On models of irreducible q-representations of the Lie algebra $\mathcal{G}(0,1)$

Meena Sahai, Vivek Sahai*
Department of Mathematics and Astronomy, Lucknow University, Lucknow 226007, India

Received 2 January 2005
Available online 9 November 2005
Submitted by P.G.L. Leach

Abstract

In this paper, the irreducible q-representations of $\mathcal{G}(0,1)$ are discussed. We construct one and two variable models of irreducible q-representations of $\mathcal{G}(0,1)$ in terms of q-derivative operator, and derive identities based on it.

© 2005 Elsevier Inc. All rights reserved.
Keywords: Lie algebra $\mathcal{G}(0,1)$; Basic hypergeometric series

1. Introduction

The idea of irreducible q-representations of a Lie algebra was first introduced by Manocha [5]. The models of the special complex Lie algebra sl($2, \mathbb{C}$) were constructed and using the techniques of fractional q-calculus, special function identities were derived involving q hypergeometric functions. Later, in Sahai [7], the q-Euler integral transformation was utilized to obtain q-difference dilation operator models of irreducible q-representations of $\operatorname{sl}(2, \mathbb{C})$. In this paper, we extend this idea to the Lie algebra $\mathcal{G}(0,1)$. Precisely, we prove a classification theorem for irreducible q-representations of the Lie algebra $\mathcal{G}(0,1)$ and give one and two variable models of this Lie algebra in terms of q-derivative operators. Section-wise treatment is as follows.

[^0]In Section 2, we list various results from the theory of q-special functions, needed for our discussion. The fractional q-derivative of order $\lambda, \Delta_{x}^{\lambda}$, is defined. Next we introduce an operator \mathcal{D}_{q} defined as $\mathcal{D}_{q} f(x)=\Delta_{x}^{\beta-\gamma} x^{\beta-1} f(x)$ and then make use of generalized q-Leibniz rule to obtain operator expressions for $\mathcal{D}_{q}\left(x \Delta_{x}\right) \mathcal{D}_{q}^{-1}$ and $\mathcal{D}_{q}(x) \mathcal{D}_{q}^{-1}$.

In Section 3, we discuss the irreducible q-representations of the Lie algebra $\mathcal{G}(0,1)$ and prove a classification theorem. Based on the theorem, we construct canonical models of irreducible q-representations of $\mathcal{G}(0,1)$ in one and $(m+1)$-variables. In Section 4, we obtain identities based on the one variable model. In Section 5, we construct two variable models of representations $R_{q}(\alpha, \mu)$ and $\uparrow_{q}(\mu)$ of $\mathcal{G}(0,1)$ in terms of q-derivative and q-dilation operators in which ${ }_{1} \phi_{0}$ functions appear as the basis functions. These models are then transformed, with the help of a theorem, to the new models of irreducible q-representations of $\mathcal{G}(0,1)$ in terms of q-derivative and inverse q-derivative operators of fractional order with basis functions involving the q-hypergeometric functions ${ }_{2} \phi_{1}$. Finally, in Section 6, these models are exploited for identities.

2. Preliminaries

The generalized basic or q-hypergeometric series $r \phi_{s}$ is defined as [3]

$$
{ }_{r} \phi_{s}\left(\begin{array}{l}
a_{1}, \ldots, a_{r} \tag{1}\\
b_{1}, \ldots, b_{s}
\end{array} ; q, x\right)=\sum_{n=0}^{\infty} \frac{\left(a_{1} ; q\right)_{n} \cdots\left(a_{r} ; q\right)_{n}}{\left(b_{1} ; q\right)_{n} \cdots\left(b_{s} ; q\right)_{n}(q ; q)_{n}}\left[(-1)^{n} q^{\binom{n}{2}}\right]^{1+s-r} x^{n}
$$

where q-shifted factorial $(a ; q)_{n}$ is defined by

$$
\begin{equation*}
(a ; q)_{n}=\frac{(a ; q)_{\infty}}{\left(a q^{n} ; q\right)_{\infty}}, \quad(a ; q)_{\infty}=\prod_{r=0}^{\infty}\left(1-q^{r} a\right) \tag{2}
\end{equation*}
$$

In other words,

$$
(a ; q)_{n}= \begin{cases}(1-a)(1-a q) \cdots\left(1-a q^{n-1}\right), & n=1,2, \ldots, \tag{3}\\ 1, & n=0, \\ {\left[\left(1-a q^{-1}\right)\left(1-a q^{-2}\right) \cdots\left(1-a q^{-n}\right)\right]^{-1},} & n=-1,-2, \ldots\end{cases}
$$

The series ${ }_{r} \phi_{s}$ terminates if one of the numerator parameter is of the form $q^{-m}, m=0,1,2, \ldots$, and $q \neq 0$. When $0<|q|<1$, the series ${ }_{r} \phi_{s}$ converges absolutely for all x if $r \leqslant s$; and for $|x|<1$ if $r=s+1$. If $|q|>1$ and $|x|<\frac{\left|b_{1} \cdots b_{s}\right|}{\left|a_{1} \cdots a_{r}\right|}$, then also ${ }_{r} \phi_{s}$ converges absolutely. It diverges for $x \neq 0$ if $0<|q|<1$ and $r>s+1$, and if $|q|>1$ and $|x|>\frac{\left|b_{1} \cdots b_{s}\right|}{\left|a_{1} \cdots a_{r}\right|}$, unless it terminates.

The q-analogue of the binomial function is

$$
{ }_{1} \phi_{0}\left(\begin{array}{l}
a \tag{4}\\
-
\end{array} q, x\right)=\frac{(a x ; q)_{\infty}}{(x ; q)_{\infty}}, \quad|q|<1,|x|<1 .
$$

The q-analogues of the exponential functions are

$$
\begin{equation*}
e_{q}(x)=\sum_{n=0}^{\infty} \frac{x^{n}}{(q ; q)_{n}}=\frac{1}{(x ; q)_{\infty}}, \quad|x|<1 \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{q}(x)=\sum_{n=0}^{\infty} \frac{q^{\binom{n}{2}} x^{n}}{(q ; q)_{n}}=(-x ; q)_{\infty} . \tag{6}
\end{equation*}
$$

