;, . ,) =RS.
The symmetric formula (SR7)7 = SR enables us to show in all our proofs only one implication
each time we have to show an equivalence statement.

The following corollary is a more general version of Theorem 1 and is obtained by a finite
induction argument.

Corollary 1. Under the assumptions of Theorem 1, for any T, J C {1, ...,n} and )\ such that
[Ticzus *i # 0, we have
A — SRz is Taylor invertible if and only if ) — SR 7 is.
Denote [0]’C ={A=Q01,...,A,) eC": ]_[ieK A; =0}; here L C {1, ..., n}. For convenience,
we put [0] =: [0]{1:++"} and [0]Y = .
Using the observations above, we get the following result that extends Eq. (1) for commuting
n-tuples.
Theorem 2. Under the assumptions of Theorem 1, forall Z, J C {1, ...,n}, we have
o7 (SRD) \ 01" = o7 (SR \ [0
In particular,

or (RS) \ [0] = o7 (SR) \ [0].

The set [0]X cannot be replaced in general by {(0, ..., 0)} as shown by the following example.
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Example 1. Let U be a non-invertible isometry and consider the commuting 2-tuples S = (U, I)
and R = (U*, I'). Then S and R satisfy the assumptions of Theorem 1. Moreover, RS = (/, ) and
SR = (P, I), where I — P is the orthogonal projection on ker U*. We have o7 (RS) = {(1, 1)}
and o7 (SR) = {(1, 1), (0, 1)}.

It is clear that
or(RS) \ [01'" = o7 (SR) \ [0]'"
and

or(RS) \ {(0,0)} # o7 (SR) \ {(0,0)}.

We also have
Corollary 2. Under the assumptions of Theorem 1, we get

(D) If0¢o0(R;S;) =0(SiR;) foreveryi e Z C {1,...,n}, then
or (RS) \ [0]" =07 (SR) \ [0]7".

The set L€ is the complement of T in {1, ..., n}.
) If0¢ 0 (R;S;) =0 (S;R;) foreveryi =1, ...,n, then o (RS) = o7 (SR).

Proof. Fori=1,...,n,let P;:C" — C denote the orthogonal projection on the ith coordinate.
Then by the spectral mapping theorem, we have P;or(T) = o (7;). Theorem 2 completes the
proof. O

4. Fredholm operators and essential spectrum

We devote this section to Fredholm invertibility of operators RS and SR. We keep the same
notations of the previous section.
In the line of Theorem 1, we have the following result.

Theorem 3. Let R and S be commuting n-tuples such that RiS; = SRy for k # j. Let i €
{1,...,n}andlet A = (A1, ..., Ay) € C" be such that A; # 0. Then,

A —SRy;y is Fredholm if and only if X — SR is Fredholm.

Proof. Suppose that T = A — SR is Fredholm, which means that Im 8%‘1 is closed and that

H*(T) =: ker 8% /Im (S%_] is finite dimensional for every k =0, ..., n. We will show that T} =
A —SRy;) is also Fredholm.
For k=1,...,n, consider the linear transformation
S; :kerS% — Hk(T)
x —> 1 (Six),

where 7 is the canonical surjection onto H k(T). Then s; is a well-defined linear continuous

transformation. Moreover, if s;(x) = 7 (0) for some x € kerS%, then S;x € Im 81{-_1. Applying

R; we get R; S;x € R; Im 8%71 C Im 8’1‘{1. Now, using Lemma 1: we obtain
Aix = (hi — RiS)x + R; S;x e Imsk, !
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and since A; # 0, we get x € Im 8%_1.
Thus kers; C Im 8;5_1. The reverse inclusion being trivial we have kers; = Im 8,’;,__1. It follows

that Im 8%,__1 is closed. Moreover, the following diagram

ker 8,’}; — > gk(T)

7’ o
Si

ker 8;,_ / kers;

is commutative; and hence §; : H*(T}) = ker 8% /kers; — H¥(T) is a linear injection.
We deduce that dim H¥ (T;) < dim H*(T) and consequently T{ is Fredholm.
By symmetry again, we obtain the required equivalence. O
The following corollary is immediate from the proof given above.

Corollary 3.

(1) Im 81{{1 is closed if and only if Im 81{51 is.
() IfIm8y, " is closed, then dim H*(T}) = dim H*(T).
3) In partilcular, if T is Fredholm, then

indT =ind T;.
Arguing as in the above section, we obtain

Theorem 4. Under the assumptions of Theorem 1, for A = (A1, ..., A,) such that HieIuJ Ai F#
0, we have

(1) A — SRz is Fredholm if and only if . — SR 7 is.

(2) If » — SRz is Fredholm, then ind(A — SR7) =ind(A — SR 7).

(3) In particular, for every A such that []; A; # 0, we have A — SR is Fredholm if and only if
A — RS is Fredholm, and in this case,

ind(A — SR) = ind(: — RS).
The next corollary follows from Theorem 4.

