=

View metadata, citation and similar papers at core.ac.uk brought to you by i CORE

provided by Elsevier - Publisher Connector

Journal of Number Theory 132 (2012) 2084-2102

Contents lists available at SciVerse ScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

Ramification correspondence of finite flat group schemes
over equal and mixed characteristic local fields

Shin Hattori

Faculty of Mathematics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan

ARTICLE INFO ABSTRACT

Article history: Let p > 2 be a rational prime, k be a perfect field of characteristic

Received 16 July 2011 p and K be a finite totally ramified extension of the fraction field

Revised 10 February 2012 of the Witt ring of k. Let G and # be finite flat commutative group

Accgpted 26 .Apm 2012 schemes killed by p over Ok and k[[u]], respectively. In this paper,

Available online 28 May 2012 h . K

Communicated by David Goss we show.the ramlﬁcatlon.subgroups of G and H in the sense of
Abbes-Saito are naturally isomorphic to each other when they are

Keywords: associated to the same Kisin module.

Ramification © 2012 Elsevier Inc. All rights reserved.

Finite flat group schemes

Breuil-Kisin classification

1. Introduction

Let p be a rational prime, k be a perfect field of characteristic p, W = W (k) be the Witt ring of
k and K be a finite totally ramified extension of Frac(W) of degree e. Let ¢ denote the Frobenius
endomorphism of W. We fix once and for all an algebraic closure K of K, a uniformizer w of K
and a system of its p-power roots {Ttn}nez, in K with mp=n and 7, = n,fﬂ. Put K, = K(my),
Koo = U, Kn, Gk = Gal(K/K) and Gk, = Gal(K/Ks). By the theory of norm fields [30], there exist
a complete discrete valuation field X >~ k((u)) of characteristic p with residue field k and an isomor-
phism of groups

Gko, ~ Gx = Gal(x*P/X),

where X5P is a separable closure of X. A striking feature of this isomorphism is its compatibility
with the upper ramification subgroups of both sides up to a shift by the Herbrand function of K /K
[30, Corollaire 3.3.6].
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On the other hand, Breuil [7] introduced linear algebraic data over a ring S, which are now called
as Breuil modules, and proved a classification of finite flat (commutative) group schemes over Ok via
these data for p > 2. He [6,8] also simplified this classification by replacing these data by ¢-modules
over W([u]], which are referred as Kisin modules since the latter classification was reproved and
investigated further by Kisin [20,21]. Let us consider the case where finite flat group schemes are
killed by p. Put &1 = k[[u]], which is isomorphic to the k-algebra Oy. We let ¢ also denote the
absolute Frobenius endomorphism of the ring &;. For a non-negative integer r, let Modr/’é’] be the
category of free G1-modules 91 of finite rank endowed with a ¢-semilinear map ¢gyn : 90t — 9 such
that the cokernel of the map 1® ¢ox : 61 ®¢, &, M — M is killed by u®". Then there exists an anti-

equivalence of categories G(—) from Mod}gl to the category of finite flat group schemes over Ok

killed by p. It is well known that, for any r, we also have an anti-equivalence H(—) from Mod;’g] to
a category of finite flat generically etale group schemes over O killed by their Verschiebung [16].
Hence a correspondence between finite flat group schemes over Ok and Oy is obtained, and if finite
flat group schemes G over Ok and H over Oy are in correspondence with each other, then their
generic fiber Galois modules G(Og) and H (O ysep) are also in correspondence via the theory of norm

fields. Namely, for an object 9t of Mod}gl, we have an isomorphism of G, -modules

GOM(Op)lGyy, = HEOM(Oxser)

[21, Proposition 1.1.13]. From this, we can show that the Galois modules G(91)(Of) and H () (O ysep)
have exactly the same greatest upper ramification jump in the classical sense (see also [4]).

Besides the classical ramification theory of their generic fibers, finite flat group schemes over
a complete discrete valuation ring have their own ramification theory, which was discovered by
Abbes-Saito [2,3] and Abbes-Mokrane [1]. Such a finite flat group scheme G has filtrations of up-
per ramification subgroups {Qf}jeQ>0 [1] and lower ramification subgroups {Gi}icq, [14.17] as in
the classical ramification theory of local fields. For simplicity, let K be a complete discrete valuation
field as above and consider a finite flat group scheme G over Ok. Then, using the upper ramifica-
tion filtration of G, we can bound the classical greatest upper ramification jump of the generic fiber
Gx-module G(Og) [17] and also describe completely the semi-simplification of the restriction to the
inertia subgroup of this Gg-module [18]. Moreover, the canonical subgroup of a possibly higher di-
mensional abelian scheme A over Oy is found in the upper ramification filtration of A[p"] [1,28,29],
while the canonical subgroup is also found in the Harder-Narasimhan filtration of A[p"] defined by
Fargues [13,14].

In this paper, we establish the following correspondence of the ramification filtrations between
finite flat group schemes over Ok and Oy which is similar to that of the classical ramification jumps
of their generic fiber Galois modules stated above.

Theorem 1.1. Let p > 2 be a rational prime and K and X be as before. Let 9t be an object of the cate-
gory Mod}gl. Then the natural isomorphism of G, -modules G(M)(O)lcy,, — HEOM(Oxser) induces
isomorphisms of the upper and the lower ramification subgroups

GON (O l6r,, = HOMI (Oxser),
GEOMi(Op) Gk, = HEOM);(Oxsen)

forany j € Q.o andi e Qxo.

This theorem enables us to reduce the study of ramification of finite flat group schemes over Ok
killed by p to the case where the base is a complete discrete valuation ring of equal characteristic.
This makes calculations of ramification of finite flat group schemes over O, for example as in [18,
Section 5], much easier. We remark that, for the Harder-Narasimhan filtration, such a correspondence
of filtrations of G(9) and H(ON) follows easily from the definition.
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A key idea to prove the theorem is to switch from the upper ramification filtration to the lower
ramification filtration via Cartier duality, which the author learned from works of Tian [28] and Far-
gues [14]. Let G be a finite flat group scheme over Ok killed by p and G be its Cartier dual. Then
they showed that the upper ramification subgroup QJ(O,-() is the orthogonal subgroup of the lower
ramification subgroup (G¥);(Oy) for some i via the Cartier pairing

G(Og) x G (Og) — Z/pZ(1).