$E_{q}(x)$ converges for all x.
We also make use of the function

$$
\begin{equation*}
\Gamma_{q}(\alpha)=\frac{e_{q}\left(q^{\alpha}\right)}{e_{q}(q)}(1-q)^{1-\alpha} \tag{7}
\end{equation*}
$$

defined for $\alpha \neq 0,-1,-2, \ldots$
This is a q-analogue of the gamma function and satisfies the functional equation

$$
\begin{equation*}
\Gamma_{q}(\alpha+1)=[\alpha]_{q} \Gamma_{q}(\alpha) \tag{8}
\end{equation*}
$$

where $[\alpha]_{q}=\frac{1-q^{\alpha}}{1-q}$ is the q-analogue of $\alpha[3,4]$.
We need the q-analogue of the general double hypergeometric series in the form [3]

$$
\begin{align*}
& \Phi_{D: E: F}^{A: B: C}\left(\begin{array}{l}
a_{A}: b_{B} ; c_{C} \\
d_{D}: e_{E} ; f_{F}
\end{array} ; x, y\right) \\
& \quad=\sum_{m, n=0}^{\infty} \frac{\left(a_{A} ; q\right)_{m+n}\left(b_{B} ; q\right)_{m}\left(c_{C} ; q\right)_{n}}{\left(d_{D} ; q\right)_{m+n}\left(q, e_{E} ; q\right)_{m}\left(q, f_{F} ; q\right)_{n}} \\
& \quad \times\left[(-1)^{m+n} q^{\binom{m+n}{2}}\right]^{D-A}\left[(-1)^{m} q^{\binom{m}{2}}\right]^{1+E-B}\left[(-1)^{n} q^{\binom{n}{2}}\right]^{1+F-C} x^{m} y^{n}, \tag{9}
\end{align*}
$$

where $q \neq 0$ when $\min (D-A, 1+E-B, 1+F-C)<0$. The series (9) converges absolutely for $|x|,|y|<1$ when $\min (D-A, 1+E-B, 1+F-C) \geqslant 0$ and $|q|<1$.

The q-analogue of the Lauricella function [2] is defined by

$$
\begin{align*}
& \Phi_{D}\left(\begin{array}{c}
\left.a ; b_{1}, \ldots, b_{m} ; q ; x_{1}, \ldots, x_{m}\right) \\
c
\end{array}\right. \\
& \quad=\sum_{n_{1}, \ldots, n_{m}=0}^{\infty} \frac{(a ; q)_{n_{1}+\cdots+n_{m}}\left(b_{1} ; q\right)_{n_{1}} \cdots\left(b_{m} ; q\right)_{n_{m}}}{(c ; q)_{n_{1}+\cdots+n_{m}}} \frac{x_{1}^{n_{1}}}{(q ; q)_{n_{1}}} \cdots \frac{x_{m}^{n_{m}}}{(q ; q)_{n_{m}}} . \tag{10}
\end{align*}
$$

The q-derivative operator is defined by

$$
\begin{equation*}
\Delta_{x}(f(x))=\frac{f(x)-f(q x)}{(1-q) x}=\frac{\left(1-T_{x}\right)}{(1-q) x} f(x) \tag{11}
\end{equation*}
$$

where the q-dilation operator T_{x} is given by $T_{x}[f(x)]=f(q x)$. From (11) it follows that

$$
\begin{equation*}
\Delta_{x}^{n}\left(x^{p}\right)=\frac{\Gamma_{q}(p+1)}{\Gamma_{q}(p-n+1)} x^{p-n} . \tag{12}
\end{equation*}
$$

The above derivative formula can be extended to a fractional q-derivative operator of order λ as

$$
\begin{equation*}
\Delta_{x}^{\lambda}\left(x^{\mu}\right)=\frac{\Gamma_{q}(\mu+1)}{\Gamma_{q}(\mu-\lambda+1)} x^{\mu-\lambda}, \quad \mu \neq-1,-2, \ldots \tag{13}
\end{equation*}
$$

The generalized q-Leibniz formula for q-fractional derivative of product of two functions in terms of q-derivatives of each [5], is established as

$$
\Delta_{x}^{\lambda}[f(x) g(x)]=\sum_{r=0}^{\infty}\left[\begin{array}{l}
\lambda \tag{14}\\
r
\end{array}\right]_{q} q^{-r(\lambda-r)} \Delta_{x}^{\lambda-r} f\left(x q^{r}\right) \Delta_{x}^{r} g(x),
$$

where the q-binomial coefficient is defined by

$$
\left[\begin{array}{l}
\alpha \tag{15}\\
\beta
\end{array}\right]_{q}=\frac{\Gamma_{q}(\alpha+1)}{\Gamma_{q}(\beta+1) \Gamma_{q}(\alpha-\beta+1)}, \quad \alpha, \beta \in \mathbb{C},|q|<1
$$

To construct new models of irreducible q-representations of $\mathcal{G}(0,1)$, we introduce the operators \mathcal{D}_{q} and \mathcal{D}_{q}^{-1} defined as

$$
\begin{align*}
& \mathcal{D}_{q} f(x)=\Delta_{x}^{\beta-\gamma}\left[x^{\beta-1} f(x)\right] \tag{16}\\
& \mathcal{D}_{q}^{-1} f(x)=x^{1-\beta} \Delta_{x}^{\gamma-\beta}[f(x)] \tag{17}
\end{align*}
$$

Indeed, in general

$$
\begin{equation*}
\mathcal{D}_{q} \mathcal{D}_{q}^{-1}[f(x)]=f(x)=\mathcal{D}_{q}^{-1} \mathcal{D}_{q}[f(x)] . \tag{18}
\end{equation*}
$$

Using (14), we obtain the following:

$$
\begin{align*}
& \mathcal{D}_{q}\left(x \Delta_{x}\right) \mathcal{D}_{q}^{-1}=q^{1-\gamma} x \Delta_{x}+[1-\gamma]_{q} \tag{19}\\
& \mathcal{D}_{q}(x) \mathcal{D}_{q}^{-1}=x q^{\beta-\gamma}+[\beta-\gamma]_{q} \Delta_{x}^{-1} \tag{20}
\end{align*}
$$

where Δ_{x}^{-1} is q-integral in disguise. As we shall see later, Eqs. (19) and (20) will be instrumental in obtaining new models of $\mathcal{G}(0,1)$.