Corollary 4. Under the assumptions of Theorem 1, we have
o7¢(SR2)\ [01"% =07, (SR ) \ [0]"
In particular, we have

o7¢(SR) \ [0] = 07, (RS) \ [0].

Outlining the proof of Corollary 2, we get the following result.
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Corollary 5. Under the assumptions of Theorem 1, we have

(1) If 0 ¢ 0.(R;S;) =0.(SiR;) foreveryi € T C{1,...,n}, then
o7(RS) \ [01" = o7 (SR) \ [0]",
where Z€ is the complement of T in {1, ..., n}.
) If 0¢ 0,(R;S;) =0.(SiR;) foreveryi =1, ...,n, then or.(RS) = o7.(SR).
Corollary 6. Under the assumptions of Theorem 1,
orw(SR) \ [0 = o7, (SR ) \ [0,
and hence

orw(RS) \ [0] = o7+, (SR) \ [0].
5. Taylor split spectrum

Recall the following definitions:
Let 0% (T) be the complement of all complex numbers A for which
HP(T—)M)=0 Vp,n—k<p<n,
and o™X (T) be the complement of all complex numbers A for which
H?(T-2M)=0 Vp, 0<p<k,

and H*T1(T — 1) is separated in its natural quotient topology.
aefs ’k(T) is the complement of all complex numbers XA for which

dimHP(T—X1) <00 Vp, n—k<p<n,
and o ok (T) is the complement of all complex numbers A for which
dmHP(T—X) <o Vp, 0< p <k,

and H*T1(T — 1) is separated in its natural quotient topology.
o%%(T) and 67™*(T) are called the defect and the approximate point spectra of degree k for T.
The defect and the approximate point spectrum of T are defined as

os(T)=c>%(T) and o7 (T)=0""T) (denoted also by oap(T)).

We give now a version of Theorem 2 for the above spectra.

Theorem 5. Under the assumptions of Theorem 1, if T, J C {1, ..., n}, we have

(1) o™*(SRy) \ [017YT =67 (SR ) \ [0]2Y7,
) o3*(SRy) \ [0FFYT =0 (SR) \ [01FY7,
3) o (SR \ [017Y7 =67 * (SR 1) \ [017Y7,
@ a2 (SR7) \ [017Y7 =62 (SR ) \ [07Y7 .
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It is easy to see that the last results are still valid for o, (.) the joint point spectrum where
op(T)={reC", Ix e X \{0}: (T; —A)x=0fori=1,...,n}.

Recall that an operator L on a Banach space X has a generalized inverse if there exists an
operator M on X such that LML = L.

Definition 1. Let T = (71, ..., T,,) be an n-tuple of commuting operators on a Banach space X.
We say that T is split regular if it is Taylor regular and the mapping 1 : Ale, X] — Ale, X] has
a generalized inverse. The split spectrum os(T) is the set of all A = (A, ..., ;) € C" such that
the n-tuple T = (71 — Ay, ..., Ty, — X,) is not split regular.

The following result characterizes the split regular n-tuples of operators and could be found
in [18].

Proposition 1. Let T = (T4, ..., T,) be an n-tuple of mutually commuting operators on a Banach
space X. The following conditions are equivalent:

(1) T is split regular;

(2) T is Taylor regular and ker 8’{1 is a complemented subspace of Ale, X1¥ fork=0,...,n—1;

(3) there exist operators Wi, Wa : Ale, X] — Ale, X] such that W18t + 8t W2 = L fe, x7;

(4) there exists an operator V:Ale, X] — Ale, X] such that Vér + 7V =1, Vi=0
and V : Ale, X]P C Ale, X]p’1 for p=0,...,n. Equivalently, there are operators V), :
Ale, X1PH1 = Ale, X1P such that V1V, = 0 and Vp8h + 807"V, i = Ly xpp for
every p (for p =0 and p = n this reduces to VOS% = I p[e.xy0 and 8¥_1Vn_1 = I Afe, x7",
respectively).

It is then clear that we have also similar results for split spectrum.
Remark 1. We have:

(1) The Taylor split spectrum is definable in Banach algebras as easily as for operators on Ba-
nach spaces and also coincides with both the Taylor spectrum and the Taylor split spectrum
of the induced system of left multiplication operators, and also of the induced system of right
multiplication operators on the Banach algebra.

(2) The left and the right spectrum are the parts of the split spectrum analogous to the approxi-
mate point and defect spectrum as parts of the Taylor spectrum.

(3) There are also split versions of Taylor—Fredholm and Taylor—Weyl spectrum, related or not
to the Taylor split spectrum on the Calkin algebra.

6. Applications and concluding remarks

Switching properties are related to many problems in operator theory. Examples of such ap-
plications are given in [4,5] where this concept has been used to extend some results on Aluthge
transform. Also, it has been useful to obtain some stability spectral properties for operator matri-
ces and extensions.