We prove a version of this theorem for the group scheme #H(9%) over Oy. Since we are in char-
acteristic p, usual Cartier dual does not preserve the generic etaleness of finite flat group schemes.
Instead, we use a duality theory of Liu [24] for Kisin modules. This requires us to check compatibili-
ties of these two duality theories, though it is straightforward to carry out. Thus we reduce ourselves
to proving the correspondence of the lower ramification subgroups of G(9%) and H.(91). This is a con-
sequence of the fact that, up to the base changes from K and X to the extensions generated by p-th
roots of their uniformizers 7 and u, the schemes G(9%) modulo ¢ and H(9%) modulo u® become
isomorphic to each other, not as group schemes but as pointed schemes. We prove this fact by using
Breuil’s explicit computation of the affine algebra of a finite flat group scheme over Ok killed by p in
terms of its corresponding Breuil module [7, Section 3], after showing that his classification of finite
flat group schemes is compatible with the base change from K to Kj.

It should be mentioned that a classification of finite flat group schemes via Kisin modules is also
proved for p =2 by Kisin [22] for the case of unipotent finite flat group schemes and independently
by Kim [19], Lau [23] and Liu [26] for the general case. However, the author does not know whether a
similar correspondence of ramification between characteristic zero and two holds for finite flat group
schemes with non-trivial multiplicative parts.

2. Review of Cartier duality theory for Kisin modules

Let p > 2 be a rational prime and K be a complete discrete valuation field of mixed characteristic
(0, p) with perfect residue field k, as in Section 1. It is well known that finite flat group schemes
over Ok killed by some p-power are classified by linear algebraic data, Breuil modules [7] or Kisin
modules [6,8,20,21]. For these data, corresponding notions of duality to Cartier duality for finite flat
group schemes are introduced by Caruso and Liu [9-11,24], which play key roles in the integral p-
adic Hodge theory. In this section, we recall the definitions of these data and the theory of Cartier
duality for Kisin modules.

2.1. Breuil and Kisin modules

Let E(u) € W[u] be the Eisenstein polynomial of the uniformizer 7 over W. Put F(u) = p~1(u® —
E(u)). This defines units in the rings & = W[[u]] and &1 = k[[u]]. The ¢-semilinear continuous ring
endomorphisms of these rings defined by u > uP are also denoted by ¢. Let r be a non-negative
integer. Then a Kisin module over & of E-height < r is an G-module 2t endowed with a ¢-semilinear
map ¢ox : M — M such that the cokernel of the map 1 Q@ don : 6 ®y. e M — M is killed by E(u)".
We write ¢gn also as ¢ if there is no risk of confusion. A morphism of Kisin modules over & is an
G-linear map which is compatible with ¢’s of the source and the target. The Kisin modules over & of

E-height <r form a category with an obvious notion of exact sequences. We let Mod;g1 (respectively
Mod;’g) denote its full subcategory consisting of 9t which is free of finite rank over &1 (respectively
G). We also let Mod;’gOo denote its full subcategory consisting of 9t such that 9t is a finite G-module
which is p-power torsion and u-torsion free.

The categories of Kisin modules have a natural duality theory [11, Section 2.4]. For an object 9t
of the category Mod;’gm, we let MY denote its dual object as in [11]. We give here an explicit
description of the duality theory of the category Mod;‘(‘g1 for the convenience of the reader. Let 9t
be an object of this category. By definition, the &1-module 9" is Homg (91, G1). Choose a basis
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e1,...,eq of the free G1-module 9% and let elv, .‘.,eg denote its dual basis. Define a matrix A €
My(&y) by

oom(er,...,eq) =(e1,...,eq)A.

Put co = p~'E(0) € W*. Then the ¢-semilinear map ¢gyv : MY — MY is given by
-1
domv(ey,....ef)=(ey,..., e})(E(u)/co)r(tA)

For r < p — 1, we also have categories Mod;’sﬁ, Mod;’s"; and Mod;’f of Breuil modules defined as

follows. Let S be the p-adic completion of the divided power envelope W[u]P? of W[u] with respect
to the ideal (E(u)) and the compatibility condition with the canonical divided power structure on
pW. The ring S has a natural filtration Fil'S defined as the closure in S of the ideal generated by
E(u)i/j! for integers j > i. The ¢-semilinear continuous ring endomorphism of S defined by u — u?
is also denoted by ¢. For 0 <i< p—1, we have ¢ (Fil' S) C p'S and put ¢; = p‘iqblFili s- These filtration
and ¢;'s induce a similar structure on the ring S, = S/p"S. Put ¢ = ¢1(E(u)) € S*. Then we let
/Mod;‘s‘ﬁ denote the category of S-modules M endowed with an S-submodule Fil” M containing
(Fil" S)M and a ¢-semilinear map ¢ aq : Fil" M — M satisfying ¢r aq(s,m) = ¢~ ¢r(sr)pr_aq (E () m)
for any s, e Fil' S and m € M. A morphism of this category is defined to be a homomorphism of S-
modules compatible with Fil"’s and ¢,’s. We drop the subscript M of ¢, o if no confusion may occur.

The category ’Mod;‘g’ has an obvious notion of exact sequences. Its full subcategory consisting of M
such that M is a free Sy-module of finite rank and the image ¢ aq(Fil' M) generates the S-module
M is denoted by Mod;’;’l. We let Mod;’s‘io denote the smallest full subcategory of ’Mod;’f containing
Mod;’s"ﬁ1 and stable under extensions, and Mod;’s‘b denote the full subcategory consisting of M such

that M is a free S-module of finite rank, the S-module M/ Fil" M is p-torsion free and the image
&r m (Fil' M) generates the S-module M.

The categories Mod;'&c and Mod;‘s"; for r < p — 1 are in fact equivalent. We define an exact
functor Mg :Mod;“éw — Mod;‘s"’oc by putting Mg (M) =S ®4.c M with
1
Fil' M () = Ker(S @5 ¢ M > (S/Fil' S) @ M),
¢ Fill Me () 2 ' s @ M S S @46 M = Me (D).

Then the functor Mg is an equivalence of categories [11, Theorem 2.3.1]. Similarly, we have an
equivalence of categories Mod;‘g — Mod;'f [11, Theorem 2.2.1], which is denoted also by M.