3. The Lie algebra $\mathcal{G}(0,1)$ and its \boldsymbol{q}-representations

For any pair of complex numbers (a, b) the 4-dimensional complex Lie algebra $\mathcal{G}(a, b)$ with basis $\mathcal{J}^{+}, \mathcal{J}^{-}, \mathcal{J}^{0}$ and \mathcal{E} is defined by

$$
\begin{align*}
& {\left[\mathcal{J}^{+}, \mathcal{J}^{-}\right]=2 a^{2} \mathcal{J}^{0}-b \mathcal{E},} \\
& {\left[\mathcal{J}^{0}, \mathcal{J}^{+}\right]=\mathcal{J}^{+}, \quad\left[\mathcal{J}^{0}, \mathcal{J}^{-}\right]=-\mathcal{J}^{-},} \\
& {\left[\mathcal{J}^{+}, \mathcal{E}\right]=\left[\mathcal{J}^{-}, \mathcal{E}\right]=\left[\mathcal{J}^{0}, \mathcal{E}\right]=\mathcal{O},} \tag{21}
\end{align*}
$$

where [.,.] is the commutator bracket and \mathcal{O} is the additive identity element.
For special choices of the parameters $a, b, \mathcal{G}(a, b)$ essentially coincides with one of the Lie algebras $\operatorname{sl}(2), \mathcal{G}(0,1)$ and $L\left(T_{3}\right)$. Indeed, it can be shown that [6, Lemma 2.1]

$$
\mathcal{G}(a, b) \cong \begin{cases}\mathcal{G}(1,0) \cong \operatorname{sl}(2) \oplus(\mathcal{E}), & \text { if } a \neq 0, \\ \mathcal{G}(0,1), & \text { if } a=0, b \neq 0 \\ \mathcal{G}(0,0) \cong L\left(T_{3}\right) \oplus(\mathcal{E}), & \text { if } a=b=0\end{cases}
$$

where (\mathcal{E}) is the 1 -dimensional Lie algebra generated by \mathcal{E}. The q-representations of $\operatorname{sl}(2)$ have been extensively studied in [5,7,8,10]. Further, the p, q-representations of the Lie algebra $\mathcal{G}(1,0)$ were studied in [9]. We now extend this idea to the Lie algebra $\mathcal{G}(0,1)$.

The Lie algebra $\mathcal{G}(0,1)$ is the space of 4×4 matrices of the form

$$
\alpha=\left(\begin{array}{cccc}
0 & x_{2} & x_{4} & x_{3} \tag{22}\\
0 & x_{3} & x_{1} & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad x_{1}, x_{2}, x_{3}, x_{4} \in \mathbb{C}
$$

with the Lie product $[\alpha, \beta]=\alpha \beta-\beta \alpha$.
The matrices

$$
\mathcal{J}^{+}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad \mathcal{J}^{-}=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

$$
\mathcal{J}^{0}=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \tag{23}\\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad \mathcal{E}=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

with commutation relations

$$
\begin{equation*}
\left[\mathcal{J}^{0}, \mathcal{J}^{+}\right]=\mathcal{J}^{+}, \quad\left[\mathcal{J}^{0}, \mathcal{J}^{-}\right]=-\mathcal{J}^{-}, \quad\left[\mathcal{J}^{+}, \mathcal{J}^{-}\right]=-\mathcal{E} \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[\mathcal{E}, \mathcal{J}^{+}\right]=\left[\mathcal{E}, \mathcal{J}^{-}\right]=\left[\mathcal{E}, \mathcal{J}^{0}\right]=\mathcal{O}, \tag{25}
\end{equation*}
$$

where \mathcal{O} is the 4×4 zero matrix, constitute a basis for $\mathcal{G}(0,1)$.
Let V_{q} be a complex vector space consisting of q-special functions with a basis $\left\{\phi_{\lambda}: \lambda \in S\right\}$ such that the functions $\left\{f_{\lambda}=\lim _{q \rightarrow 1} \phi_{\lambda}: \lambda \in S\right\}$ form a basis for a vector space, say, V. Let $A\left(V_{q}\right)$ be the associative algebra of all linear operators on V_{q} over the complex field.

A q-representation of $\mathcal{G}(0,1)$ on V_{q} is a mapping $\rho_{q}: \mathcal{G}(0,1) \rightarrow A\left(V_{q}\right)$ satisfying the following conditions:
(1) $\rho_{q}(a x+b y)=a \rho_{q}(x)+b \rho_{q}(y)$.
(2) There exists a Lie algebra representation ρ of $\mathcal{G}(0,1)$ on V such that $\lim _{q \rightarrow 1} \rho_{q}(x) \phi_{\lambda}=$ $\rho(x) f_{\lambda}$, for all $x, y \in \mathcal{G}(0,1)$ and $a, b \in \mathbb{C}$.
(3) If we denote

$$
\begin{equation*}
J_{q}^{+}=\rho_{q}\left(\mathcal{J}^{+}\right), \quad J_{q}^{-}=\rho_{q}\left(\mathcal{J}^{-}\right), \quad J_{q}^{0}=\rho_{q}\left(\mathcal{J}^{0}\right), \quad E_{q}=\rho_{q}(\mathcal{E}) \tag{26}
\end{equation*}
$$

then

$$
\begin{align*}
& J_{q}^{0} J_{q}^{+}-q J_{q}^{+} J_{q}^{0}=J_{q}^{+}, \\
& q J_{q}^{0} J_{q}^{-}-J_{q}^{-} J_{q}^{0}=-J_{q}^{-}, \\
& q J_{q}^{+} J_{q}^{-}-J_{q}^{-} J_{q}^{+}=-q^{u-1} E_{q}, \\
& {\left[E_{q}, J_{q}^{+}\right]=\left[E_{q}, J_{q}^{-}\right]=\left[E_{q}, J_{q}^{0}\right]=0 .} \tag{27}
\end{align*}
$$

A q-representation ρ_{q} of $\mathcal{G}(0,1)$ is said to be irreducible if there is no proper subspace W_{q} of V_{q} which is invariant under ρ_{q}.

If we define the operator C_{q} on V_{q} by

$$
\begin{equation*}
C_{q}=q J_{q}^{+} J_{q}^{-}-q^{u} J_{q}^{0} E_{q}, \tag{28}
\end{equation*}
$$

it is easy to check that

$$
\begin{align*}
& q J_{q}^{+} C_{q}=C_{q} J_{q}^{+}, \\
& J_{q}^{-} C_{q}=q C_{q} J_{q}^{-}, \\
& J_{q}^{0} C_{q}=C_{q} J_{q}^{0}, \\
& E_{q} C_{q}=C_{q} E_{q} . \tag{29}
\end{align*}
$$

Obviously, as $q \rightarrow 1, \rho_{q}$ reduces to a Lie algebra representation ρ of $\mathcal{G}(0,1)$ on V.
Let $S_{q}=\left\{[\lambda-u]_{q}: \lambda \in S\right\}$ be the spectrum of J_{q}^{0}, and let the q-representation ρ_{q} satisfy the conditions:
(i) ρ_{q} is irreducible,
(ii) each eigenvalue of J_{q}^{0} has multiplicity equal to one.

