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Let p > 2 be a rational prime, k be a perfect field of characteristic
p and K be a finite totally ramified extension of the fraction field
of the Witt ring of k. Let G and H be finite flat commutative group
schemes killed by p over OK and k[[u]], respectively. In this paper,
we show the ramification subgroups of G and H in the sense of
Abbes–Saito are naturally isomorphic to each other when they are
associated to the same Kisin module.
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1. Introduction

Let p be a rational prime, k be a perfect field of characteristic p, W = W (k) be the Witt ring of
k and K be a finite totally ramified extension of Frac(W ) of degree e. Let φ denote the Frobenius
endomorphism of W . We fix once and for all an algebraic closure K̄ of K , a uniformizer π of K
and a system of its p-power roots {πn}n∈Z�0 in K̄ with π0 = π and πn = π

p
n+1. Put Kn = K (πn),

K∞ = ⋃
n Kn , G K = Gal(K̄/K ) and G K∞ = Gal(K̄/K∞). By the theory of norm fields [30], there exist

a complete discrete valuation field X � k((u)) of characteristic p with residue field k and an isomor-
phism of groups

G K∞ � GX = Gal
(
X sep/X

)
,

where X sep is a separable closure of X . A striking feature of this isomorphism is its compatibility
with the upper ramification subgroups of both sides up to a shift by the Herbrand function of K∞/K
[30, Corollaire 3.3.6].
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On the other hand, Breuil [7] introduced linear algebraic data over a ring S , which are now called
as Breuil modules, and proved a classification of finite flat (commutative) group schemes over OK via
these data for p > 2. He [6,8] also simplified this classification by replacing these data by φ-modules
over W [[u]], which are referred as Kisin modules since the latter classification was reproved and
investigated further by Kisin [20,21]. Let us consider the case where finite flat group schemes are
killed by p. Put S1 = k[[u]], which is isomorphic to the k-algebra OX . We let φ also denote the
absolute Frobenius endomorphism of the ring S1. For a non-negative integer r, let Modr,φ

/S1
be the

category of free S1-modules M of finite rank endowed with a φ-semilinear map φM :M → M such
that the cokernel of the map 1 ⊗ φM :S1 ⊗φ,S1 M → M is killed by uer . Then there exists an anti-

equivalence of categories G(−) from Mod1,φ

/S1
to the category of finite flat group schemes over OK

killed by p. It is well known that, for any r, we also have an anti-equivalence H(−) from Modr,φ
/S1

to
a category of finite flat generically etale group schemes over OX killed by their Verschiebung [16].
Hence a correspondence between finite flat group schemes over OK and OX is obtained, and if finite
flat group schemes G over OK and H over OX are in correspondence with each other, then their
generic fiber Galois modules G(OK̄ ) and H(OX sep ) are also in correspondence via the theory of norm

fields. Namely, for an object M of Mod1,φ

/S1
, we have an isomorphism of G K∞ -modules

G(M)(OK̄ )|G K∞ → H(M)(OX sep)

[21, Proposition 1.1.13]. From this, we can show that the Galois modules G(M)(OK̄ ) and H(M)(OX sep )

have exactly the same greatest upper ramification jump in the classical sense (see also [4]).
Besides the classical ramification theory of their generic fibers, finite flat group schemes over

a complete discrete valuation ring have their own ramification theory, which was discovered by
Abbes–Saito [2,3] and Abbes–Mokrane [1]. Such a finite flat group scheme G has filtrations of up-
per ramification subgroups {G j} j∈Q>0 [1] and lower ramification subgroups {Gi}i∈Q�0 [14,17] as in
the classical ramification theory of local fields. For simplicity, let K be a complete discrete valuation
field as above and consider a finite flat group scheme G over OK . Then, using the upper ramifica-
tion filtration of G , we can bound the classical greatest upper ramification jump of the generic fiber
G K -module G(OK̄ ) [17] and also describe completely the semi-simplification of the restriction to the
inertia subgroup of this G K -module [18]. Moreover, the canonical subgroup of a possibly higher di-
mensional abelian scheme A over OK is found in the upper ramification filtration of A[pn] [1,28,29],
while the canonical subgroup is also found in the Harder–Narasimhan filtration of A[pn] defined by
Fargues [13,14].

