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Abstract

Let R and S be commuting n-tuples of operators. We will give some spectral relations between RS and
SR that extend the case of single operators. We connect the Taylor spectrum, the Fredholm spectrum and
some other joint spectra of RS and SR. Applications to Aluthge transforms of commuting n-tuples are also
provided.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Let X be a Banach space and let L(X) denote the Banach algebra of all bounded linear
operators on X. For T ∈ L(X), let σ(T ), ker(T ) and Im(T ) denote the spectrum of T , the null
space and the range space of T , respectively.

An operator T = (T1, . . . , Tn) ∈ L(X)n is called a commuting n-tuple if TiTj = TjTi for every
1 � i, j � n. Spectral properties of commuting n-tuples received important attention during last
decades. Systematic investigations have been carried out to extend (and to apply) known results
for single operators to commuting n-tuples.
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It is well known that for any single operators R and S, the following equality holds:

σ(RS) \ {0} = σ(SR) \ {0}. (1)

It has also been shown that RS and SR share, except perhaps at zero, all their spectral and
local spectral properties, see [2–4] for example.

Equation (1) has been extended to criss-cross commuting n-tuples. That is operators R and S
that satisfy RiSjRk = RkSjRi and SiRjSk = SkRjSi for every 1 � i, j, k � n. The spectrum in
this context is taken to be the Taylor spectrum [8,17].

We study in this paper common spectral properties of the n-tuples RS and SR when R and
S are commuting n-tuples satisfying some commutation relations. Here R = (R1, . . . ,Rn) and
S = (S1, . . . , Sn), and we write RS = (R1S1, . . . ,RnSn).

We mention at this stage that the commutativity condition under scope here can be stated even
if R and S do not have the same length or are elements in an arbitrary Banach algebra.

We introduce in Section 2 basic definitions of Taylor spectrum, Fredholm spectrum and related
properties of the associated Koszul complex.

In Sections 3 and 4, we show that if R = (R1, . . . ,Rn) and S = (S1, . . . , Sn) are commuting
n-tuples such that

RiSj = SjRi for every i �= j, (2)

then RS and SR are commuting n-tuples. Moreover, for λ = (λ1, . . . , λn) such that
∏

i λi �= 0,
we have that λ − RS is Taylor (respectively Taylor–Fredholm, Weyl) invertible if and only if
λ − SR is.

This yields the following extension of Eq. (1) for commuting n-tuples:

Σ(RS) \ [0] = Σ(SR) \ [0], (3)

where Σ stands for the Taylor spectrum, the Taylor–Fredholm spectrum or the Taylor–Weyl
spectrum of the commuting n-tuples SR and RS, respectively and where

[0] =
{

λ ∈ C
n:

n∏
i=1

λi = 0

}
.

We notice in passing that the commutativity condition considered here does not imply the
criss-cross commutativity and vice versa. In fact, if R or S has the identity operator as one
of its coordinates, then criss-cross commutativity implies RS = SR, while the commutativity
condition (2) does not take in account identity coordinates. On the other hand, the n-tuples
R = (R, . . . ,R) and S = (S, . . . , S) are always criss-cross commuting, while the commutativ-
ity condition (2) holds only in the trivial case RS = SR. On the other hand, if R = (S∗

1 , . . . , S∗
n)

then commutativity condition (2) is just double commutativity while criss-cross commutativity
will require Ri to be quasi-normal.

Note also, as shown by Example 1 (Section 3), that (1) is not valid generally in our context.
It is shown in Sections 3 and 4 that Eq. (3) is valid for Taylor and Fredholm spectra. Section 5

is devoted to split spectra, as a consequence we derive that (3) is valid for the joint approximate
point spectrum, defect spectrum and other joint spectra.