Conditions (30) guarantee that S_{q}, and for that matter S, is countable and that there exists a basis for V_{q} consisting of eigenvectors f_{λ} of J_{q}^{0}.

Following the analysis as in [6, p. 40], we note:
(i) Let $\lambda \in S$, then the equation $\left(J_{q}^{0} J_{q}^{+}-q J_{q}^{+} J_{q}^{0}\right) f_{\lambda}=J_{q}^{+} f_{\lambda}$ implies either $J_{q}^{+} f_{\lambda}=\xi_{\lambda+1} f_{\lambda+1}$, where $\xi_{\lambda+1}$ is a nonzero constant and $\lambda+1 \in S$, or $J_{q}^{+} f_{\lambda}=0$. Similarly, the equation $\left(q J_{q}^{0} J_{q}^{-}-J_{q}^{-} J_{q}^{0}\right) f_{\lambda}=-J_{q}^{-} f_{\lambda}$ implies either $J_{q}^{-} f_{\lambda}=\eta_{\lambda} f_{\lambda-1}$, where η_{λ} is a nonzero constant and $\lambda-1 \in S$, or $J_{q}^{-} f_{\lambda}=0$. The equation $\left[E_{q}, J_{q}^{0}\right] f_{\lambda}=0$ implies $E_{q} f_{\lambda}=\mu_{\lambda} f_{\lambda}$ for some constants μ_{λ} and $\left[C_{q}, J_{q}^{0}\right] f_{\lambda}=0$ implies $C_{q} f_{\lambda}=a_{\lambda} f_{\lambda}$ for some constants a_{λ}.
(ii) S is connected in the sense: $S=\left\{\lambda+n: n\right.$ is an integer such that $\left.n_{1}<n<n_{2}\right\}$, where n_{1} and n_{2} are integers. We do not exclude the possibility that $n_{1}=-\infty$ or $n_{2}=\infty$.
(iii) If $\lambda, \lambda+1 \in S$, then $\xi_{\lambda+1}, \eta_{\lambda+1} \neq 0$, since otherwise the irreducibility of ρ_{q} would be violated.
(iv) Suppose that $\lambda, \lambda+1 \in S$. Then the equation $\left[E_{q}, J_{q}^{+}\right] f_{\lambda}=0$ gives $\xi_{\lambda+1}\left(\mu_{\lambda+1}-\mu_{\lambda}\right)=0$. Therefore $\mu_{\lambda+1}=\mu_{\lambda}$. Hence $\mu_{\lambda}=\mu$, a constant for all $\lambda \in S$. Further, $q J_{q}^{+} C_{q} f_{\lambda}=$ $C_{q} J_{q}^{+} f_{\lambda}$ implies $\xi_{\lambda+1}\left(a_{\lambda+1}-q a_{\lambda}\right)=0$. Hence $a_{\lambda+1}=q a_{\lambda}$.
(v) The equation $C_{q} f_{\lambda}=a_{\lambda} f_{\lambda}$, that is,

$$
\left(q J_{q}^{+} J_{q}^{-}-q^{u} J_{q}^{0} E_{q}\right) f_{\lambda}=a_{\lambda} f_{\lambda}
$$

leads to the following relation:

$$
\begin{equation*}
q \xi_{\lambda} \eta_{\lambda}=a_{\lambda}+\mu q^{u}[\lambda-u]_{q}, \tag{31}
\end{equation*}
$$

defined for all $\lambda \in S$, where $\eta_{\lambda}=0$ if $\lambda-1 \notin S$. Using

$$
\begin{equation*}
q J_{q}^{+} J_{q}^{-}=J_{q}^{-} J_{q}^{+}-q^{u-1} E_{q}, \tag{32}
\end{equation*}
$$

we have

$$
\begin{equation*}
q \xi_{\lambda+1} \eta_{\lambda+1}=a_{\lambda+1}+\mu q^{u}[\lambda+1-u]_{q} \tag{33}
\end{equation*}
$$

defined for all $\lambda \in S$ where $\xi_{\lambda+1}=0$ if $\lambda+1 \notin S$.
(vi) The representation ρ_{q} of $\mathcal{G}(0,1)$ is uniquely determined by $a_{\lambda}, a_{\lambda+1}=q a_{\lambda}$, and the spectrum S_{q} of J_{q}^{0}. The nonzero constants ξ_{λ} and η_{λ} are not unique, and may be chosen arbitrarily, subject only to condition (31).

Denote by $R_{q}(\alpha, u, \mu)$ the q-representations of $\mathcal{G}(0,1)$ defined for all $\alpha, u, \mu \in \mathbb{C}$ such that $\mu \neq 0,0 \leqslant \operatorname{Re} \alpha<1, \alpha$ is not an integer and $S=\{\alpha+n: n=0, \pm 1, \pm 2, \ldots\}$; and by $\uparrow_{q}(u, \mu)$, the q-representations defined for all $u, \mu \in \mathbb{C}$ such that $\mu \neq 0$ and $S=\{0,1,2, \ldots\}$.

We now have the following theorem:
Theorem 1. Every q-representation ρ_{q} of $\mathcal{G}(0,1)$ satisfying conditions (30) and (31) is isomorphic to either a q-representation $R_{q}(\alpha, u, \mu)$ or a q-representation $\uparrow_{q}(u, \mu)$. For these cases, there is a basis of V_{q} consisting of vectors f_{λ} defined for each $\lambda \in S$ such that

$$
\begin{align*}
J_{q}^{0} f_{\lambda} & =[\lambda-u]_{q} f_{\lambda}, \\
J_{q}^{+} f_{\lambda} & =\mu q^{u-1} f_{\lambda+1}, \\
J_{q}^{-} f_{\lambda} & =[\lambda]_{q} f_{\lambda-1}, \\
E_{q} f_{\lambda} & =\mu f_{\lambda}, \\
C_{q} f_{\lambda} & =\mu[u]_{q} q^{\lambda} f_{\lambda} . \tag{34}
\end{align*}
$$

(On the right-hand side of these equations, we assume that $f_{\lambda}=0$ if $\lambda \notin S$.)
Proof. Set $a_{\lambda}=\mu q^{\lambda}[u]_{q}$ in (31). This gives $\xi_{\lambda} \eta_{\lambda}=\mu q^{u-1}[\lambda]_{q}$. Choose $\xi_{\lambda}=\mu q^{u-1}$ and $\eta_{\lambda}=$ $[\lambda]_{q}$. Two cases arise:

Case 1. If $\lambda=0$ is not in S then $\eta_{\lambda} \neq 0$ for all λ. Choose a complex number α such that $0 \leqslant$ $\operatorname{Re} \alpha<1$ and α is not an integer. Then the spectrum is $S=\{\alpha+n: n=0, \pm 1, \pm 2, \ldots\}$.
Case 2. If $\lambda=0$ is in S then since $\eta_{0}=0$, we get the spectrum as $S=\{0,1,2, \ldots\}$.

