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Abstract

In this paper, the irreducible q-representations of G(0,1) are discussed. We construct one and two variable
models of irreducible q-representations of G(0,1) in terms of q-derivative operator, and derive identities
based on it.
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1. Introduction

The idea of irreducible q-representations of a Lie algebra was first introduced by Manocha
[5]. The models of the special complex Lie algebra sl(2,C) were constructed and using
the techniques of fractional q-calculus, special function identities were derived involving q-
hypergeometric functions. Later, in Sahai [7], the q-Euler integral transformation was utilized
to obtain q-difference dilation operator models of irreducible q-representations of sl(2,C). In
this paper, we extend this idea to the Lie algebra G(0,1). Precisely, we prove a classification
theorem for irreducible q-representations of the Lie algebra G(0,1) and give one and two vari-
able models of this Lie algebra in terms of q-derivative operators. Section-wise treatment is as
follows.
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In Section 2, we list various results from the theory of q-special functions, needed for our
discussion. The fractional q-derivative of order λ, Δλ

x , is defined. Next we introduce an operator

Dq defined as Dqf (x) = Δ
β−γ
x xβ−1f (x) and then make use of generalized q-Leibniz rule to

obtain operator expressions for Dq(xΔx)D−1
q and Dq(x)D−1

q .
In Section 3, we discuss the irreducible q-representations of the Lie algebra G(0,1) and prove

a classification theorem. Based on the theorem, we construct canonical models of irreducible
q-representations of G(0,1) in one and (m + 1)-variables. In Section 4, we obtain identities
based on the one variable model. In Section 5, we construct two variable models of represen-
tations Rq(α,μ) and ↑q (μ) of G(0,1) in terms of q-derivative and q-dilation operators in
which 1φ0 functions appear as the basis functions. These models are then transformed, with
the help of a theorem, to the new models of irreducible q-representations of G(0,1) in terms of
q-derivative and inverse q-derivative operators of fractional order with basis functions involv-
ing the q-hypergeometric functions 2φ1. Finally, in Section 6, these models are exploited for
identities.

2. Preliminaries

The generalized basic or q-hypergeometric series rφs is defined as [3]

rφs

(
a1, . . . , ar

b1, . . . , bs
;q, x

)
=

∞∑
n=0

(a1;q)n · · · (ar ;q)n

(b1;q)n · · · (bs;q)n(q;q)n

[
(−1)n q(n

2)
]1+s−r

xn, (1)

where q-shifted factorial (a;q)n is defined by

(a;q)n = (a;q)∞
(aqn;q)∞

, (a;q)∞ =
∞∏

r=0

(
1 − qra

)
. (2)

In other words,

(a;q)n =
⎧⎨
⎩

(1 − a)(1 − aq) · · · (1 − aqn−1), n = 1,2, . . . ,

1, n = 0,

[(1 − aq−1)(1 − aq−2) · · · (1 − aq−n)]−1, n = −1,−2, . . . .

(3)

The series rφs terminates if one of the numerator parameter is of the form q−m, m = 0,1,2, . . . ,

and q �= 0. When 0 < |q| < 1, the series rφs converges absolutely for all x if r � s; and for
|x| < 1 if r = s + 1. If |q| > 1 and |x| <

|b1···bs |
|a1···ar | , then also rφs converges absolutely. It diverges

for x �= 0 if 0 < |q| < 1 and r > s + 1, and if |q| > 1 and |x| > |b1···bs |
|a1···ar | , unless it terminates.

The q-analogue of the binomial function is

1φ0

(
a

−;q, x
)

= (ax;q)∞
(x;q)∞

, |q| < 1, |x| < 1. (4)

The q-analogues of the exponential functions are

eq(x) =
∞∑

n=0

xn

(q;q)n
= 1

(x;q)∞
, |x| < 1, (5)

and

Eq(x) =
∞∑ q(n

2)xn

(q;q)n
= (−x;q)∞. (6)
n=0
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Eq(x) converges for all x.
We also make use of the function

Γq(α) = eq(qα)

eq(q)
(1 − q)1−α (7)

defined for α �= 0,−1,−2, . . . .