In this paper, we establish the following correspondence of the ramification filtrations between
finite flat group schemes over OK and OX which is similar to that of the classical ramification jumps
of their generic fiber Galois modules stated above.

Theorem 1.1. Let p > 2 be a rational prime and K and X be as before. Let M be an object of the cate-
gory Mod1,φ

/S1
. Then the natural isomorphism of G K∞ -modules G(M)(OK̄ )|G K∞ → H(M)(OX sep ) induces

isomorphisms of the upper and the lower ramification subgroups

G(M) j(OK̄ )|G K∞ → H(M) j(OX sep),

G(M)i(OK̄ )|G K∞ → H(M)i(OX sep)

for any j ∈Q>0 and i ∈ Q�0 .

This theorem enables us to reduce the study of ramification of finite flat group schemes over OK
killed by p to the case where the base is a complete discrete valuation ring of equal characteristic.
This makes calculations of ramification of finite flat group schemes over OK , for example as in [18,
Section 5], much easier. We remark that, for the Harder–Narasimhan filtration, such a correspondence
of filtrations of G(M) and H(M) follows easily from the definition.
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A key idea to prove the theorem is to switch from the upper ramification filtration to the lower
ramification filtration via Cartier duality, which the author learned from works of Tian [28] and Far-
gues [14]. Let G be a finite flat group scheme over OK killed by p and G∨ be its Cartier dual. Then
they showed that the upper ramification subgroup G j(OK̄ ) is the orthogonal subgroup of the lower
ramification subgroup (G∨)i(OK̄ ) for some i via the Cartier pairing

G(OK̄ ) × G∨(OK̄ ) → Z/pZ(1).

We prove a version of this theorem for the group scheme H(M) over OX . Since we are in char-
acteristic p, usual Cartier dual does not preserve the generic etaleness of finite flat group schemes.
Instead, we use a duality theory of Liu [24] for Kisin modules. This requires us to check compatibili-
ties of these two duality theories, though it is straightforward to carry out. Thus we reduce ourselves
to proving the correspondence of the lower ramification subgroups of G(M) and H(M). This is a con-
sequence of the fact that, up to the base changes from K and X to the extensions generated by p-th
roots of their uniformizers π and u, the schemes G(M) modulo π e and H(M) modulo ue become
isomorphic to each other, not as group schemes but as pointed schemes. We prove this fact by using
Breuil’s explicit computation of the affine algebra of a finite flat group scheme over OK killed by p in
terms of its corresponding Breuil module [7, Section 3], after showing that his classification of finite
flat group schemes is compatible with the base change from K to Kn .

It should be mentioned that a classification of finite flat group schemes via Kisin modules is also
proved for p = 2 by Kisin [22] for the case of unipotent finite flat group schemes and independently
by Kim [19], Lau [23] and Liu [26] for the general case. However, the author does not know whether a
similar correspondence of ramification between characteristic zero and two holds for finite flat group
schemes with non-trivial multiplicative parts.

2. Review of Cartier duality theory for Kisin modules

Let p > 2 be a rational prime and K be a complete discrete valuation field of mixed characteristic
(0, p) with perfect residue field k, as in Section 1. It is well known that finite flat group schemes
over OK killed by some p-power are classified by linear algebraic data, Breuil modules [7] or Kisin
modules [6,8,20,21]. For these data, corresponding notions of duality to Cartier duality for finite flat
group schemes are introduced by Caruso and Liu [9–11,24], which play key roles in the integral p-
adic Hodge theory. In this section, we recall the definitions of these data and the theory of Cartier
duality for Kisin modules.