3.1. Models of irreducible q-representations

A model in one variable for each of $R_{q}(\alpha, u, \mu)$ and $\uparrow_{q}(u, \mu)$ is

$$
\begin{align*}
& J_{q}^{0}=(1-q)^{-1}\left(1-q^{-u} T_{t}\right), \\
& J_{q}^{+}=\mu q^{u-1} t, \\
& J_{q}^{-}=(1-q)^{-1} t^{-1}\left(1-T_{t}\right), \\
& E_{q}=\mu I, \\
& f_{\lambda}(t)=t^{\lambda}, \tag{35}
\end{align*}
$$

where, for $R_{q}(\alpha, u, \mu), \lambda \in S=\{\alpha+n: \alpha \in C-\{0\}, 0 \leqslant \operatorname{Re} \alpha<1, n=0, \pm 1, \pm 2, \ldots\}$, while for $\uparrow_{q}(u, \mu), \lambda \in S=\{0,1,2, \ldots\}$. The model (35) satisfies the commutation relations (27) and (29) as well as (34).

However, for obtaining identities involving q-hypergeometric functions we shall consider models $R_{q}(\alpha, u, \mu)$ and $\uparrow_{q}(u, \mu)$ corresponding to $u=0$, in which case they will be denoted by $R_{q}(\alpha, \mu)$ and $\uparrow_{q}(\mu)$, respectively.

3.1.1. One-variable models of $R_{q}(\alpha, \mu)$ and $\uparrow_{q}(\mu)$

A model in one variable for each of $R_{q}(\alpha, \mu)$ and $\uparrow_{q}(\mu)$ is

$$
\begin{align*}
& J_{q}^{0}=(1-q)^{-1}\left(1-T_{t}\right), \\
& J_{q}^{+}=\mu q^{-1} t, \\
& J_{q}^{-}=(1-q)^{-1} t^{-1}\left(1-T_{t}\right), \\
& E_{q}=\mu I, \\
& f_{\lambda}(t)=t^{\lambda}, \tag{36}
\end{align*}
$$

where, for $R_{q}(\alpha, \mu), \lambda \in S=\{\alpha+n: \alpha \in C-\{0\}, 0 \leqslant \operatorname{Re} \alpha<1, n=0, \pm 1, \pm 2, \ldots\}$; while for $\uparrow_{q}(\mu), \lambda \in S=\{0,1,2, \ldots\}$.
3.1.2. $(m+1)$-variable models of $R_{q}(\alpha, \mu)$ and $\uparrow_{q}(\mu)$

A model in $(m+1)$-variable for each of $R_{q}(\alpha, \mu)$ and $\uparrow_{q}(\mu)$ is

$$
\begin{align*}
& J_{q}^{0}=(1-q)^{-1}\left(1-T_{t}\right), \\
& J_{q}^{+}=\mu q^{-1} t\left(1-x_{1} T_{t}\right), \\
& J_{q}^{-}=(1-q)^{-1} t^{-1} \prod_{i=1}^{m} T_{x_{i}}^{-1}\left(\prod_{i=1}^{m} T_{x_{i}}-T_{t}\right), \\
& E_{q}=\mu I, \tag{37}\\
& f_{\lambda}\left(x_{1}, \ldots, x_{m}, t\right)=\Phi_{D}\left(\begin{array}{c}
q^{-\lambda} ; q, \ldots, q \\
q
\end{array} q ; q^{\lambda} x_{1}, \ldots, q^{\lambda} x_{m}\right) t^{\lambda},
\end{align*}
$$

where Φ_{D} is the q-Lauricella function defined by (10).
For $R_{q}(\alpha, \mu), \lambda \in S=\{\alpha+n: \alpha \in C-\{0\}, 0 \leqslant \operatorname{Re} \alpha<1, n=0, \pm 1, \pm 2, \ldots\}$; while for $\uparrow_{q}(\mu), \lambda \in S=\{0,1,2, \ldots\}$.

It can be verified that the models (36) and (37) obey the following:

$$
\begin{align*}
& J_{q}^{0} f_{\lambda}=[\lambda]_{q} f_{\lambda}, \\
& J_{q}^{+} f_{\lambda}=\mu q^{-1} f_{\lambda+1}, \\
& J_{q}^{-} f_{\lambda}=[\lambda]_{q} f_{\lambda-1}, \\
& E_{q} f_{\lambda}=\mu f_{\lambda} \\
& C_{q} f_{\lambda}=0, \quad \text { where } C_{q}=q J_{q}^{+} J_{q}^{-}-J_{q}^{0} E_{q}, \tag{38}
\end{align*}
$$

as well as

$$
\begin{align*}
& J_{q}^{0} J_{q}^{+}-q J_{q}^{+} J_{q}^{0}=J_{q}^{+}, \\
& q J_{q}^{0} J_{q}^{-}-J_{q}^{-} J_{q}^{0}=-J_{q}^{-}, \\
& q J_{q}^{+} J_{q}^{-}-J_{q}^{-} J_{q}^{+}=-q^{-1} E_{q}, \\
& {\left[E_{q}, J_{q}^{+}\right]=\left[E_{q}, J_{q}^{-}\right]=\left[E_{q}, J_{q}^{0}\right]=0} \tag{39}
\end{align*}
$$

and (29).