The last section is focused on applications, we retrieve some results from [6,7,13] given for
Aluthge transforms of doubly commuting n-tuples. Concluding remarks, concerning possible
extensions end this paper.
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2. Basic definitions

Let e = {e1, e2, . . . , en} be indeterminates and define Λn[e] to be the exterior algebra on the
generators e1, e2, . . . , en. That is the linear space over the complex plane C endowed with an anti-
commutative exterior product ei ∧ej = −ej ∧ei (1 � i, j � n). For F = {i1, . . . , ip} ⊂ {1, . . . , n}
with i1 < · · · < ip , we write eF = ei1 ∧ · · · ∧ eip . The exterior algebra over C is then given by

Λn[e] =
{∑

F

αF eF : eF = ei1 ∧ · · · ∧ eip and αF ∈ C

}
.

We let here e∅ to be the identity element for the exterior product. If we denote Λk
n[e] =

{∑|F |=k αF eF : αF ∈ C}, where |F | is the cardinal of F , then clearly dimΛk
n[e] = Ck

n for every

k � n, Λk
n[e] ∧ Λl

n[e] = Λk+l
n [e] and Λn[e] = ⊕n

k=0 Λk
n.

Given a Banach space X, the exterior algebra over X is defined to be

Λn[e,X] =
{∑

F

xF eF : eF = ei1 ∧ · · · ∧ eip and xF ∈ X

}
.

The subspaces Λ
p
n [e,X] = {∑|F |=p xF eF : xF ∈ X}, for p � n are given in a similar way. Natu-

rally Λ0
n[e,X],Λ1

n[e,X] and Λn
n[e,X] can be identified with X,Xn and X, respectively.

Since no confusion is possible we will omit any reference to the indeterminate e1, e2, . . . , en

and for short we will write Λk
n[X] and Λn[X] for Λk

n[e,X] and Λn[e,X], respectively.
If T ∈ L(X), we keep the same symbol T to denote the operator defined on Λn[X] by

T

(∑
F

xF eF

)
=

∑
F

T xF eF .

For each i ∈ {1,2, . . . , n}, let Ei :Λn[X] → Λn[X] be the left multiplication operator by
ei : Ei(eF ) = ei ∧ eF . It is usually called the creation operator. With any commuting n-tuple
T = (T1, . . . , Tn) we associate the linear mapping defined over Λn[X] by

δT =
n∑

i=1

Ti ⊗ Ei :
∑
F

xF eF →
∑
F

n∑
i=1

TixF ei ∧ eF .

Clearly,

δ2
T(xF eF ) =

n∑
i,j=1

TjTixF ej ∧ ei ∧ eF =
∑
i<j

TiTj x(ei ∧ ej + ej ∧ ei) ∧ eF = 0.

It follows that δ2
T = 0 and hence that Im(δT ) ⊂ ker(δT ). Since δT takes Λk−1

n [X] to Λk
n[X], the

last statement is equivalent to: Im(δT |Λk−1
n [X]) ⊂ ker(δT |Λk

n[X]) for every k � n.

Set δk
T := δT|Λk

n[X]. We construct a co-chain complex K(T), called the Koszul complex asso-
ciated with T on X as follows:

K(T) : 0
δ−1

T−−→ Λ0
n[X] δ0

T−→ Λ1
n[X] δ1

T−→ · · · δn−1
T−−−→ Λn

n[X] δn
T−→ 0.

The operator T is said to be non-singular, or Taylor invertible, if ker δk
T = Im δk−1

T for k =
0, . . . , n, equivalently ker δT = Im δT. The associated Koszul complex is said to be exact in this
case. The Taylor spectrum of T on Xn is then the set

σT (T) = {
λ ∈ C

n: K(T − λ) is not exact
}
.
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The Taylor spectrum coincide with the usual spectrum in the case of single operators. We refer
to [19–22] for a detailed study of this spectrum.

The n-tuple T is said to be Fredholm, if Im δk−1
T is closed and ker δk

T/ Im δk−1
T is finite

dimensional for every k = 0, . . . , n, equivalently Im δT is closed and ker δT/ Im δT is finite
dimensional. At this point, we mention that the condition Im δk−1

T is closed, derived from
dim ker δk

T/ Im δk−1
T < ∞ as observed in [22].

The Fredholm (called also the essential) spectrum is then

σT e(T) := {
λ ∈ C

n: T − λ is not Fredholm
}
.