2.2. The associated Galois representations and duality

Next we recall constructions of the associated Galois representations to Breuil and Kisin modules
and their duality theories. Let vk be the valuation on K which is normalized as vk () =1 and we
extend it naturally to K. Set Oy = Oy /pOf and C to be the completion of K. Consider the ring

R=lil‘1‘1((§,‘< <—(51‘< <),

where the transition maps are defined by x + xP. For an element x = (Xg, X1, ...) € R with x; € (’5,-(, we
put x™ = limn%m&,ﬂm € Oc, where %; is a lift of x; in O. This is independent of the choice of lifts.
Then the ring R is a complete valuation ring of characteristic p with valuation vg(x) = v (). We
put mff ={x € R | vg(x) >1i} and similarly for mEi. Define an element 7w of R by w = (7, 71, 7132, ...),
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where we abusively write 71, also for its image in (5,-(. The W-algebras R and W(R) have natu-
ral G-algebra structures defined by the continuous map & — W(R) which sends u to the Teich-
miiller lift [w] of the element m. Note that the identification Gk, ~ Gy stated in Section 1 is
given by the action of Gk, on the ring R and the inclusion k[[u]] — R defined by u — & [8, Sec-
tion 3.3].

We set O¢ to be the p-adic completion of G[1/u] and put £ = Frac(O¢). We extend the inclusion
& — W(R) to an inclusion Og — W (Frac(R)). The maximal unramified extension of £ in the field
W (Frac(R))[1/p] is denoted by £ and its closure in the same field by £Y. We put &' = Ogw N
W (R) inside the ring W (Frac(R)). The Galois group Gk, acts naturally on the G-algebra G". For an

object M e Mod/6 , its associated G, -module T (90) is by definition

TE () = Home (M, Qp/Zp @ ™).

If the &-module 9% is killed by p", then we have a natural identification T&(9) ~ Home 4 (M,

Wy (R)) [15, Proposition 1.8.3]. Similarly, for an object 9t of the category Mod/G, its associated Gy -
module is defined as

T&(ON) = Home ¢ (M, &),

Consider the natural W -algebra surjection 6 : W (R) — O¢ defined by

0((20,21,...)) Zp’ 9,

where z; is an element of R. The p-adic completion of the divided power envelope of W (R) with
respect to the ideal Ker(6) is denoted by Acrys. The ring Acys has a Frobenius endomorphism ¢ and
a Gg-action induced by those of R, and also a filtration induced by the divided power structure. The
W -algebra homomorphism W[u] — W (R) defined by u ~ [rr] induces a map S — A¢ys, by which
we consider the ring Acrys as an S-algebra. For 0 <r < p — 2, the ring A¢ys has a natural structure as

an object of /Mod by putting qﬁr P PlEr " Acrys®
Let M be an object of Mod"? /S Then we also have the associated Gk -module

T iys (M) = Homg i o (M, Qp/Zp ® Acrys)-

If M is killed by p, then we have a natural identification
crys (M) ~ Homs’mr’d)r (M, RDP),

where RPP is the divided power envelope of R with respect to the ideal m/e and we identify this
ring with Acrys/pAcys. Similarly, for an object M of the category Mod/S , we put

crys M) = Homs Fil',¢r (M, Acrys)

The functors T§ and Tjrys from Mod;’goc and MOd;St to the category of G, -modules are exact.

For an object 9t of Mod/6 , we have the equality dimp,(Tg(90) = rankg, (M) and a similar as-

sertion also holds for T¢y,. Then, for an object 2 of the category Mod;’gm or Mod;’g, we have an
isomorphism of Gg_ -modules
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T*G (m) — T:rys (MG (m))

defined by f+— (s®@m s¢(f(m))) [25, Lemma 3.3.4].
To describe the duality theory for Tg(97), let us also fix a system {¢pn Jnez, of p-power roots of

unity in K such that ¢ =1, ¢p#1and g = g“lfnﬂ, and set an element £ € R to be ¢ = (1, p, {2, ..)
with an abusive notation as before. Define an element t of Acys by

i (el =1
t =log(lel) = ?:1 (DT
Put co = p~'E(0) € W* and

oo

r=[]o'(Ew/E©)) es*.

i=1

Let &(r) = Ge be the object of the category Mod}:¢ of rank one with a basis e satisfying ¢ (e) =
/6

(E(u)/co)"e. Similarly, we define an object S(r) of the category Mod}’s‘ZS of rank one by S(r) = Se =

Fil' S(r) and ¢,(e) = e. Then the Breuil module Mg (&(r)) is isomorphic to S(r) via the multiplication
by A~". Thus we have isomorphisms of Gk, -modules

T5(6M) = Tarys(Me (1)) = Terys(SM) = Zp (e ).

Their composite is given by f + (e A"¢(f(e))). Set an element t € Acrys to be

-1
t= <@> A1
Co

Then the element t is contained in the subring GY [24, Section 3.2].
Let 9t be an object of the category Mod;’g and 90t be its dual object. Then as in [11, Section 2.4],
the evaluation map 9 x MY — &(r) induces a natural perfect pairing of Gy, -modules

(D :TEO) x TE(MY) > TE(S(1) = Zpt" € &",
which gives an isomorphism of Gy -modules
T&(9MY) — Homg, (T (M), Zpt").

We also have a similar perfect pairing ( , )on for the category MOd;gx [11].
3. Cartier duality for upper and lower ramification subgroups

Let G be a finite flat generically etale (commutative) group scheme over the ring of integers of
a complete discrete valuation field. Abbes-Mokrane [1] initiated a study of ramification of G using
a ramification theory of Abbes-Saito [2,3]. As in the classical ramification theory of local fields, G
has upper and lower ramification subgroups [14,17]. When the base field is of mixed characteristic,
Tian proved that the upper and the lower ramification subgroups correspond to each other via usual

Cartier duality if G is killed by p [28], and Fargues gave a much simpler proof of this theorem [14].
In this section, after briefly recalling the ramification theory of finite flat group schemes, we show a
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variant of Tian’s theorem for a complete discrete valuation field of equal characteristic p with perfect
residue field, using the duality techniques presented in the previous section instead of Cartier duality
of finite flat group schemes.