4. Identities based on one variable model

Considering that $v(t)={ }_{1} \phi_{1}\left(\begin{array}{c}a \\ c\end{array} ; q, t\right)$ is a solution of

$$
\begin{equation*}
\left[t\left(1-a T_{t}\right)-\left(1-T_{t}\right)\left(1-c q^{-1} T_{t}\right)\right] v(t)=0 \tag{40}
\end{equation*}
$$

we have that $u(t)={ }_{1} \phi_{1}\left(\begin{array}{c}a \\ c\end{array} ; q, t\right) t^{\alpha}, q^{\alpha}=a$, is a simultaneous solution of

$$
\begin{equation*}
\left(q J_{q}^{+} J_{q}^{-}-J_{q}^{0} E_{q}\right) u(t)=0 \tag{41}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[\frac{q}{1-q} J_{q}^{+} J_{q}^{0}-E_{q}\left(\left[a^{-1}\right]_{q}+a^{-1} J_{q}^{0}\right)\left(\left[a^{-1} q^{-1} c\right]_{q}+a^{-1} q^{-1} c J_{q}^{0}\right)\right] u(t)=0 . \tag{42}
\end{equation*}
$$

Note that $t^{-\alpha} u$ is analytic at $t=0$.

Now, as in [1],

$$
\left[e_{q}\left(s J_{q}^{+}\right) u\right](t)=\frac{1}{\left(\frac{s \mu t}{q} ; q\right)_{\infty}} 1 \phi_{1}\left(\begin{array}{l}
a \tag{43}\\
c
\end{array} q, t\right) t^{\alpha}
$$

and

$$
\left[E_{q}\left(s J_{q}^{-}\right) u\right](t)=\frac{\left(\frac{s}{(1-q) t} ; q\right)_{\infty}}{\left(\frac{a s}{(1-q) t} ; q\right)_{\infty}} 2 \phi_{1}\left(\begin{array}{l}
\left.a, \frac{a s}{(1-q) t} ; q, t\right) t^{\alpha} . . . ~ . ~ . ~ \tag{44}\\
c
\end{array}\right.
$$

Using Weisner's expansion [11], we get

$$
\begin{equation*}
\left[E_{q}\left(s J_{q}^{-}\right) u\right](t)=\sum_{n=-\infty}^{\infty} j_{n} t^{\alpha+n} \tag{45}
\end{equation*}
$$

which leads to the following identity, after some rescaling:

$$
\begin{align*}
& \frac{\left(\frac{\omega}{t} ; q\right)_{\infty}}{\left(\frac{a \omega}{t} ; q\right)_{\infty}} 2 \phi_{1}\left(\begin{array}{l}
\left.a, \frac{a \omega}{t} ; q, t\right) \\
c
\end{array}\right. \\
& \quad=\sum_{n=-\infty}^{\infty} \frac{\Gamma_{q}(\gamma) \Gamma_{q}(\alpha+n)}{\Gamma_{q}(\alpha) \Gamma_{q}(\gamma+n) \Gamma_{q}(n+1)} 2 \phi_{2}\binom{a q^{n}, a q^{n+1}}{c q^{n}, q^{n+1} ; q, \omega} t^{n} . \tag{46}
\end{align*}
$$

5. Two variable models

We have the following two variable model for the Lie algebra $\mathcal{G}(0,1)$:

$$
\begin{align*}
& J_{q}^{0}=t \Delta_{t}=(1-q)^{-1}\left(1-T_{t}\right), \\
& J_{q}^{+}=\mu q^{-1} t\left(1-x T_{t}\right), \\
& J_{q}^{-}=t^{-1} T_{x}^{-1}\left(t \Delta_{t}-x \Delta_{x}\right)=(1-q)^{-1} t^{-1} T_{x}^{-1}\left(T_{x}-T_{t}\right), \\
& E_{q}=\mu I, \tag{47}\\
& f_{\lambda}(x, t)=\frac{(x ; q)_{\infty}}{\left(q^{\lambda} x ; q\right)_{\infty}} t^{\lambda}={ }_{1} \phi_{0}\left(\begin{array}{c}
\left.q^{-\lambda} ; q, q^{\lambda} x\right) t^{\lambda} .
\end{array} .\right. \tag{48}
\end{align*}
$$

For $R_{q}(\alpha, \mu), \lambda \in S=\{\alpha+n: \alpha \in C-\{0\}, 0 \leqslant \operatorname{Re} \alpha<1, n=0, \pm 1, \pm 2, \ldots\}$, while for $\uparrow_{q}(\mu)$, $\lambda \in S=\{0,1,2, \ldots\}$.

Now we use the operators \mathcal{D}_{q} and \mathcal{D}_{q}^{-1} defined in (16) and (17) and the formulae (19) and (20) to obtain new models of $R_{q}(\alpha, \mu)$ and $\uparrow_{q}(\mu)$ in terms of q-inverse difference operators with basis functions in terms of q-hypergeometric functions ${ }_{2} \phi_{1}$. To accomplish this, we present the following theorem.

Theorem 2. Let ρ_{q} be a q-representation of $\mathcal{G}(0,1)$ in terms of $\left\{J_{q}^{+}, J_{q}^{-}, J_{q}^{0}, E_{q}\right\}$ with basis functions $\left\{f_{\lambda}: \lambda \in S\right\}$. Then ρ_{q} is also a q-representation of $\mathcal{G}(0,1)$ in terms of $\left\{K_{q}^{+}, K_{q}^{-}, K_{q}^{0}, E_{q}\right\}$ with basis functions $\left\{h_{\lambda}: \lambda \in S\right\}$ where

$$
\begin{aligned}
& K_{q}^{+}=\mathcal{D}_{q} J_{q}^{+} \mathcal{D}_{q}^{-1}, \quad K_{q}^{-}=\mathcal{D}_{q} J_{q}^{-} \mathcal{D}_{q}^{-1}, \quad K_{q}^{0}=\mathcal{D}_{q} J_{q}^{0} \mathcal{D}_{q}^{-1}, \\
& E_{q}=\mathcal{D}_{q} E_{q} \mathcal{D}_{q}^{-1}, \quad h_{\lambda}=\mathcal{D}_{q} f_{\lambda}
\end{aligned}
$$

Proof. The proof follows from the fact that

$$
J_{q}^{+} f_{\lambda}(x, t)=\mu q^{-1} f_{\lambda+1}(x, t)
$$

can be rewritten as

$$
\begin{aligned}
& J_{q}^{+} \mathcal{D}_{q}^{-1}\left(\mathcal{D}_{q} f_{\lambda}(x, t)\right)=\mu q^{-1} \mathcal{D}_{q}^{-1} \mathcal{D}_{q} f_{\lambda+1}(x, t), \\
& \left(\mathcal{D}_{q} J_{q}^{+} \mathcal{D}_{q}^{-1}\right) h_{\lambda}(x, t)=\mu q^{-1} h_{\lambda+1}(x, t), \\
& K_{q}^{+} h_{\lambda}(x, t)=\mu q^{-1} h_{\lambda+1}(x, t), \quad \text { etc. }
\end{aligned}
$$