Given a Fredholm n-tuple T, the index of T is defined by the Euler characteristic number of the
associated Koszul complex. Namely

ind(T) =
n∑

k=0

(−1)k dimHk(T),

where Hk(T) = ker δk
T/ Im δk−1

T , k = 1, . . . , n, are the associated cohomology groups. A Fred-
holm operator is said to be Taylor–Weyl if ind(T) = 0 [12], and the Taylor–Weyl spectrum is

σT w(T) := {
λ ∈ C

n: T − λ is not Taylor–Weyl
}
.

3. Taylor spectrum of RS and SR

In this section, we investigate the link of the switching operation and the stability of the Taylor
spectrum and other joint spectra of RS and SR. In the sequel, for i = 1, . . . , n, we set

SR{i} = (S1R1, S2R2, . . . ,RiSi, . . . , SnRn).

(We put in the ith coordinate RiSi instead of SiRi .) Then, we have

Theorem 1. Let R and S be commuting n-tuples such that RkSj = SjRk for k �= j . Then

(1) SR and RS are commuting n-tuples.
(2) For every i ∈ {1, . . . , n}, and λ = (λ1, . . . , λn) such that λi �= 0, we have λ − SR is Taylor

invertible if and only if λ − SR{i} is.

The following lemma is crucial in our proof and is of independent interest.

Lemma 1. Let T = (T1, . . . , Tn) ∈ L(X)n be a commuting n-tuple, then

Tj = E∗
j δT + δTE∗

j

for every j = 1, . . . , n. In particular,

Tj

(
ker(δT)

) ⊂ Im(δT).

Proof. Recall from [22] that

E∗
j Ei + EjE

∗
i = δij I (Kronecker delta).

Since δT = ∑
j Tj ⊗ Ej , we have

E∗
j δT + δTE∗

j = E∗
j

∑
Ti ⊗ Ei +

∑
Ti ⊗ EiE

∗
j =

∑
Ti ⊗ δij I = Tj . �
i i i
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Proof of Theorem 1. We recall that T = (T1, . . . , Tn) is Taylor invertible if and only if for every
x ∈ ker δT there exists y ∈ Λn[X] such that

x = δT(y).

Suppose now that T = (λ1 − S1R1, . . . , λi − SiRi, . . . , λn − SnRn) is Taylor invertible and let
T′

i = (λ1 −S1R1, . . . , λi −RiSi, . . . , λn −SnRn). Since SkRj = RjSk for every k �= j , we obtain
the following intertwining relations:{

SiδT′
i
= δTSi,

δT′
i
Ri = RiδT.

(4)

If x ∈ ker δT′
i
, then from Eq. (4), we have Six ∈ ker δT and because δT is Taylor invertible, we

get Six = δTy for some y ∈ Λ[X]. We write the identity λix = (λi − RiSi)x + RiSix, then we
use Eq. (4) and Lemma 1 to conclude that

λix = (λi − RiSi)x + δT′
i
Riy ∈ Im(δT′

i
)

and since λi �= 0, we get x ∈ Im(δT′
i
). Consequently T′

i is Taylor invertible.
The reverse implication is obtained by symmetry. �
Let I be a subset of {1, . . . , n}, we associate with I the “partially switched” operator SRI of

SR defined as follows:

SRI := (Q1, . . . ,Qn),

where Qi = RiSi if i ∈ I , and Qi = SiRi otherwise. Clearly SR∅ = SR while SR{1,...,n} = RS.
The symmetric formula (SRI)I = SR enables us to show in all our proofs only one implication
each time we have to show an equivalence statement.

The following corollary is a more general version of Theorem 1 and is obtained by a finite
induction argument.

Corollary 1. Under the assumptions of Theorem 1, for any I,J ⊂ {1, . . . , n} and λ such that∏
i∈I∪J λi �= 0, we have

λ − SRI is Taylor invertible if and only if λ − SRJ is.