3.1. Ramification theory of finite flat group schemes

In this subsection, we let K denote a complete discrete valuation field, 77 a uniformizer of K, Ok
the ring of integers and KSP a separable closure of K Let vk be the valuation of K normalized as
vK(n) =1 and extend it naturally to K5P. We put mKsep = {x € Ogsen | vg(x) > i} and similarly for
mKSEp. We also put Gg = Gal(K*P/K).

Let G = Spec(B) be a finite flat generically etale group scheme over Og. Then G is locally of
complete intersection over Ok [7, Proposition 2.2.2] and we have a natural surjection of Gg-modules
G(Ogsew) — FI(B) for j € Q-o, where .Z1(B) is the set of geometric connected components of the j-
th tubular neighborhood of B with a group structure induced by that of G [1, Section 2.3]. We define
the j-th upper ramification subgroup G/ of G for j € Q. to be the scheme-theoretic closure in G of
(the finite subgroup scheme of G x Spec(K) associated to) the kernel of this surjection. On the other
hand, for i € Qx9, the scheme-theoretic closure in G of the kernel of the natural homomorphism

G(Okser) — Q(OKsep/mKsep) is denoted by G; and called the i-th lower ramification subgroup of G. In
particular, we have the equality

Gi(Oksr) = Ker(G(Ogsen) — G(Oser /Migaey))-

We also put

gj+(0,<sep) = U g]/ (OKSEP)7 gH_(OKsep) = U gi/(OKSCP)

i'>j i'>i

and set G/ and Gi. to be their scheme-theoretic closures in G, respectively.

As in the classical case, the upper (respectively lower) ramification subgroups are compatible
with quotients (respectively subgroups). Namely, for a faithfully flat homomorphism G — G” of fi-
nite flat group schemes over O, the image of GJ(Oksep) in G”(Okser) coincides with (G”) (Okser)
[1, Lemme 2.3.2]. From the definition, we also see that for a closed immersion G’ — G of finite flat
group schemes over Oy, the subgroup G'(Ogser) N G;(Okser) coincides with (G);(Okser). In addition,
for a finite extension L/K of relative ramification index e’, we have natural isomorphisms

(O xog O = 0L x0, 67, (O1 x0g Dier = OL X0y Gi

of finite flat group schemes over O;.

Suppose that K is of mixed characteristic (0, p) and G is killed by p". Then we have G/ =0 for
j>em+1/(p—1)), where e is the absolute ramification index of K [17, Theorem 7]. Let GV be the
Cartier dual of G and consider the Cartier pairing

(,)g:6(0g) x G¥(Og) — Z/p"Z(1).

When G is killed by p, we have the following duality theorem for the upper and the lower ramifica-
tion subgroups of G [28, Theorem 1.6], [14, Proposition 6].

Theorem 3.1. Let K be a complete discrete valuation field of mixed characteristic (0, p) with absolute ram-
ification index e and G be a finite flat group scheme over Ok killed by p. For j < pe/(p — 1), we have an
equality
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IOV = (gY _

of subgroups of G¥(Oy), where L means the orthogonal subgroup with respect to the pairing { , )g and
I(j)=e/(p—1—j/p.

3.2. Kisin modules and finite flat group schemes of equal characteristic

Consider the complete discrete valuation field X = k((u)) with uniformizer u and perfect residue
field k. We embed Oy = &1 =k[[u]] into R by u+> m as before. Then R is the completion of the ring
of integers of an algebraic closure of X'. We let X*°P denote the separable closure of X’ in Frac(R).

Let ) be a finite extension of X in Frac(R) of relative ramification index e’ and let ¢ also denote
the absolute Frobenius endomorphism of Y. We identify Oy with [[[v]] for a finite extension I of k.

Define a category Mod;’gy to be the category of free Oy -modules 91 of finite rank endowed with a
¢-semilinear map ¢ : 91 — 9N such that the cokernel of the map 1® ¢ : Oy ®4, 0,, N — N is killed
by u®.

For an object M of Mod;‘gX = Mod;’é’], we consider the Oy-module Oy ®p, M with
the ¢-semilinear map ¢ ® ¢g9n as an object of Mod;’gy. This defines a base change functor
Oy @0, —:Mod;’g1 — Mod;’(gy. We also have a dual object MtV for an object 0N of the category
Mod;‘(‘gy, which is defined similarly to the duality theory of Mod;“cﬁl. Moreover, for an object 9t of

r.¢
Mod/el,

we have a natural isomorphism
0y 0, M’ = (Oy ®0v, MY

of Mod;'gy, by which we identify both sides.

For a finite flat group scheme 7 over a base scheme of characteristic p, we let F3; and V; denote
the Frobenius and the Verschiebung of #, respectively. We say that a finite flat group scheme  over
Oy is v-height <s if its Verschiebung V4, is zero and the cokernel of the natural map

Va1 Oy ®g,0,, Lie(H") — Lie(H")

is killed by v*. The category of finite flat group schemes over Oy of v-height <s is denoted by Cg;
Then we have an anti-equivalence of categories

. ro <ee'r
Hy(—): Mod/oy — COy
[16, Théoréme 7.4]. The group scheme Hy (1) is defined as a functor over Oy by

A > Homoy,(z,(‘ﬁ, ),

where we consider an Oy-algebra 2 as a ¢-module over Oy with the absolute Frobenius endomor-
phism of 2. If we choose a basis e, ..., eq of 91 and take a matrix A = (q;,j) € My(Oy) satisfying

per,....eq) =(e1,...,eqA,

then Hy (1) is isomorphic to the additive group scheme over Oy, defined by the system of equations

d
Xf—Zaj,in=O i=1,...,d.
iz
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For an object 9 of Mod;gl, we also have a natural isomorphism

Oy xo0y Hx (M) — Hy(Oy @0, M)

of finite flat group schemes over Oy,. We drop the subscript ) of Hy if there is no risk of confusion.
The following lemma is a variant of the scheme-theoretic closure for finite flat group schemes.

Lemma 3.2. Let 9t be an object of Mod;’g1 and L be a G x-stable subgroup of T& (9M). Then there exists
a surjection 9 — M” of Mod;‘e‘g1 such that the image of the corresponding injection T (M) — T& (9N)
coincides with L. A surjection 9 — 9N satisfying this property is unique up to a unique isomorphism.