2.1. Breuil and Kisin modules

Let E(u) ∈ W [u] be the Eisenstein polynomial of the uniformizer π over W . Put F (u) = p−1(ue −
E(u)). This defines units in the rings S = W [[u]] and S1 = k[[u]]. The φ-semilinear continuous ring
endomorphisms of these rings defined by u �→ up are also denoted by φ. Let r be a non-negative
integer. Then a Kisin module over S of E-height � r is an S-module M endowed with a φ-semilinear
map φM :M → M such that the cokernel of the map 1 ⊗ φM :S ⊗φ,S M → M is killed by E(u)r .
We write φM also as φ if there is no risk of confusion. A morphism of Kisin modules over S is an
S-linear map which is compatible with φ’s of the source and the target. The Kisin modules over S of
E-height � r form a category with an obvious notion of exact sequences. We let Modr,φ

/S1
(respectively

Modr,φ
/S

) denote its full subcategory consisting of M which is free of finite rank over S1 (respectively

S). We also let Modr,φ
/S∞ denote its full subcategory consisting of M such that M is a finite S-module

which is p-power torsion and u-torsion free.
The categories of Kisin modules have a natural duality theory [11, Section 2.4]. For an object M

of the category Modr,φ
/S∞ , we let M∨ denote its dual object as in [11]. We give here an explicit

description of the duality theory of the category Modr,φ
/S1

for the convenience of the reader. Let M

be an object of this category. By definition, the S1-module M∨ is HomS(M,S1). Choose a basis
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e1, . . . , ed of the free S1-module M and let e∨
1 , . . . , e∨

d denote its dual basis. Define a matrix A ∈
Md(S1) by

φM(e1, . . . , ed) = (e1, . . . , ed)A.

Put c0 = p−1 E(0) ∈ W × . Then the φ-semilinear map φM∨ :M∨ →M∨ is given by

φM∨
(
e∨

1 , . . . , e∨
d

) = (
e∨

1 , . . . , e∨
d

)(
E(u)/c0

)r(t A
)−1

.

For r < p − 1, we also have categories Modr,φ
/S1

, Modr,φ
/S∞ and Modr,φ

/S of Breuil modules defined as

follows. Let S be the p-adic completion of the divided power envelope W [u]DP of W [u] with respect
to the ideal (E(u)) and the compatibility condition with the canonical divided power structure on
pW . The ring S has a natural filtration Fili S defined as the closure in S of the ideal generated by
E(u) j/ j! for integers j � i. The φ-semilinear continuous ring endomorphism of S defined by u �→ up

is also denoted by φ. For 0 � i � p −1, we have φ(Fili S) ⊆ pi S and put φi = p−iφ|Fili S . These filtration
and φi ’s induce a similar structure on the ring Sn = S/pn S . Put c = φ1(E(u)) ∈ S× . Then we let
′ Modr,φ

/S denote the category of S-modules M endowed with an S-submodule Filr M containing

(Filr S)M and a φ-semilinear map φr,M : Filr M→M satisfying φr,M(srm) = c−rφr(sr)φr,M(E(u)rm)

for any sr ∈ Filr S and m ∈ M. A morphism of this category is defined to be a homomorphism of S-
modules compatible with Filr ’s and φr ’s. We drop the subscript M of φr,M if no confusion may occur.

The category ′ Modr,φ
/S has an obvious notion of exact sequences. Its full subcategory consisting of M

such that M is a free S1-module of finite rank and the image φr,M(Filr M) generates the S-module

M is denoted by Modr,φ
/S1

. We let Modr,φ
/S∞ denote the smallest full subcategory of ′ Modr,φ

/S containing

Modr,φ
/S1

and stable under extensions, and Modr,φ
/S denote the full subcategory consisting of M such

that M is a free S-module of finite rank, the S-module M/ Filr M is p-torsion free and the image
φr,M(Filr M) generates the S-module M.

The categories Modr,φ
/S∞ and Modr,φ

/S∞ for r < p − 1 are in fact equivalent. We define an exact

functor MS : Modr,φ
/S∞ → Modr,φ

/S∞ by putting MS(M) = S ⊗φ,S M with

Filr MS(M) = Ker
(

S ⊗φ,S M
1⊗φ→ (

S/ Filr S
) ⊗S M

)
,

φr : Filr MS(M)
1⊗φ→ Filr S ⊗S M

φr⊗1→ S ⊗φ,S M = MS(M).