Denote [0]K = {λ = (λ1, . . . , λn) ∈ C
n:

∏
i∈K λi = 0}; here K ⊂ {1, . . . , n}. For convenience,

we put [0] =: [0]{1,...,n} and [0]∅ = ∅.
Using the observations above, we get the following result that extends Eq. (1) for commuting

n-tuples.

Theorem 2. Under the assumptions of Theorem 1, for all I,J ⊂ {1, . . . , n}, we have

σT (SRI) \ [0]I∪J = σT (SRJ ) \ [0]I∪J .

In particular,

σT (RS) \ [0] = σT (SR) \ [0].

The set [0]K cannot be replaced in general by {(0, . . . ,0)} as shown by the following example.
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Example 1. Let U be a non-invertible isometry and consider the commuting 2-tuples S = (U, I )

and R = (U∗, I ). Then S and R satisfy the assumptions of Theorem 1. Moreover, RS = (I, I ) and
SR = (P, I ), where I − P is the orthogonal projection on kerU∗. We have σT (RS) = {(1,1)}
and σT (SR) = {(1,1), (0,1)}.

It is clear that

σT (RS) \ [0]{1} = σT (SR) \ [0]{1}

and

σT (RS) \ {
(0,0)

} �= σT (SR) \ {
(0,0)

}
.

We also have

Corollary 2. Under the assumptions of Theorem 1, we get

(1) If 0 /∈ σ(RiSi) = σ(SiRi) for every i ∈ I ⊂ {1, . . . , n}, then

σT (RS) \ [0]Ic = σT (SR) \ [0]Ic

.

The set Ic is the complement of I in {1, . . . , n}.
(2) If 0 /∈ σ(RiSi) = σ(SiRi) for every i = 1, . . . , n, then σT (RS) = σT (SR).

Proof. For i = 1, . . . , n, let Pi : Cn → C denote the orthogonal projection on the ith coordinate.
Then by the spectral mapping theorem, we have PiσT (T) = σ(Ti). Theorem 2 completes the
proof. �
4. Fredholm operators and essential spectrum

We devote this section to Fredholm invertibility of operators RS and SR. We keep the same
notations of the previous section.

In the line of Theorem 1, we have the following result.

Theorem 3. Let R and S be commuting n-tuples such that RkSj = SjRk for k �= j . Let i ∈
{1, . . . , n} and let λ = (λ1, . . . , λn) ∈ C

n be such that λi �= 0. Then,

λ − SR{i} is Fredholm if and only if λ − SR is Fredholm.

Proof. Suppose that T = λ − SR is Fredholm, which means that Im δk−1
T is closed and that

Hk(T) =: ker δk
T/ Im δk−1

T is finite dimensional for every k = 0, . . . , n. We will show that T′
i =

λ − SR{i} is also Fredholm.
For k = 1, . . . , n, consider the linear transformation

si : ker δk
T′

i
−→ Hk(T)

x −→ π(Six),

where π is the canonical surjection onto Hk(T). Then si is a well-defined linear continuous
transformation. Moreover, if si(x) = π(0) for some x ∈ ker δk

T′
i
, then Six ∈ Im δk−1

T . Applying

Ri we get RiSix ∈ Ri Im δk−1
T ⊂ Im δk−1

T′
i

. Now, using Lemma 1, we obtain

λix = (λi − RiSi)x + RiSix ∈ Im δk−1
′
Ti
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and since λi �= 0, we get x ∈ Im δk−1
T′

i

.

Thus ker si ⊂ Im δk−1
T′

i

. The reverse inclusion being trivial we have ker si = Im δk−1
T′

i

. It follows

that Im δk−1
T′

i

is closed. Moreover, the following diagram

ker δk
T′

i

si

π ′

Hk(T)

ker δk
T′

i

/ker si

s̃i

is commutative; and hence s̃i :Hk(T′
i ) = ker δk

T′
i

/ker si → Hk(T) is a linear injection.

We deduce that dimHk(T′
i ) � dimHk(T) and consequently T′

i is Fredholm.
By symmetry again, we obtain the required equivalence. �
The following corollary is immediate from the proof given above.

Corollary 3.