Proof. This follows from [24, Lemma 2.3.6]. Indeed, let Mod‘/i’X denote the category of etale ¢-
modules over X [15, Section Al]. We have an equivalence of categories T, from Mod‘;’X to the
category of finite Gx-modules over F), defined by T.(M) = (X*P ®x M)#=1. For an object M of
Mod‘fx, we also put T*(M) = Homy 4 (M, A*P). Then the natural map

T.(M) — Homg, (T*(M), F)

is an isomorphism of Gy-modules. Set M = X ®g, 9. We have a natural isomorphism of Gx-
modules T (9%) — T*(M) and let M” be the quotient of M corresponding to the surjection

T.(M) — Homg, (T*(M), Fp) — Homg, (L, Fp).
Then the Kisin module 9" = Im(9% — M — M”") satisfies the desired property. O

Since the finite flat group scheme H(9M) is generically etale, the group H (91)(O xsep) can be iden-
tified with the group H(9)(R) and we have the j-th upper ramification subgroup H (9! (O xser) =
HEN)! (R) of H (). We also have the i-th lower ramification subgroup

/H(gﬁ)i(oxsep) = Ker(H(m)(OXseP) g ’H(S)ﬁ) (O){sep /mi‘iep)),
which we identify with

by using the injection Oxser/m74e, — R/mz . Since H(MM)(R) = T (M), the pairing ( , )on of Sec-
tion 2.2 induces a perfect pairing

()om i HEDR) x H(MY)(R) — R.
Then the main theorem of this section is the following.

Theorem 3.3. Let )t be an object of Mod;‘gl. Then we have H(99t)! = 0 for j > per/(p — 1). Moreover, for
j < per/(p—1), we have the equality

HOD (R =H(NY), ;) (R)

of subgroups of H(9M)(R), where L means the orthogonal subgroup with respect to the pairing ( , Yon and
lr(jy=er/(p—1)—j/p.
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Proof. We proceed as in the proof of [14, Proposition 6]. Let ) be a finite separable extension of X’
in X5¢P of relative ramification index e’ and put My = Oy @, M. Then we have a commutative
diagram

HODR) x HEMV)R) — 2 R

1

Hy(DMy)(R) x Hy(f)ﬁX,)(R) — R,
s Yoy,

where (, )on,, is a perfect pairing defined similarly to the pairing ( , )on and the vertical arrows
are isomorphisms. Since H.(9M") is generically etale, after making a finite separable base change and
replacing e by ee’, we may assume that the G y-action on H(91Y)(R) is trivial.

Let x¥ be an element of H(M)(R) and consider the surjection 91 — 91 of the category Mod;g1

corresponding to the subspace F,x¥ € H(9MY)(R) by Lemma 3.2. Then we have the commutative
diagram

HEODR) x HEW)(R) ™% R

.

HEOY)(R) x HD)(R) —— R.
(m

Thus, by the compatibility with quotients (respectively subgroups) of the upper (respectively lower)
ramification subgroups, the theorem follows from Lemma 3.4 below. 0O

Lemma 3.4. Let 91 be an object of Mod;’g1 which is free of rank one over G1. Then we have H(OMY)!(R) =0

if j > per/(p — 1) and H(M)i(R) =0 if i > er/(p —1). For j < per/(p — 1), the subgroup H(MN")!(R) is
zero if and only if H(M)y,(jy+ (R) = HOH(R).

Proof. Let n be a basis of 91 and n" be its dual basis of 9V. Put ¢o(n) = usan with 0 < s < er and
a € G;. Then we have ¢gv(n”) = u®*a'n" with some a’ € G;. Hence the defining equations of
HE) and HOY) are XP —usaX =0 and XP — u®"~5a’X = 0, respectively. By a calculation as in [17,
Section 3], we see that

wim  [HEOYIR) (< pler—s)/(p— 1)),
7am)<m_{0 (> pler —s)/(p — 1)),

Ry = | HOD®) (G <s/(p = 1)),
Hmmm_{o (i>s/(p—1)

and the first assertion follows. Moreover, for j < per/(p — 1), we have [.(j) > 0 and
H(M) (R)=0< j>pler—s)/(p—1)
< () <s/(p—1) < HOYLj)+(R) =HODR). O
By the previous lemma, we also have the following corollary.

Corollary 3.5. Let 0t be an object of Mod;’g1 . Then the i-th lower ramification subgroup H(9R); vanishes for
i>er/(p—1).



2094 S. Hattori / Journal of Number Theory 132 (2012) 2084-2102

Proof. As in the proof of Theorem 3.3, we may assume that the Gy -module H(9%)(R) is trivial. For
i>er/(p—1), take an element x € H(M);(R) and consider the quotient 9t — 91 corresponding to
the subspace Fpx € H(9)(R). By Lemma 3.4, we have H(91);(R) =0 and thus x=0. O

Remark 3.6. Let K be a complete discrete valuation field of mixed characteristic (0, p) and G be a
finite flat group scheme over Ok killed by p. Then, by using the usual scheme-theoretic closure of
finite group schemes, we can easily see that the i-th lower ramification subgroup G; vanishes for
i>e/(p—1),just as in the proof of Corollary 3.5.

4. Comparison of ramification

Let p > 2 be a rational prime and K be a complete discrete valuation field of mixed charac-
teristic (0, p) with perfect residue field k, as in Section 2. Then it is known that there exists an
anti-equivalence G(—) from the category Mod}gl to the category of finite flat group schemes over

Ok Kkilled by p. On the other hand, we also have the anti-equivalence H(—): Mod}é’1 — Céi defined
in Section 3 and an isomorphism of Gg_ -modules

em 1 GOM(Op)lcy,, = HEM(R).

In this section, we prove that this isomorphism is compatible with the upper and the lower ramifi-
cation subgroups of both sides. For the proof, after recalling the definitions of the anti-equivalence
G(—) and the isomorphism &gy [7,20,21], we show that these are compatible with the base changes
inside Ko/K and dualities on both sides. Then, by the duality theorems presented in Section 3, we
reduce ourselves to comparing the lower ramification subgroups of both sides, which is achieved by
constructing an isomorphism as pointed schemes between reductions of G(9%t) and H (D).
4.1. Breuil-Kisin classification

In this subsection, we briefly recall the classification of finite flat group schemes and p-divisible

groups over Ok due to Breuil and Kisin [6-8,20,21] and its properties. Their classification theorem is
as follows.