This is a q-analogue of the gamma function and satisfies the functional equation

Γq(α + 1) = [α]qΓq(α), (8)

where [α]q = 1−qα

1−q
is the q-analogue of α [3,4].

We need the q-analogue of the general double hypergeometric series in the form [3]

ΦA:B:C
D:E:F

(
aA : bB; cC

dD : eE;fF
;q;x, y

)

=
∞∑

m,n=0

(aA;q)m+n(bB;q)m(cC;q)n

(dD;q)m+n(q, eE;q)m(q,fF ;q)n

×[
(−1)m+n q(m+n

2 )
]D−A[

(−1)m q(m
2)

]1+E−B[
(−1)n q(n

2)
]1+F−C

xmyn, (9)

where q �= 0 when min(D − A,1 + E − B,1 + F − C) < 0. The series (9) converges absolutely
for |x|, |y| < 1 when min(D − A,1 + E − B,1 + F − C) � 0 and |q| < 1.

The q-analogue of the Lauricella function [2] is defined by

ΦD

(
a;b1, . . . , bm

c
;q;x1, . . . , xm

)

=
∞∑

n1,...,nm=0

(a;q)n1+···+nm(b1;q)n1 · · · (bm;q)nm

(c;q)n1+···+nm

x
n1
1

(q;q)n1

· · · x
nm
m

(q;q)nm

. (10)

The q-derivative operator is defined by

Δx

(
f (x)

) = f (x) − f (qx)

(1 − q)x
= (1 − Tx)

(1 − q)x
f (x), (11)

where the q-dilation operator Tx is given by Tx[f (x)] = f (qx). From (11) it follows that

Δn
x

(
xp

) = Γq(p + 1)

Γq(p − n + 1)
xp−n. (12)

The above derivative formula can be extended to a fractional q-derivative operator of order λ

as

Δλ
x

(
xμ

) = Γq(μ + 1)

Γq(μ − λ + 1)
xμ−λ, μ �= −1,−2, . . . . (13)

The generalized q-Leibniz formula for q-fractional derivative of product of two functions in
terms of q-derivatives of each [5], is established as

Δλ
x

[
f (x)g(x)

] =
∞∑

r=0

[
λ

r

]
q

q−r(λ−r)Δλ−r
x f

(
xqr

)
Δr

xg(x), (14)

where the q-binomial coefficient is defined by[
α

β

]
= Γq(α + 1)

Γ (β + 1)Γ (α − β + 1)
, α,β ∈ C, |q| < 1. (15)
q q q
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To construct new models of irreducible q-representations of G(0,1), we introduce the opera-
tors Dq and D−1

q defined as

Dqf (x) = Δ
β−γ
x

[
xβ−1f (x)

]
, (16)

D−1
q f (x) = x1−βΔ

γ−β
x

[
f (x)

]
. (17)

Indeed, in general

DqD−1
q

[
f (x)

] = f (x) = D−1
q Dq

[
f (x)

]
. (18)

Using (14), we obtain the following:

Dq(xΔx)D−1
q = q1−γ xΔx + [1 − γ ]q, (19)

Dq(x)D−1
q = xqβ−γ + [β − γ ]qΔ−1

x , (20)

where Δ−1
x is q-integral in disguise. As we shall see later, Eqs. (19) and (20) will be instrumental

in obtaining new models of G(0,1).