We apply Theorem 2 to models (47) and (48) to induce new models of $R_{q}(\alpha, \mu)$ and $\uparrow_{q}(\mu)$ as under:

Models of $\boldsymbol{R}_{\boldsymbol{q}}(\boldsymbol{\alpha}, \mu)$:

$$
\begin{align*}
& K_{q}^{0}=t \Delta_{t} \\
& K_{q}^{+}=\mu q^{-1} t\left(1-x q^{\beta-\gamma} T_{t}-[\beta-\gamma]_{q} \Delta_{x}^{-1} T_{t}\right), \\
& K_{q}^{-}=(1-q)^{-1} t^{-1} T_{x}^{-1}\left(T_{x}-c q^{-1} T_{t}\right) \\
& E_{q}=\mu I \tag{49}\\
& h_{\lambda}(x, t)=\frac{\Gamma_{q}(\beta)}{\Gamma_{q}(\gamma)} x^{\gamma-1}{ }_{2} \phi_{1}\left(\begin{array}{c}
q^{-\lambda}, b \\
c
\end{array}, q, q^{\lambda} x\right) t^{\lambda}, \tag{50}
\end{align*}
$$

where $\lambda \in S=\{\alpha+n: \alpha \in C-\{0\}, 0 \leqslant \operatorname{Re} \alpha<1, n=0, \pm 1, \pm 2, \ldots\}$.
A model of $\mathcal{G}(0,1)$ for $\uparrow_{q}(\mu)$ is same as above with $\lambda \in S=\{0,1,2, \ldots\}$.
It can be verified that the K-model given above satisfies

$$
\begin{align*}
& K_{q}^{0} K_{q}^{+}-q K_{q}^{+} K_{q}^{0}=K_{q}^{+}, \\
& q K_{q}^{0} K_{q}^{-}-K_{q}^{-} K_{q}^{0}=-K_{q}^{-}, \\
& q K_{q}^{+} K_{q}^{-}-K_{q}^{-} K_{q}^{+}=-q^{-1} E_{q}, \\
& {\left[E_{q}, K_{q}^{+}\right]=\left[E_{q}, K_{q}^{-}\right]=\left[E_{q}, K_{q}^{0}\right]=0} \tag{51}
\end{align*}
$$

as well as

$$
\begin{align*}
& K_{q}^{0} h_{\lambda}=[\lambda]_{q} h_{\lambda}, \\
& K_{q}^{+} h_{\lambda}=\mu q^{-1} h_{\lambda+1}, \\
& K_{q}^{-} h_{\lambda}=[\lambda]_{q} h_{\lambda-1}, \\
& E_{q} h_{\lambda}=\mu h_{\lambda}, \\
& C_{q}^{\prime} h_{\lambda}=0, \quad \text { where } C_{q}^{\prime}=q K_{q}^{+} K_{q}^{-}-K_{q}^{0} E_{q} . \tag{52}
\end{align*}
$$

Also,

$$
\begin{align*}
& q K_{q}^{+} C_{q}^{\prime}=C_{q}^{\prime} K_{q}^{+}, \\
& K_{q}^{-} C_{q}^{\prime}=q C_{q}^{\prime} K_{q}^{-} \\
& K_{q}^{0} C_{q}^{\prime}=C_{q}^{\prime} K_{q}^{0} \\
& E_{q} C_{q}^{\prime}=C_{q}^{\prime} E_{q} . \tag{53}
\end{align*}
$$

6. Identities based on two variable model

6.1. Model of $R_{q}(\alpha, \mu)$

We have shown in (52) that

$$
h_{\lambda}(x, t)=\frac{\Gamma_{q}(\beta)}{\Gamma_{q}(\gamma)} x^{\gamma-1}{ }_{2} \phi_{1}\left(\begin{array}{c}
q^{-\lambda}, b \tag{54}\\
c
\end{array} ; q, q^{\lambda} x\right) t^{\lambda}
$$

is a solution of $C_{q}^{\prime} h_{\lambda}(x, t)=0$ where $C_{q}^{\prime}=q K_{q}^{+} K_{q}^{-}-K_{q}^{0} E_{q}$.
It therefore follows that

$$
u(x, t)=\frac{\Gamma_{q}(\beta)}{\Gamma_{q}(\gamma)} x^{\gamma-1} \sum_{n=0}^{\infty} \frac{(a ; q)_{n}}{\left(q, c^{\prime} ; q\right)_{n}} 2 \phi_{1}\left(\begin{array}{c}
a^{-1} q^{-n}, b \tag{55}\\
c
\end{array}, q, a q^{n} x\right) t^{\alpha+n}
$$

also satisfies $C_{q}^{\prime} u(x, t)=0$. In view of the fact that $K_{q}^{-} C_{q}^{\prime}=q C_{q}^{\prime} K_{q}^{-}$, we have

$$
\begin{equation*}
C_{q}^{\prime}\left[E_{q}\left(s K_{q}^{-}\right) u\right](x, t)=0, \tag{56}
\end{equation*}
$$

where

$$
\begin{align*}
& {\left[E_{q}\left(s K_{q}^{-}\right) u\right](x, t)} \\
& \quad=\sum_{n=0}^{\infty} \frac{q^{\binom{n}{2}} s^{n}}{(q ; q)_{n}} K_{q}^{-n} u(x, t) \\
& \quad=\frac{\Gamma_{q}(\beta)}{\Gamma_{q}(\gamma)} x^{\gamma-1} \frac{\left(\frac{\omega}{t} ; q\right)_{\infty}}{\left(\frac{a \omega}{t} ; q\right)_{\infty}} \sum_{n=0}^{\infty} \frac{\left(a, \frac{a \omega}{t} ; q\right)_{n}}{\left(q, c^{\prime} ; q\right)_{n}} 2 \phi_{2}\left(\begin{array}{l}
a^{-1} q^{-n}, b \\
\frac{a^{-1} q^{1-n} t}{\omega}
\end{array}, c, q, \frac{q x t}{\omega}\right) t^{\alpha+n} . \tag{57}
\end{align*}
$$