Theorem 4.1.

1. There exists an anti-equivalence of categories G(—) from Mod}g5 to the category of p-divisible groups
over Ok with a natural isomorphism of G -modules

e : TpG(M)Gy . — TaON),

where T,G(9) = lim, G [p"1(O) is the p-adic Tate module of the p-divisible group G(9N).
2. There exists an anti-equivalence of categories G(—) from Mod}gm to the category of finite flat group
schemes over Oy killed by some p-power with a natural isomorphism of Gk, -modules

em : GOM(Op) gy, — TsON).

3. Let 90t be an object of the category Mod}goo and take a resolution of Kisin modules

O—>9Jt1—f>m2—>m—>0,



S. Hattori / Journal of Number Theory 132 (2012) 2084-2102 2095

where 901; is an object of the category Mod}g. Put G = G(M) and I'; = G(OMN;). Then we have an exact
sequence of fppf sheaves

0—>g—>1“2gi’;)r1—>0

which induces the commutative diagram with exact rows

0 Ty T,I7 GO0g) —=0

o ] e

0—— Té(mz) —_— Té(ﬂﬁ]) —_— Té(f)ﬁ) —— 0.

We have two definitions of the functor G(—) and the isomorphism &gy. One is putting G(—) =
Gr¥ (Mg (—)) with the anti-equivalence Gr®(—) of [7], as in [21]. The isomorphism &gy is constructed
in the proof of [21, Proposition 1.1.13]. Then we can prove Theorem 4.1(3) by using [11, Proposi-
tion 2.1.3 and Theorem 2.3.4]. The other is given in [20], as follows. For a p-divisible group I" over
Ok, set Mod®(I") to be the section D*(I")(s— oy of the contravariant Dieudonné crystal D*(I") [5] on
the divided power thickening S — O defined by u > 7. The S-module Mod®(I") is endowed with
the natural Frobenius and the Hodge filtration. Then it is shown that this defines an anti-equivalence
from the category of p-divisible groups over Ok to the category Mod}’sq> with a quasi-inverse Gr*

[20, Proposition A.6]. Put G(—) = Gr¥(Mg(—)) and define G(—) for the category Mod}goo by taking

a resolution as in Theorem 4.1(3). For an object 9t of the category Mod}g, put M = Mg () and
I' = G(OM). Consider the divided power thickening A¢ys — Oc induced by the map 6: W (R) — Oc¢
and we let Fju_ . denote the section of a crystalline sheaf F on this thickening. Then we define the
isomorphism &gy in this case to be the composite of the isomorphism T (97) — T;‘rys(/\/l) and the
natural isomorphism &g : TpI" — Ty (M) induced by the isomorphism

TpI' > T:rys(D*(F)(SeOK)) = Homs,piﬂ@] (D*(F)Acrys, D*(Qp/Zp)Acrys)

sending a homomorphism g:Qp/Z, — I" of p-divisible groups over Oc¢ to D*(g) [12, Theorem 7].
We can see that these two definitions are naturally isomorphic to each other.

We need an explicit construction of the isomorphism &gy for an object 91 of Mod}g1 [21, Propo-
sition 1.1.13]. Let Hy be the divided power polynomial ring R°"(u — r) over RPP. Consider the n-th
projection pr,: R — (5,-(. The map pr induces a surjection H; = R°P(u — ) — (5,-( defined by u +— ,
which is a divided power thickening of Oy. The map H; — RPP defined by u + 7 induces an iso-
morphism of G, -modules

G(M)(Og) =Homg g1, (M, H1) — Homg g, (M, R")

(see the proof of [7, Lemme 5.3.1]) and the isomorphism &gy is the composite of this map and the
natural isomorphism Tg (9) — Ty (M).

Let 99t be an object of Mod}g1 and put M = Mg@M). In [7, Section 3], Breuil gave an explicit

description of the affine algebra R x4 of the finite flat group scheme G(9) = Gr®(M) in terms of M.
Let eq,...,eq be an adapted basis of M [7, Définition 2.1.2.6] such that

Fil'! M=u"'S1e1 @ @ u'Steq + (Fil” S)M,

p1(ueq, ..., u"eg) = (e1,...,e9)G
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with a matrix G € GL4(S1) (note that we adopt the transpose of the notation in [7]). Put §1~=
k[u]/(u®P) and identify this k-algebra with Si/Fil’ S;. Assume that the image G of G in GLy(S1)
is contained in the subgroup GL4(k[uP]/(u®P)). Consider the ring homomorphisms

k[ul/(u?) — Ok, /pOk, « Ok,

where the first map is the ¢~ !-semilinear isomorphism defined by u + ;. We choose a lift G, =
(a;,j) of G by this map to GL;(Oy) using the assumption on G and put

_ OklXi, ..., Xql
- e—r d
XF + Ty (o1 @ja X, - X] + Ty (T g, aX)

Then we have an isomorphism of p-adic formal schemes Spf(R o¢) >~ G(9). The induced map
v HomoK—alg.(RM’ Og) = GO (Of) = Homs’me (M, Hy)

is defined as follows. Let f:Raq — O be an element of the left-hand side. Set x; = f(X;) and X; to
be its image in @k- Let ((’N)R)DP be the divided power envelope of the ring @k with respect to the
ideal m?e/p. Then the map pr; induces an isomorphism pry : R°" — (O)PP. We let y; denote the in-
verse image of x; by this isomorphism. Then ¥ (f) is the unique element of the right-hand side which
is congruent to the S-linear map (e; — y;) modulo Fil? H (see the proof of [7, Proposition 3.1.5]).
From this description, we see that the zero section of the group scheme Spec(R,4) is defined by
Xi=--=X4=0.

4.2. Compatibility with a base change and Cartier duality

The functor G(—) is compatible with the base changes inside K,/K. Moreover, Caruso proved its
compatibility with Cartier duality [10]. In this subsection, we briefly present a proof of these facts,
along with similar compatibilities of the isomorphism egy. First we recall the following lemma.

Lemma 4.2. The functor I' = TpI'|c,_ from the category of p-divisible groups over Ok to the category of
p-adically continuous G, -representations is fully faithful.