3. The Lie algebra G(0,1) and its q-representations

For any pair of complex numbers (a, b) the 4-dimensional complex Lie algebra G(a, b) with
basis J +, J −, J 0 and E is defined by[

J +,J −] = 2a2J 0 − bE,[
J 0,J +] = J +,

[
J 0,J −] = −J −,[

J +,E
] = [

J −,E
] = [

J 0,E
] = O, (21)

where [.,.] is the commutator bracket and O is the additive identity element.
For special choices of the parameters a, b, G(a, b) essentially coincides with one of the Lie

algebras sl(2), G(0,1) and L(T3). Indeed, it can be shown that [6, Lemma 2.1]

G(a, b) ∼=
⎧⎨
⎩
G(1,0) ∼= sl(2) ⊕ (E), if a �= 0,

G(0,1), if a = 0, b �= 0,

G(0,0) ∼= L(T3) ⊕ (E), if a = b = 0,

where (E) is the 1-dimensional Lie algebra generated by E . The q-representations of sl(2) have
been extensively studied in [5,7,8,10]. Further, the p,q-representations of the Lie algebra G(1,0)

were studied in [9]. We now extend this idea to the Lie algebra G(0,1).
The Lie algebra G(0,1) is the space of 4 × 4 matrices of the form

α =
⎛
⎜⎝

0 x2 x4 x3
0 x3 x1 0
0 0 0 0
0 0 0 0

⎞
⎟⎠ , x1, x2, x3, x4 ∈ C, (22)

with the Lie product [α,β] = αβ − βα.
The matrices

J + =
⎛
⎜⎝

0 0 0 0
0 0 1 0
0 0 0 0

⎞
⎟⎠ , J − =

⎛
⎜⎝

0 1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠ ,
0 0 0 0 0 0 0 0
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J 0 =
⎛
⎜⎝

0 0 0 1
0 1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠ , E =

⎛
⎜⎝

0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠ (23)

with commutation relations[
J 0,J +] = J +,

[
J 0,J −] = −J −,

[
J +,J −] = −E, (24)

and [
E,J +] = [

E,J −] = [
E,J 0] = O, (25)

where O is the 4 × 4 zero matrix, constitute a basis for G(0,1).
Let Vq be a complex vector space consisting of q-special functions with a basis {φλ: λ ∈ S}

such that the functions {fλ = limq→1 φλ: λ ∈ S} form a basis for a vector space, say, V . Let
A(Vq) be the associative algebra of all linear operators on Vq over the complex field.

A q-representation of G(0,1) on Vq is a mapping ρq : G(0,1) → A(Vq) satisfying the follow-
ing conditions:

(1) ρq(ax + by) = aρq(x) + bρq(y).
(2) There exists a Lie algebra representation ρ of G(0,1) on V such that limq→1 ρq(x)φλ =

ρ(x)fλ, for all x, y ∈ G(0,1) and a, b ∈ C.
(3) If we denote

J+
q = ρq

(
J +)

, J−
q = ρq

(
J −)

, J 0
q = ρq

(
J 0), Eq = ρq(E), (26)

then

J 0
q J+

q − qJ+
q J 0

q = J+
q ,

qJ 0
q J−

q − J−
q J 0

q = −J−
q ,

qJ+
q J−

q − J−
q J+

q = −qu−1Eq,[
Eq,J+

q

] = [
Eq,J−

q

] = [
Eq,J 0

q

] = 0. (27)

A q-representation ρq of G(0,1) is said to be irreducible if there is no proper subspace Wq of
Vq which is invariant under ρq .

If we define the operator Cq on Vq by

Cq = qJ+
q J−

q − quJ 0
q Eq, (28)

it is easy to check that

qJ+
q Cq = CqJ+

q ,

J−
q Cq = qCqJ−

q ,

J 0
q Cq = CqJ 0

q ,

EqCq = CqEq. (29)

Obviously, as q → 1, ρq reduces to a Lie algebra representation ρ of G(0,1) on V .
Let Sq = {[λ − u]q : λ ∈ S} be the spectrum of J 0

q , and let the q-representation ρq satisfy the
conditions:
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(i) ρq is irreducible,

(ii) each eigenvalue of J 0
q has multiplicity equal to one. (30)

Conditions (30) guarantee that Sq , and for that matter S, is countable and that there exists a basis
for Vq consisting of eigenvectors fλ of J 0

q .
Following the analysis as in [6, p. 40], we note:

(i) Let λ ∈ S, then the equation (J 0
q J+

q −qJ+
q J 0

q )fλ = J+
q fλ implies either J+

q fλ = ξλ+1fλ+1,
where ξλ+1 is a nonzero constant and λ + 1 ∈ S, or J+

q fλ = 0. Similarly, the equation

(qJ 0
q J−

q − J−
q J 0

q )fλ = −J−
q fλ implies either J−

q fλ = ηλfλ−1, where ηλ is a nonzero con-

stant and λ − 1 ∈ S, or J−
q fλ = 0. The equation [Eq,J 0

q ]fλ = 0 implies Eqfλ = μλfλ for

some constants μλ and [Cq,J 0
q ]fλ = 0 implies Cqfλ = aλfλ for some constants aλ.

(ii) S is connected in the sense: S = {λ + n: n is an integer such that n1 < n < n2}, where n1
and n2 are integers. We do not exclude the possibility that n1 = −∞ or n2 = ∞.

(iii) If λ,λ + 1 ∈ S, then ξλ+1, ηλ+1 �= 0, since otherwise the irreducibility of ρq would be
violated.

(iv) Suppose that λ,λ + 1 ∈ S. Then the equation [Eq,J+
q ]fλ = 0 gives ξλ+1(μλ+1 − μλ) = 0.

Therefore μλ+1 = μλ. Hence μλ = μ, a constant for all λ ∈ S. Further, qJ+
q Cqfλ =

CqJ+
q fλ implies ξλ+1(aλ+1 − qaλ) = 0. Hence aλ+1 = qaλ.

(v) The equation Cqfλ = aλfλ, that is,(
qJ+

q J−
q − quJ 0

q Eq

)
fλ = aλfλ

leads to the following relation:

qξληλ = aλ + μqu[λ − u]q, (31)

defined for all λ ∈ S, where ηλ= 0 if λ − 1 /∈ S. Using

qJ+
q J−

q = J−
q J+

q − qu−1Eq, (32)

we have

qξλ+1ηλ+1 = aλ+1 + μqu[λ + 1 − u]q (33)

defined for all λ ∈ S where ξλ+1 = 0 if λ + 1 /∈ S.
(vi) The representation ρq of G(0,1) is uniquely determined by aλ, aλ+1 = qaλ, and the spec-

trum Sq of J 0
q . The nonzero constants ξλ and ηλ are not unique, and may be chosen

arbitrarily, subject only to condition (31).

Denote by Rq(α,u,μ) the q-representations of G(0,1) defined for all α,u,μ ∈ C such that
μ �= 0, 0 � Reα < 1, α is not an integer and S = {α + n: n = 0,±1,±2, . . .}; and by ↑q (u,μ),
the q-representations defined for all u,μ ∈ C such that μ �= 0 and S = {0,1,2, . . .}.

We now have the following theorem:

Theorem 1. Every q-representation ρq of G(0,1) satisfying conditions (30) and (31) is isomor-
phic to either a q-representation Rq(α,u,μ) or a q-representation ↑q (u,μ). For these cases,
there is a basis of Vq consisting of vectors fλ defined for each λ ∈ S such that
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J 0
q fλ = [λ − u]qfλ,

J+
q fλ = μqu−1fλ+1,

J−
q fλ = [λ]qfλ−1,

Eqfλ = μfλ,

Cqfλ = μ[u]qqλfλ. (34)

(On the right-hand side of these equations, we assume that fλ = 0 if λ /∈ S.)

Proof. Set aλ = μqλ[u]q in (31). This gives ξληλ = μqu−1[λ]q . Choose ξλ = μqu−1 and ηλ =
[λ]q . Two cases arise:

Case 1. If λ = 0 is not in S then ηλ �= 0 for all λ. Choose a complex number α such that 0 �
Reα < 1 and α is not an integer. Then the spectrum is S = {α + n: n = 0,±1,±2, . . .}.