(1) Im δk−1
T′

i

is closed if and only if Im δk−1
T is.

(2) If Im δk−1
T′

i

is closed, then dimHk(T′
i ) = dimHk(T).

(3) In particular, if T is Fredholm, then

ind T = ind T′
i .

Arguing as in the above section, we obtain

Theorem 4. Under the assumptions of Theorem 1, for λ = (λ1, . . . , λn) such that
∏

i∈I∪J λi �=
0, we have

(1) λ − SRI is Fredholm if and only if λ − SRJ is.
(2) If λ − SRI is Fredholm, then ind(λ − SRI) = ind(λ − SRJ ).
(3) In particular, for every λ such that

∏
i λi �= 0, we have λ − SR is Fredholm if and only if

λ − RS is Fredholm, and in this case,

ind(λ − SR) = ind(λ − RS).

The next corollary follows from Theorem 4.

Corollary 4. Under the assumptions of Theorem 1, we have

σT e(SRI) \ [0]I∪J = σT e(SRJ ) \ [0]I∪J .

In particular, we have

σT e(SR) \ [0] = σT e(RS) \ [0].

Outlining the proof of Corollary 2, we get the following result.
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Corollary 5. Under the assumptions of Theorem 1, we have

(1) If 0 /∈ σe(RiSi) = σe(SiRi) for every i ∈ I ⊂ {1, . . . , n}, then

σT e(RS) \ [0]Ic = σT e(SR) \ [0]Ic

,

where Ic is the complement of I in {1, . . . , n}.
(2) If 0 /∈ σe(RiSi) = σe(SiRi) for every i = 1, . . . , n, then σT e(RS) = σT e(SR).

Corollary 6. Under the assumptions of Theorem 1,

σT w(SRI) \ [0]I∪J = σT w(SRJ ) \ [0]I∪J ,

and hence

σT w(RS) \ [0] = σT w(SR) \ [0].

5. Taylor split spectrum

Recall the following definitions:

Let σ δ,k(T) be the complement of all complex numbers λ for which

Hp(T − λ) = O ∀p, n − k � p � n,

and σπ,k(T) be the complement of all complex numbers λ for which

Hp(T − λ) = O ∀p, 0 � p � k,

and Hk+1(T − λ) is separated in its natural quotient topology.
σ

δ,k
e (T) is the complement of all complex numbers λ for which

dimHp(T − λ) < ∞ ∀p, n − k � p � n,

and σ
π,k
e (T) is the complement of all complex numbers λ for which

dimHp(T − λ) < ∞ ∀p, 0 � p � k,

and Hk+1(T − λ) is separated in its natural quotient topology.
σ δ,k(T) and σπ,k(T) are called the defect and the approximate point spectra of degree k for T.
The defect and the approximate point spectrum of T are defined as

σδ(T) = σ δ,0(T) and σπ(T) = σπ,0(T)
(
denoted also by σap(T)

)
.

We give now a version of Theorem 2 for the above spectra.

Theorem 5. Under the assumptions of Theorem 1, if I,J ⊂ {1, . . . , n}, we have

(1) σπ,k(SRI) \ [0]I∪J = σπ,k(SRJ ) \ [0]I∪J ,

(2) σ δ,k(SRI) \ [0]I∪J = σ δ(SRJ ) \ [0]I∪J ,

(3) σ
π,k
e (SRI) \ [0]I∪J = σ

π,k
e (SRJ ) \ [0]I∪J ,

(4) σ
δ,k
e (SRI) \ [0]I∪J = σ δ

e (SRJ ) \ [0]I∪J .
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It is easy to see that the last results are still valid for σp(.) the joint point spectrum where

σp(T) = {
λ ∈ C

n, ∃x ∈ X \ {0}: (Ti − λi)x = 0 for i = 1, . . . , n
}
.

Recall that an operator L on a Banach space X has a generalized inverse if there exists an
operator M on X such that LML = L.