Proof. This follows from Tate’s theorem [27, Section 4.2, Corollary 1] and [8, Theorem 3.4.3]. O

Let us show the compatibility with the base change. Put & = W[[v]] and let ¢:&" — & ds-
note the natural ¢-semilinear map defined by v — vP. Note that the polynomial E’(v) = E(vP")
is the Eisenstein polynomial of the uniformizer 7, € K,. Consider the categories Mod g,, Mod}g,
and Mod/G, of Kisin modules over &’ of E’-height < 1. Using the W-algebra homomorphism
& — W(R) defined by v — [ll/p"]. we define a similar functor T*6, to T* The homomorphism
of W-algebras & — &' defined by u — vP" induces natural functors (=) : Modl ¢ — Mod'?, and

/S
(=) Mod] 9, Mod/e, by

M>M=6"Q@sM, o = ¢ @ dom.

Then we have a natural isomorphism of G, -modules Tg () — T*6,(£m’). On the other hand, these
categories classify finite flat group schemes killed by some p-power and p-divisible groups over Ok,
by Theorem 4.1, and we let G'(—) denote the anti-equivalences of the theorem over Ok,.
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Proposition 4.3. Let 901 be an object of the category Mod}g (respectively Mod}gOC )and M be the associated

1,¢ 1,¢

object of the category Mod /& (respectively Mod /6! ). Then there exists a natural isomorphism

G' (M) — Ok, xo, GEM)

of p-divisible groups (respectively finite flat group schemes) over Ok, which respectively makes the following
diagrams commutative:

TpG(M)lcy,, ——= TpG' (M)lcy.,

| |
TEEON) ———— T& ),
GOMOP) 6y, —== G OO i,
TEON) ———= T, O0).

Proof. The assertion for the category Mod}g follows from Lemma 4.2, and this implies the assertion

for Mod}gm by taking a resolution of 9t as in Theorem 4.1(3). Note that the isomorphism G’ (9') —
Ok, x0, G(ON) is independent of the choice of a resolution [20, Lemma 2.3.4]. O

Next we show the compatibility with Cartier duality. For the element t € G, we let t, denote its
image in the ring 63" =&Y /p"G".

Proposition 4.4. Let 9t be an object of the category Mod}g (respectively Mod}gw) and MY be its dual

object. Then there exists a natural isomorphism G(9M)Y — G(MY) of p-divisible groups (respectively finite
flat group schemes) over Ok such that the induced map

S Tp(GEMY) — Tpg (M) B T (MY)
(respectivelyson : GOM) (Of) — G(MY)(O) Y TE(mY))

respectively makes the following diagrams of G, -modules commutative:

TpGAM) x Tp(GM)Y) —— Zp(1)

SN

T*G (Dﬁ) X TZ% (9}2\/) W Zpt,

GOM(Og) x GO (Og) — Z/p"Z(1)

o e

TE () x T (OMY) —— (Z/p"Z)tn.
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Here the top arrows are the Cartier pairings and the right vertical arrows are the isomorphisms induced by
(Cp“)neZ>o =t

Proof. For an object 9 of the category Mod}g, define 8on : T, (GMDY) — TE (M) to be the unique
isomorphism which fits into the commutative diagram of Gg_ -modules

Tp(GM)Y) —— Homy, (Tp(GOM)), Zy(1))

V |

T&ONY) ———— Homg, (TE (M), Zpt),

where the top (respectively the bottom) arrow is induced by the Cartier pairing (respectively the pairing
(', )an) and the right vertical arrow is induced by &gy and the natural isomorphism Z, (1) — Zt as in

the proposition. Then the isomorphism sg_nlv o 89y defines the desired isomorphism G(M)Y — G(MY)
uniquely by Lemma 4.2.

Next let 9t be an object of the category Mod}gm. Take a resolution 0 — My — Ny - M — 0
of Mt as in Theorem 4.1(3). Then this induces a resolution 0 — MY — MY — MY — 0 by the snake
lemma. Put G =G(MN) and I} = G(M;). By the snake lemma, we have an epimorphism w: I'[p"] —
G whose dual map wV fits into the commutative diagram with exact rows

0 ——= gOY) ——= gMy) ——= GgMy) ——= 0

T

0 v —2 v ry 0.

Thus we get an isomorphism G(MtY) — GV, which is independent of the choice of a resolution [20,
Lemma 2.3.4]. On the other hand, we can check the commutativity of the diagram of the Cartier
pairings

Tyl —— Hom(T,(I7Y), Zp(1))

| |

G(Og) — Hom(G" (O), Z/p"Z(1))

and of a similar diagram for T§ (91). Hence we can prove the compatibility with the duality pairings
by the functoriality of the connecting homomorphism of the snake lemma. O

4.3. Proof of the main theorem

Now we prove Theorem 1.1. By Theorem 3.1, Theorem 3.3 and Proposition 4.4, the assertion for
the upper ramification subgroups is reduced to showing that the isomorphism

Som 1 GM Y (Og) — TE(MY) = H(MY)(R)

induces an isomorphism of the lower ramification subgroups
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(9M),(Og) = H),(R)

for any i € Q9. By the definition of the map &gy, it is enough to show the assertion of Theorem 1.1

1.¢

for the lower ramification subgroups. Namely, for an object 9t of the category Mod /&, We reduced

ourselves to showing the natural map

e : GO (Of) — T (M) = HEM(R)
induces an isomorphism of the i-th lower ramification subgroups for any i. For this, by Proposition 4.3
and replacing K1 by K, we may assume that e is divisible by p and the entries of a representing
matrix of ¢g9n is contained in the subring k[[uP]] of &4. Note that, by Corollary 3.5 and Remark 3.6,

the i-th lower ramification subgroups of both sides vanish for i > e/(p — 1). Thus we are reduced to
showing the theorem below.