Case 2. If λ = 0 is in S then since η0 = 0, we get the spectrum as S = {0,1,2, . . .}. �
3.1. Models of irreducible q-representations

A model in one variable for each of Rq(α,u,μ) and ↑q (u,μ) is

J 0
q = (1 − q)−1(1 − q−uTt

)
,

J+
q = μqu−1t,

J−
q = (1 − q)−1t−1(1 − Tt ),

Eq = μI,

fλ(t) = tλ, (35)

where, for Rq(α,u,μ), λ ∈ S = {α + n: α ∈ C − {0}, 0 � Reα < 1, n = 0,±1,±2, . . .}, while
for ↑q (u,μ),λ ∈ S = {0,1,2, . . .}. The model (35) satisfies the commutation relations (27) and
(29) as well as (34).

However, for obtaining identities involving q-hypergeometric functions we shall consider
models Rq(α,u,μ) and ↑q (u,μ) corresponding to u = 0, in which case they will be denoted by
Rq(α,μ) and ↑q (μ), respectively.

3.1.1. One-variable models of Rq(α,μ) and ↑q (μ)

A model in one variable for each of Rq(α,μ) and ↑q (μ) is

J 0
q = (1 − q)−1(1 − Tt ),

J+
q = μq−1t,

J−
q = (1 − q)−1t−1(1 − Tt ),

Eq = μI,

fλ(t) = tλ, (36)

where, for Rq(α,μ), λ ∈ S = {α + n: α ∈ C − {0}, 0 � Reα < 1, n = 0,±1,±2, . . .}; while for
↑q (μ), λ ∈ S = {0,1,2, . . .}.
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3.1.2. (m + 1)-variable models of Rq(α,μ) and ↑q (μ)

A model in (m + 1)-variable for each of Rq(α,μ) and ↑q (μ) is

J 0
q = (1 − q)−1(1 − Tt ),

J+
q = μq−1t (1 − x1Tt ),

J−
q = (1 − q)−1t−1

m∏
i=1

T −1
xi

(
m∏

i=1

Txi
− Tt

)
,

Eq = μI, (37)

fλ(x1, . . . , xm, t) = ΦD

(
q−λ;q, . . . , q

q
;q;qλx1, . . . , q

λxm

)
tλ,

where ΦD is the q-Lauricella function defined by (10).
For Rq(α,μ), λ ∈ S = {α + n: α ∈ C − {0}, 0 � Reα < 1, n = 0,±1,±2, . . .}; while for

↑q (μ), λ ∈ S = {0,1,2, . . .}.
It can be verified that the models (36) and (37) obey the following:

J 0
q fλ = [λ]qfλ,

J+
q fλ = μq−1fλ+1,

J−
q fλ = [λ]qfλ−1,

Eqfλ = μfλ,

Cqfλ = 0, where Cq = qJ+
q J−

q − J 0
q Eq, (38)

as well as

J 0
q J+

q − qJ+
q J 0

q = J+
q ,

qJ 0
q J−

q − J−
q J 0

q = −J−
q ,

qJ+
q J−

q − J−
q J+

q = −q−1Eq,[
Eq,J+

q

] = [
Eq,J−

q

] = [
Eq,J 0

q

] = 0 (39)

and (29).

4. Identities based on one variable model

Considering that v(t) = 1φ1
(

a
c
;q, t

)
is a solution of[

t (1 − aTt ) − (1 − Tt )
(
1 − cq−1Tt

)]
v(t) = 0, (40)

we have that u(t) = 1φ1
(

a
c
;q, t

)
tα , qα = a, is a simultaneous solution of(

qJ+
q J−

q − J 0
q Eq

)
u(t) = 0 (41)

and [
q

1 − q
J+

q J 0
q − Eq

([
a−1]

q
+ a−1J 0

q

)([
a−1q−1c

]
q

+ a−1q−1cJ 0
q

)]
u(t) = 0. (42)

Note that t−αu is analytic at t = 0.
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Now, as in [1],

[
eq

(
sJ+

q

)
u
]
(t) = 1

(
sμt
q

;q)∞
1φ1

(
a

c
;q, t

)
tα (43)

and

[
Eq

(
sJ−

q

)
u
]
(t) = ( s

(1−q)t
;q)∞

( as
(1−q)t

;q)∞
2φ1

(
a, as

(1−q)t
c

;q, t
)

tα. (44)