In this section, we apply the same concept to give some results in the line of [7-10,13].
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6.1. Aluthge and Duggal transforms

Let T € L(H) be a bounded operator on some Hilbert space H and U|T| be its polar de-
composition, where |T'| = (T*T)'/? and U is the appropriate partial isometry. The Generalized
Aluthge transform of T is given by T'(t) = |T|'~'U|T|* where 0 <t < 1.

Set $=|T|" and R = U|T|'~". Then clearly RS = T and SR = T (¢). In particular T and T
alm(ist have the same spectral properties. For further details, we refer to [1,14-16] in the case
t=5.

T2he “n-tuples version” of the last results has been given first in [9,10,13], for n-tuples of p-
hyponormal operators and lately in [6] for doubly commuting n-tuples of operators. It is worthy
to note that we may retrieve a part of the last results by applying the previous section to the doubly
commuting n-tuples T = (71, ..., T,) and its Aluthge transform T(¢) = (f‘l (t),..., fn (t,)) for
allt =(t1,...,1,) €10, 1]".

It is not hard to see that the following result from [11] given for pairs remains true for n-tuples.

Lemma 2. [11, Theorem 2] Let T = (T, T2) be a doubly commuting pair. If U1|T1| and U, |T>|
are their respective polar decompositions, then Uy, U and |Ti| commute with Uy, U} and |T>|.

It has been shown in [14,15] for a single operator T, that
>(T)= X(T) )

for ¥ € {0, 0p, 0ap, 0c}. Recall that an n-tuple T = (71, ..., T,) is doubly commuting provided
that T and T* satisfy (2). The latter equality is extended for doubly commuting n-tuples as
follows.

Theorem 6~. [6] LetNT = (T, e T,) be a doubly commuting n-tuple and for t = (t1,...,t,) €
10, 117, let T(t) = (T1(t), ..., T, (1)) be its Aluthge transform. Then

(M or(T(®) =or(T), or.(T(®) =o7.(T);

(1) =0,(T),  0ap(T(1)) = 05p(T).

TO*) \ [0]=07(TH\[0], ore(T®)\ [0]=07.(T*) \ [0];
ap(TW*) \ [0 =0, (T)\[0], 05 (T(®)) \ [0] = 6 (T*) \ [0].

@

Q
=

Q
~

Moreover, if U; is unitary for every i, then we have

3 or (T(t)*) =or(T*), ore (T(t)*) =o07.(T");
op(T®F) = 0p(T*),  0up(TOF) = 0ap(T).

(1) We set S; = |T;|% and R; = U;|T;|' ™", then R; S; = T; and S; R; = T} (1;).

Of course, R and S satisfy our commutativity conditions (cf., the lemma above). We conclude
by appealing the previous results that X' ('i‘(t)) \[0]=X ('i‘) \ [0], where X € {0, 0., 0), Oap}.

The equalities in (1) seem to be due the fact that we have furthermore the double commuta-
tivity and even more.

(2) To obtain our requirement, it suffices to set S; = |T;|% and R; = |T; |-ty
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The Duggal transplant of 7 = U|T| is defined to be T= |T|U.

For a doubly commuting n-tuple T = (71, ..., T,), we can also consider Duggal transplant
of T whichis T = (T4, ..., T,).

We apply again the results of the previous section to a doubly commuting n-tuple T =
(Ty, ..., T,) and its Duggal transplant.

Theorem 7. Let T = (T1, ..., T;) be a doubly commuting n-tuple and let T= (YA] s YA“n) be its
Duggal transplant. Then

ZM\[0]=Z(T)\[0],  Z(T*\[0]=X(T*\ [0],

where X € {0, 0¢,0p, Onp, .. .}.

It is easy to see that those results may be also given for an n-tuple with mixed coordinates
formed by either Duggal transplants or Aluthge transforms. Namely, let us define, for two disjoint
subsets 7 and J of {1,...,n}, the n-tuples Tz 7 := (Q1,..., Q,) where Q; = T, if i €7,
Q;= f"j if j € J, and Qy = Ty, if k is neither in Z nor in 7. Then, we have the following result:

Theorem 8. Let T = (T4, ..., T,) be a doubly commuting n-tuple and T and J be two disjoint
subsets of {1, ...,n}. Then

STz N\ =2\ [0, 2@ ) \ 0P = 2T\ [0,

where X € {0,0,,0p, Ogp, ...}
6.2. Concluding remarks

(1) The iterated Aluthge transforms are defined by the recursive formula 70 = 7"~1 with
T = 7. Common spectral properties of 7", n > 1, have been investigated in [16]. The main
results obtained for the Aluthge transforms of commuting n-tuples are extendible to their iterated
Aluthge transforms. This is carried out by applying inductively the previous section.

(2) The value n = 1 permits to retrieve the case of single operators. Thus some parts of [3,4,
14-16] are recaptured. We mention that the proofs given in this paper do not depend heavily on
the ones given for single operators.
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