Theorem 4.5. Let 90t be an object ofMod}’g1 . Suppose that e is divisible by p and the entries of a representing

matrix of ¢gon is contained in the subring k[[uP]] of &1. Consider the isomorphism of k-algebras k[u]/(u®) —
Ok /pOy defined by u — m, by which we identify both sides. Then there exists an isomorphism of schemes

N : (Ok /POk) X o GEMN) — (k[ul/(u®)) Xkruy HEON)

which preserves the zero section and makes the following diagram commutative for any non-negative rational
numberi < e:

GOM(Og) — 2~ HEM(R)

l |

>i >i
GO (O /mZ") ——= HEMR/mi).
Here the bottom arrow is induced by the isomorphism prg: R /mfi —- O /m? lying over the isomorphism
klul/(w®) — Ok /pOk.
Proof. Let my,...,my be a basis of 91 such that we can write as
G (My, ..., mg) = (My,...,mg)A

for some A € Mgy(k[[uP]]). We can take matrices P, Q € GLg(k[[uP]]) such that

PAQ =diag(u®", ..., u®™")

for some non-negative integers r; divisible by p with r; <e. Here diag(aq, ..., ay) denotes the diagonal
matrix whose (i, i)-th entry is a;. Set a basis n1, ..., ng of M to be (n1, ..., ng) = (M1, ..., my)¢ " 1(Q).
Then we have

dom(n1,...,ng) = (n1,...,ng)¢~(Q)"'P diag(u®", ..., u¢"e).

Thus the object M = Mg (M) is described as
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Fil' M = Spang (u" ®ny, ..., u" ®ng) + (Fil? S)M,
p1(u" @n, ... U @ng)=(1®ni,...,1Qng)G,

where G =cQ ~1¢(P)~! € GLy(S1) with c = - ¢1(E(u)) as before Take lifts P and Q of the matrices

P and Q in GLy(W[[uP]]), respectively. Put G= ¢(— F(u))Q 1¢(P) Te GLd(W[[uP]]) Since we have

the equality ¢ = ¢ (—F(u)) in the ring Sl, the images of the matrices G and G in GL4(S1) coincide

with each other. We write this image as G, which is contained in the subgroup GLg(k[uP]/(u®P)).
Note that we have a commutative diagram of W -algebras

u—>1m

Wlul] Ok

| |

k{[u]] —— klu]/W®) —— Ok/pOk.

Consider the composite map

W([ul] = Ok/pOx — Ok, /pOk, — klul/(u®) =S,

where the last arrow is the ¢-semilinear isomorphism defined by 71 — u. Then the image of the ma-
trix —F(u)¢>‘1(é)‘1f"1 by this composite map coincides with G. Let a; j(u) € W[[u]] be the (i, j)-th
entry of this matrix. From the explicit description of the affine algebra R of G(I) = Gr¥(M) re-
called in Section 4.1, we see that R 4 is defined by the system of equations over Og

e—r; [ d
p  TET - . a
Xt Em (;GJ"(”)X1> (i=1,....d),

where q; j(7r) denotes the image of a; j(u) by the map W{[u]] — Ok defined as in the above diagram.
On the other hand, the defining equations of H(97%) over k[[u]] are

e—r,

. d
p ut o . | =
X+ rw (,21 a;,z(u)Xj) (i=1,...d,

where a@; j(u) denotes the image of a; j(u) by the natural map W{[u]] — k[[u]], and the zero section
of H (M) is by definition X; =--- = Xz = 0. This implies that there exists an isomorphism

non : (Ok /pOk) X ox G(ON) — (k[u]/(ue)) Xkrup HEM)

of schemes over the isomorphism k[u]/(u®) >~ Ok /pOk defined by X; > X;. Thus, for i <e, we get a
bijection

Nom : g(sm)(o,—(/m?) — HO (R/my")

satisfying 0o (0) =0
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To prove the compatibility of 9 and ngn, let us consider the diagram

~ pr ¢
OR . (Ol‘()DP N] RDP R
~ pr
Ok NO R/ mR> ¢
Let x = (X1, ..., Xq) be an element of Spec(R)(Of) and z = (n; — z;) be the corresponding element

of T&(9M) =Home 4 (9N, R) via the composite

Spec(Ra0)(O) 2 GOM)(Og) 3 TE(OM).

Let y; € R be the element such that pr;(y;) coincides with the image x; of x; in @k- Then, in the ring
RPP, we have ¢ (z;) — y; € FilP RPP. Put y; = (i, Yi1,-..) and zi = (zi0, Zi.1, - .) With y; j, zi j € O.
Since the natural map R — RP” induces an isomorphism

R/mZ " — RPP/FilP RPP
and the kernel of the map pr;:R — (5,-( coincides with the ideal m?ep, we have y; 1 = zf’l = z; 0. This
implies X; = z; o and the compatibility of g9y and ngn as in the theorem follows. Hence we conclude
the proof of Theorem 1.1. O

Note that we have also shown the following corollary.

Corollary 4.6. Let 90t be an object of the category Mod}g1 . Consider the k-algebra k[[v]] as a k[[u]]-algebra by
the map u +— vP. By the k-algebra isomorphism k[[v]]/(v®P) — Ok, /pOk, defined by v — m1, we identify
both sides. Then we have an isomorphism

(O, /POk,) X0 GON) — (K[[V]/(vP)) Xiqrup HER)

of schemes over k[[v]]/(v®P) ~ Ok, /pOk, preserving the zero section.

Remark 4.7. Let 9t be an object of the category Mod;’gl. For j € Q.q (respectively i € Qxo), let

M (respectively ;) be the object which corresponds via the anti-equivalence H(—) to the closed
subgroup scheme H.(9)J (respectively H(9M);) of H(9N). These objects define cofiltrations {9/} jeQoo
and {zmi}ie%() of 91 in the category Mod;’gl. Note that, for a finite flat group scheme over a discrete
valuation ring, its finite flat closed subgroup scheme is determined by the generic fiber. Therefore, for
r=1, Theorem 1.1 and [8, Theorem 3.4.3] imply that the quotient 90t — 9t/ (respectively 9t — 9t;)
also corresponds via the anti-equivalence G(—) to the closed subgroup scheme G(9M)/ (respectively
G(OM);) of G(MM). They can be considered as “upper and lower ramification cofiltrations” of the Kisin
module 9.

Remark 4.8. The way we have proved Theorem 1.1 is based on switching from the upper to the
lower ramification subgroups via duality. The author wonders if we can prove the theorem in an
“upper” way, namely by constructing a natural isomorphism between the sets of geometric connected
components of tubular neighborhoods of G() and H(9) using the similarity of their affine algebras,
even though they are in different characteristics.
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