Using Weisner’s expansion [11], we get

[
Eq

(
sJ−

q

)
u
]
(t) =

∞∑
n=−∞

jnt
α+n (45)

which leads to the following identity, after some rescaling:

(ω
t
;q)∞

( aω
t

;q)∞
2φ1

(
a, aω

t
c

;q, t
)

=
∞∑

n=−∞

Γq(γ )Γq(α + n)

Γq(α)Γq(γ + n)Γq(n + 1)
2φ2

(
aqn, aqn+1

cqn, qn+1 ;q,ω
)

tn. (46)

5. Two variable models

We have the following two variable model for the Lie algebra G(0,1):

J 0
q = tΔt = (1 − q)−1(1 − Tt ),

J+
q = μq−1t (1 − xTt ),

J−
q = t−1T −1

x (tΔt − xΔx) = (1 − q)−1t−1T −1
x (Tx − Tt ),

Eq = μI, (47)

fλ(x, t) = (x;q)∞
(qλx;q)∞

tλ = 1φ0

(
q−λ

− ;q, qλx
)

tλ. (48)

For Rq(α,μ), λ ∈ S = {α + n: α ∈ C − {0}, 0 � Reα < 1, n = 0,±1,±2, . . .}, while for ↑q (μ),
λ ∈ S = {0,1,2, . . .}.

Now we use the operators Dq and D−1
q defined in (16) and (17) and the formulae (19) and

(20) to obtain new models of Rq(α,μ) and ↑q (μ) in terms of q-inverse difference operators
with basis functions in terms of q-hypergeometric functions 2φ1. To accomplish this, we present
the following theorem.

Theorem 2. Let ρq be a q-representation of G(0,1) in terms of {J+
q , J−

q , J 0
q ,Eq} with basis func-

tions {fλ: λ ∈ S}. Then ρq is also a q-representation of G(0,1) in terms of {K+
q ,K−

q ,K0
q ,Eq}

with basis functions {hλ: λ ∈ S} where

K+
q = DqJ+

q D−1
q , K−

q = DqJ−
q D−1

q , K0
q = DqJ 0

q D−1
q ,

Eq = DqEqD−1
q , hλ = Dqfλ.
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Proof. The proof follows from the fact that

J+
q fλ(x, t) = μq−1fλ+1(x, t)

can be rewritten as

J+
q D−1

q

(
Dqfλ(x, t)

) = μq−1D−1
q Dqfλ+1(x, t),(

DqJ+
q D−1

q

)
hλ(x, t) = μq−1hλ+1(x, t),

K+
q hλ(x, t) = μq−1hλ+1(x, t), etc. �

We apply Theorem 2 to models (47) and (48) to induce new models of Rq(α,μ) and ↑q (μ)

as under:
Models of Rq(α,μ):

K0
q = tΔt ,

K+
q = μq−1t

(
1 − xqβ−γ Tt − [β − γ ]qΔ−1

x Tt

)
,

K−
q = (1 − q)−1t−1T −1

x

(
Tx − cq−1Tt

)
,

Eq = μI, (49)

hλ(x, t) = Γq(β)

Γq(γ )
xγ−1

2φ1

(
q−λ, b

c
;q, qλx

)
tλ, (50)

where λ ∈ S = {α + n: α ∈ C − {0}, 0 � Reα < 1, n = 0,±1,±2, . . .}.
A model of G(0,1) for ↑q (μ) is same as above with λ ∈ S = {0,1,2, . . .}.
It can be verified that the K-model given above satisfies

K0
qK+

q − qK+
q K0

q = K+
q ,

qK0
qK−

q − K−
q K0

q = −K−
q ,

qK+
q K−

q − K−
q K+

q = −q−1Eq,[
Eq,K+

q

] = [
Eq,K−

q

] = [
Eq,K0

q

] = 0 (51)

as well as

K0
qhλ = [λ]qhλ,

K+
q hλ = μq−1hλ+1,

K−
q hλ = [λ]qhλ−1,

Eqhλ = μhλ,

C′
qhλ = 0, where C′

q = qK+
q K−

q − K0
qEq. (52)