Then the functor MS is an equivalence of categories [11, Theorem 2.3.1]. Similarly, we have an
equivalence of categories Modr,φ

/S
→ Modr,φ

/S [11, Theorem 2.2.1], which is denoted also by MS .

2.2. The associated Galois representations and duality

Next we recall constructions of the associated Galois representations to Breuil and Kisin modules
and their duality theories. Let v K be the valuation on K which is normalized as v K (π) = 1 and we
extend it naturally to K̄ . Set ÕK̄ =OK̄ /pOK̄ and C to be the completion of K̄ . Consider the ring

R = lim←−(ÕK̄ ← ÕK̄ ← ·· ·),

where the transition maps are defined by x �→ xp . For an element x = (x0, x1, . . .) ∈ R with xi ∈ ÕK̄ , we

put x(m) = limn→∞ x̂pn

n+m ∈OC , where x̂i is a lift of xi in OK̄ . This is independent of the choice of lifts.
Then the ring R is a complete valuation ring of characteristic p with valuation v R(x) = v K (x(0)). We
put m�i

R = {x ∈ R | v R(x) � i} and similarly for m>i
R . Define an element π of R by π = (π,π1,π2, . . .),
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where we abusively write πn also for its image in ÕK̄ . The W -algebras R and W (R) have natu-
ral S-algebra structures defined by the continuous map S → W (R) which sends u to the Teich-
müller lift [π ] of the element π . Note that the identification G K∞ � GX stated in Section 1 is
given by the action of G K∞ on the ring R and the inclusion k[[u]] → R defined by u �→ π [8, Sec-
tion 3.3].

We set OE to be the p-adic completion of S[1/u] and put E = Frac(OE ). We extend the inclusion
S → W (R) to an inclusion OE → W (Frac(R)). The maximal unramified extension of E in the field
W (Frac(R))[1/p] is denoted by Eur and its closure in the same field by Êur. We put Sur = OÊur ∩
W (R) inside the ring W (Frac(R)). The Galois group G K∞ acts naturally on the S-algebra Sur. For an

object M ∈ Modr,φ
/S∞ , its associated G K∞ -module T ∗

S
(M) is by definition

T ∗
S(M) = HomS,φ

(
M,Qp/Zp ⊗Sur).

If the S-module M is killed by pn , then we have a natural identification T ∗
S

(M) � HomS,φ(M,

Wn(R)) [15, Proposition 1.8.3]. Similarly, for an object M of the category Modr,φ
/S

, its associated G K∞ -
module is defined as

T ∗
S(M) = HomS,φ

(
M,Sur).

Consider the natural W -algebra surjection θ : W (R) →OC defined by

θ
(
(z0, z1, . . .)

) =
∞∑

i=0

pi z(i)
i ,

where zi is an element of R . The p-adic completion of the divided power envelope of W (R) with
respect to the ideal Ker(θ) is denoted by Acrys. The ring Acrys has a Frobenius endomorphism φ and
a G K -action induced by those of R , and also a filtration induced by the divided power structure. The
W -algebra homomorphism W [u] → W (R) defined by u �→ [π ] induces a map S → Acrys, by which
we consider the ring Acrys as an S-algebra. For 0 � r � p − 2, the ring Acrys has a natural structure as

an object of ′ Modr,φ
/S by putting φr = p−rφ|Filr Acrys

.

Let M be an object of Modr,φ
/S∞ . Then we also have the associated G K∞ -module

T ∗
crys(M) = HomS,Filr ,φr

(M,Qp/Zp ⊗ Acrys).

If M is killed by p, then we have a natural identification

T ∗
crys(M) � HomS,Filr ,φr

(
M, RDP),

where RDP is the divided power envelope of R with respect to the ideal m�e
R and we identify this

ring with Acrys/p Acrys. Similarly, for an object M of the category Modr,φ
/S , we put

T ∗
crys(M) = HomS,Filr ,φr

(M, Acrys).

The functors T ∗
S

and T ∗
crys from Modr,φ

/S∞ and Modr,φ
/S∞ to the category of G K∞ -modules are exact.