Definition 1. Let T = (T1, . . . , Tn) be an n-tuple of commuting operators on a Banach space X.
We say that T is split regular if it is Taylor regular and the mapping δT :Λ[e,X] → Λ[e,X] has
a generalized inverse. The split spectrum σS(T) is the set of all λ = (λ1, . . . , λn) ∈ C

n such that
the n-tuple T = (T1 − λ1, . . . , Tn − λn) is not split regular.

The following result characterizes the split regular n-tuples of operators and could be found
in [18].

Proposition 1. Let T = (T1, . . . , Tn) be an n-tuple of mutually commuting operators on a Banach
space X. The following conditions are equivalent:

(1) T is split regular;
(2) T is Taylor regular and ker δk

T is a complemented subspace of Λ[e,X]k for k = 0, . . . , n− 1;
(3) there exist operators W1,W2 : Λ[e,X] → Λ[e,X] such that W1δT + δTW2 = IΛ[e,X];
(4) there exists an operator V :Λ[e,X] → Λ[e,X] such that V δT + δTV = I , V 2 = 0

and V :Λ[e,X]p ⊂ Λ[e,X]p−1 for p = 0, . . . , n. Equivalently, there are operators Vp :

Λ[e,X]p+1 → Λ[e,X]p such that Vp−1Vp = 0 and Vpδ
p

T + δ
p−1
T Vp−1 = IΛ[e,X]p for

every p ( for p = 0 and p = n this reduces to V0δ
0
T = IΛ[e,X]0 and δn−1

T Vn−1 = IΛ[e,X]n ,
respectively).

It is then clear that we have also similar results for split spectrum.

Remark 1. We have:

(1) The Taylor split spectrum is definable in Banach algebras as easily as for operators on Ba-
nach spaces and also coincides with both the Taylor spectrum and the Taylor split spectrum
of the induced system of left multiplication operators, and also of the induced system of right
multiplication operators on the Banach algebra.

(2) The left and the right spectrum are the parts of the split spectrum analogous to the approxi-
mate point and defect spectrum as parts of the Taylor spectrum.

(3) There are also split versions of Taylor–Fredholm and Taylor–Weyl spectrum, related or not
to the Taylor split spectrum on the Calkin algebra.

6. Applications and concluding remarks

Switching properties are related to many problems in operator theory. Examples of such ap-
plications are given in [4,5] where this concept has been used to extend some results on Aluthge
transform. Also, it has been useful to obtain some stability spectral properties for operator matri-
ces and extensions.

In this section, we apply the same concept to give some results in the line of [7–10,13].
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6.1. Aluthge and Duggal transforms

Let T ∈ L(H) be a bounded operator on some Hilbert space H and U |T | be its polar de-
composition, where |T | = (T ∗T )1/2 and U is the appropriate partial isometry. The Generalized
Aluthge transform of T is given by T̃ (t) = |T |1−tU |T |t where 0 < t < 1.

Set S = |T |t and R = U |T |1−t . Then clearly RS = T and SR = T̃ (t). In particular T̃ and T

almost have the same spectral properties. For further details, we refer to [1,14–16] in the case
t = 1

2 .
The “n-tuples version” of the last results has been given first in [9,10,13], for n-tuples of p-

hyponormal operators and lately in [6] for doubly commuting n-tuples of operators. It is worthy
to note that we may retrieve a part of the last results by applying the previous section to the doubly
commuting n-tuples T = (T1, . . . , Tn) and its Aluthge transform T̃(t) = (T̃1(t1), . . . , T̃n(tn)) for
all t = (t1, . . . , tn) ∈ ]0,1[n.

It is not hard to see that the following result from [11] given for pairs remains true for n-tuples.

Lemma 2. [11, Theorem 2] Let T = (T1, T2) be a doubly commuting pair. If U1|T1| and U2|T2|
are their respective polar decompositions, then U1, U∗

1 and |T1| commute with U2, U∗
2 and |T2|.

It has been shown in [14,15] for a single operator T , that

Σ(T̃ ) = Σ(T ) (5)

for Σ ∈ {σ,σp,σap, σe}. Recall that an n-tuple T = (T1, . . . , Tn) is doubly commuting provided
that T and T∗ satisfy (2). The latter equality is extended for doubly commuting n-tuples as
follows.