Also,

qK+
q C′

q = C′
qK+

q ,

K−
q C′

q = qC′
qK−

q ,

K0
qC′

q = C′
qK0

q ,

EqC′
q = C′

qEq. (53)
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6. Identities based on two variable model

6.1. Model of Rq(α,μ)

We have shown in (52) that

hλ(x, t) = Γq(β)

Γq(γ )
xγ−1

2φ1

(
q−λ, b

c
;q, qλx

)
tλ (54)

is a solution of C′
qhλ(x, t) = 0 where C′

q = qK+
q K−

q − K0
qEq .

It therefore follows that

u(x, t) = Γq(β)

Γq(γ )
xγ−1

∞∑
n=0

(a;q)n

(q, c′;q)n
2φ1

(
a−1q−n, b

c
;q, aqnx

)
tα+n (55)

also satisfies C′
qu(x, t) = 0. In view of the fact that K−

q C′
q = qC′

qK−
q , we have

C′
q

[
Eq

(
sK−

q

)
u
]
(x, t) = 0, (56)

where[
Eq

(
sK−

q

)
u
]
(x, t)

=
∞∑

n=0

q(n
2)sn

(q;q)n
K−n

q u(x, t)

= Γq(β)

Γq(γ )
xγ−1 (ω

t
;q)∞

( aω
t

;q)∞

∞∑
n=0

(a, aω
t

;q)n

(q, c′;q)n
2φ2

( a−1q−n, b
a−1q1−nt

ω
, c

;q,
qxt
ω

)
tα+n. (57)

Using Weisner’s expansion, we get

[
Eq

(
sK−

q

)
u
]
(x, t) =

∞∑
n=−∞

anhλ(x, t), (58)

which leads to the following identity:

(ω
t
;q)∞

( aω
t

;q)∞

∞∑
n=0

(a, aω
t

;q)nt
n

(q, c′;q)n
2φ2

( a−1q−n, b
a−1q1−nt

ω
, c

;q,
qxt
ω

)

=
∞∑

n=−∞

Γq(γ )Γq(α + n)

Γq(α)Γq(γ + n)Γq(n + 1)
2φ2

(
aqn, aqn+1

c′qn, qn+1 ;q,ω
)

× 2φ1

(
a−1q−n, b

c
;q, aqnx

)
tn. (59)

6.2. Model of ↑q (μ)

As shown in (52),

hn(x, t) = Γq(β)

Γ (γ )
xγ−1

2φ1

(
q−n, b

c
;q, qnx

)
tn (60)
q
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satisfies C′
qhn(x, t) = 0. This in turn gives that

u(x, t) = Γq(β)

Γq(γ )
xγ−1

∞∑
n=0

(a;q)n

(q, c′;q)n
2φ1

(
q−n, b

c
;q, qnx

)
tn (61)

satisfies C′
qu(x, t) = 0. In view of the fact that K−

q C′
q = qC′

qK−
q , we have

C′
q

[
Eq

(
sK−

q

)
u
]
(x, t) = 0, (62)

where

[
Eq

(
sK−

q

)
u
]
(x, t) =

∞∑
n=0

q(n
2)sn

(q;q)n
K−n

q u(x, t)

= Γq(β)

Γq(γ )
xγ−1Φ

1:1;1
1:1;0

( a : b; −s
(1−q)t

c′ : c;− ;q;xt, t
)

. (63)

Using the expansion

[
Eq

(
sK−

q

)
u
]
(x, t) =

∞∑
n=0

cnhn(x, t), (64)

we get the following identity:

Φ
1:1;1
1:1;0

(
a : b; ω

t
c′ : c;−;q;xt, t

)

=
∞∑

n=0

(a;q)n

(q, c′;q)n
2φ1

(
q−n, b

c
;q, qnx

)
1φ1

(
aqn

c′qn ;q,ω
)

tn. (65)
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