Using Weisner's expansion, we get

$$
\begin{equation*}
\left[E_{q}\left(s K_{q}^{-}\right) u\right](x, t)=\sum_{n=-\infty}^{\infty} a_{n} h_{\lambda}(x, t) \tag{58}
\end{equation*}
$$

which leads to the following identity:

$$
\begin{align*}
& \frac{\left(\frac{\omega}{t} ; q\right)_{\infty}}{\left(\frac{a \omega}{t} ; q\right)_{\infty}} \sum_{n=0}^{\infty} \frac{\left(a, \frac{a \omega}{t} ; q\right)_{n} t^{n}}{\left(q, c^{\prime} ; q\right)_{n}} 2 \phi_{2}\left(\begin{array}{c}
a^{-1} q^{-n}, b \\
\frac{a^{-1} q^{1-n} t}{\omega}, c
\end{array} ; q, \frac{q x t}{\omega}\right) \\
& \quad=\sum_{n=-\infty}^{\infty} \frac{\Gamma_{q}(\gamma) \Gamma_{q}(\alpha+n)}{\Gamma_{q}(\alpha) \Gamma_{q}(\gamma+n) \Gamma_{q}(n+1)} 2 \phi_{2}\left(\begin{array}{c}
a q^{n}, a q^{n+1} \\
\left.c^{\prime} q^{n}, q^{n+1} ; q, \omega\right) \\
\quad \times{ }_{2} \phi_{1}\left(\begin{array}{c}
a^{-1} q^{-n}, b \\
c
\end{array}, q, a q^{n} x\right) t^{n} .
\end{array}\right.
\end{align*}
$$

6.2. Model of $\uparrow_{q}(\mu)$

As shown in (52),

$$
\begin{equation*}
h_{n}(x, t)=\frac{\Gamma_{q}(\beta)}{\Gamma_{q}(\gamma)} x^{\gamma-1}{ }_{2} \phi_{1}\left(q^{-n}, b ; q, q^{n} x\right) t^{n} \tag{60}
\end{equation*}
$$

satisfies $C_{q}^{\prime} h_{n}(x, t)=0$. This in turn gives that

$$
\begin{equation*}
u(x, t)=\frac{\Gamma_{q}(\beta)}{\Gamma_{q}(\gamma)} x^{\gamma-1} \sum_{n=0}^{\infty} \frac{(a ; q)_{n}}{\left(q, c^{\prime} ; q\right)_{n}} 2 \phi_{1}\left(q^{-n}, b ; q, q^{n} x\right) t^{n} \tag{61}
\end{equation*}
$$

satisfies $C_{q}^{\prime} u(x, t)=0$. In view of the fact that $K_{q}^{-} C_{q}^{\prime}=q C_{q}^{\prime} K_{q}^{-}$, we have

$$
\begin{equation*}
C_{q}^{\prime}\left[E_{q}\left(s K_{q}^{-}\right) u\right](x, t)=0, \tag{62}
\end{equation*}
$$

where

$$
\begin{align*}
{\left[E_{q}\left(s K_{q}^{-}\right) u\right](x, t) } & =\sum_{n=0}^{\infty} \frac{q^{\binom{n}{2}} s^{n}}{(q ; q)_{n}} K_{q}^{-^{n}} u(x, t) \\
& =\frac{\Gamma_{q}(\beta)}{\Gamma_{q}(\gamma)} x^{\gamma-1} \Phi_{1: 1 ; 0}^{1: 1 ; 1}\left(\begin{array}{l}
\left.a: b ; \frac{-s}{(1-q) t} ; q ; x t, t\right) \\
c^{\prime}: c ;-
\end{array} .\right. \tag{63}
\end{align*}
$$

Using the expansion

$$
\begin{equation*}
\left[E_{q}\left(s K_{q}^{-}\right) u\right](x, t)=\sum_{n=0}^{\infty} c_{n} h_{n}(x, t) \tag{64}
\end{equation*}
$$

we get the following identity:

$$
\begin{align*}
& \Phi_{1: 1 ; 0}^{1: 1 ; 1}\left(\begin{array}{l}
a: b ; \frac{\omega}{t} \\
c^{\prime}: c ;- \\
c^{2} ; x t, t
\end{array}\right) \\
& =\sum_{n=0}^{\infty} \frac{(a ; q)_{n}}{\left(q, c^{\prime} ; q\right)_{n}} 2 \phi_{1}\left(\begin{array}{r}
q^{-n}, b \\
c
\end{array}, q, q^{n} x\right){ }_{1} \phi_{1}\left(\begin{array}{l}
a q^{n} \\
c^{\prime} q^{n}
\end{array} ; q, \omega\right) t^{n} . \tag{65}
\end{align*}
$$

Acknowledgment

The authors thank the referee for his valuable suggestions which led to a better presentation of the paper.

References

[1] A.K. Agarwal, E.G. Kalnins, W. Miller, Canonical equations and symmetry techniques for q-series, SIAM J. Math. Anal. 18 (1987) 1519-1537.
[2] G.E. Andrews, Summations and transformations for basic Appell series, J. London Math. Soc. 4 (1972) 618-622.
[3] G. Gasper, M. Rahman, Basic Hypergeometric Series, second ed., Cambridge Univ. Press, 2004.
[4] V. Kac, P. Cheung, Quantum Calculus, Springer, 2002.
[5] H.L. Manocha, On models of irreducible q-representations of $\mathrm{sl}(2, C)$, Appl. Anal. 37 (1990) 19-47.
[6] W. Miller, Lie Theory and Special Functions, Academic Press, 1968.
[7] V. Sahai, On models of $U_{q}(\mathrm{sl}(2))$ and q-Appell functions using a q-integral transformation, Proc. Amer. Math. Soc. 127 (1999) 3201-3213.
[8] V. Sahai, On models of irreducible q-representations of $\mathrm{sl}(2, C)$ by means of fractional q-calculus, New Zealand J. Math. 28 (1999) 237-249.
[9] V. Sahai, S. Srivastava, On irreducible p, q-representations of gl(2), J. Comput. Appl. Math. 160 (2003) 271-281.
[10] V. Sahai, S. Srivastava, On models of q-representations of $\mathrm{sl}(2, C)$ and q-confluent hypergeometric functions, New Zealand J. Math. 33 (2004) 165-180.
[11] L. Weisner, Group theoretic origin of certain generating functions, Pacific J. Math. 5 (1955) 1033-1039.

[^0]: * Corresponding author.

 E-mail address: sahai_vivek@hotmail.com (V. Sahai).