Theorem 6. [6] Let T = (T1, . . . , Tn) be a doubly commuting n-tuple and for t = (t1, . . . , tn) ∈
]0,1[n, let T̃(t) = (T̃1(t), . . . , T̃n(t)) be its Aluthge transform. Then

(1) σT

(
T̃(t)

) = σT (T), σT e

(
T̃(t)

) = σT e(T);
σp

(
T̃(t)

) = σp(T), σap
(
T̃(t)

) = σap(T).

(2) σT

(
T̃(t)∗

) \ [0] = σT (T∗) \ [0], σT e

(
T̃(t)∗

) \ [0] = σT e(T∗) \ [0];
σp

(
T̃(t)∗

) \ [0] = σp(T∗) \ [0], σap
(
T̃(t)∗

) \ [0] = σap(T∗) \ [0].

Moreover, if Ui is unitary for every i, then we have

(3) σT

(
T̃(t)∗

) = σT (T∗), σT e

(
T̃(t)∗

) = σT e(T∗);
σp

(
T̃(t)∗

) = σp(T∗), σap
(
T̃(t)∗

) = σap(T∗).

(1) We set Si = |Ti |ti and Ri = Ui |Ti |1−ti , then RiSi = Ti and SiRi = T̃i (ti ).
Of course, R and S satisfy our commutativity conditions (cf., the lemma above). We conclude

by appealing the previous results that Σ(T̃(t)) \ [0] = Σ(T̃) \ [0], where Σ ∈ {σ,σe, σp,σap}.
The equalities in (1) seem to be due the fact that we have furthermore the double commuta-

tivity and even more.
(2) To obtain our requirement, it suffices to set Si = |Ti |ti and Ri = |Ti |1−ti U∗.
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The Duggal transplant of T = U |T | is defined to be T̂ = |T |U .
For a doubly commuting n-tuple T = (T1, . . . , Tn), we can also consider Duggal transplant

of T which is T̂ = (T̂1, . . . , T̂n).
We apply again the results of the previous section to a doubly commuting n-tuple T =

(T1, . . . , Tn) and its Duggal transplant.

Theorem 7. Let T = (T1, . . . , Tn) be a doubly commuting n-tuple and let T̂ = (T̂1, . . . , T̂n) be its
Duggal transplant. Then

Σ(T̂) \ [0] = Σ(T) \ [0], Σ(T̂∗) \ [0] = Σ(T∗) \ [0],
where Σ ∈ {σ,σe, σp,σap, . . .}.

It is easy to see that those results may be also given for an n-tuple with mixed coordinates
formed by either Duggal transplants or Aluthge transforms. Namely, let us define, for two disjoint
subsets I and J of {1, . . . , n}, the n-tuples TI,J := (Q1, . . . ,Qn) where Qi = T̃i if i ∈ I ,
Qj = T̂j if j ∈ J , and Qk = Tk , if k is neither in I nor in J . Then, we have the following result:

Theorem 8. Let T = (T1, . . . , Tn) be a doubly commuting n-tuple and I and J be two disjoint
subsets of {1, . . . , n}. Then

Σ(T̂I,J ) \ [0]I∪J = Σ(T) \ [0]I∪J , Σ(T̂∗
I∪J ) \ [0]I∪J = Σ(T∗) \ [0]I∪J ,

where Σ ∈ {σ,σe, σp,σap, . . .}.

6.2. Concluding remarks

(1) The iterated Aluthge transforms are defined by the recursive formula T (n) = T̃ (n−1) with
T (1) = T . Common spectral properties of T̃ n, n � 1, have been investigated in [16]. The main
results obtained for the Aluthge transforms of commuting n-tuples are extendible to their iterated
Aluthge transforms. This is carried out by applying inductively the previous section.

(2) The value n = 1 permits to retrieve the case of single operators. Thus some parts of [3,4,
14–16] are recaptured. We mention that the proofs given in this paper do not depend heavily on
the ones given for single operators.
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