For an object M of Modr,φ
/S1

, we have the equality dimFp (T ∗
S

(M)) = rankS1 (M) and a similar as-

sertion also holds for T ∗
crys. Then, for an object M of the category Modr,φ

/S∞ or Modr,φ
/S

, we have an
isomorphism of G K∞ -modules
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T ∗
S(M) → T ∗

crys

(
MS(M)

)
defined by f �→ (s ⊗ m �→ sφ( f (m))) [25, Lemma 3.3.4].

To describe the duality theory for T ∗
S

(M), let us also fix a system {ζpn }n∈Z�0 of p-power roots of

unity in K̄ such that ζ1 = 1, ζp �= 1 and ζpn = ζ
p
pn+1 , and set an element ε ∈ R to be ε = (1, ζp, ζp2 , . . .)

with an abusive notation as before. Define an element t of Acrys by

t = log
([ε]) =

∞∑
i=1

(−1)i−1 ([ε] − 1)i

i
.

Put c0 = p−1 E(0) ∈ W × and

λ =
∞∏

i=1

φi(E(u)/E(0)
) ∈ S×.

Let S(r) = Se be the object of the category Mod1,φ

/S
of rank one with a basis e satisfying φ(e) =

(E(u)/c0)
re. Similarly, we define an object S(r) of the category Mod1,φ

/S of rank one by S(r) = Se =
Filr S(r) and φr(e) = e. Then the Breuil module MS(S(r)) is isomorphic to S(r) via the multiplication
by λ−r . Thus we have isomorphisms of G K∞ -modules

T ∗
S

(
S(r)

) → T ∗
crys

(
MS

(
S(r)

)) → T ∗
crys

(
S(r)

) = Zp
(
e �→ tr).

Their composite is given by f �→ (e �→ λrφ( f (e))). Set an element t ∈ Acrys to be

t=
(

E(u)

c0

)−1

λ−1t.

Then the element t is contained in the subring Sur [24, Section 3.2].
Let M be an object of the category Modr,φ

/S
and M∨ be its dual object. Then as in [11, Section 2.4],

the evaluation map M×M∨ → S(r) induces a natural perfect pairing of G K∞ -modules

〈 , 〉M : T ∗
S(M) × T ∗

S

(
M∨) → T ∗

S

(
S(r)

) � Zpt
r ⊆ Sur,

which gives an isomorphism of G K∞ -modules

T ∗
S

(
M∨) → HomZp

(
T ∗
S(M),Zpt

r).
We also have a similar perfect pairing 〈 , 〉M for the category Modr,φ

/S∞ [11].

3. Cartier duality for upper and lower ramification subgroups

Let G be a finite flat generically etale (commutative) group scheme over the ring of integers of
a complete discrete valuation field. Abbes–Mokrane [1] initiated a study of ramification of G using
a ramification theory of Abbes–Saito [2,3]. As in the classical ramification theory of local fields, G
has upper and lower ramification subgroups [14,17]. When the base field is of mixed characteristic,
Tian proved that the upper and the lower ramification subgroups correspond to each other via usual
Cartier duality if G is killed by p [28], and Fargues gave a much simpler proof of this theorem [14].
In this section, after briefly recalling the ramification theory of finite flat group schemes, we show a
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variant of Tian’s theorem for a complete discrete valuation field of equal characteristic p with perfect
residue field, using the duality techniques presented in the previous section instead of Cartier duality
of finite flat group schemes.

3.1. Ramification theory of finite flat group schemes

In this subsection, we let K denote a complete discrete valuation field, π a uniformizer of K , OK

the ring of integers and K sep a separable closure of K . Let v K be the valuation of K normalized as
v K (π) = 1 and extend it naturally to K sep. We put m�i

K sep = {x ∈ OK sep | v K (x) � i} and similarly for
m>i

K sep . We also put G K = Gal(K sep/K ).
Let G = Spec(B) be a finite flat generically etale group scheme over OK . Then G is locally of

complete intersection over OK [7, Proposition 2.2.2] and we have a natural surjection of G K -modules
G(OK sep ) → F j(B) for j ∈ Q>0, where F j(B) is the set of geometric connected components of the j-
th tubular neighborhood of B with a group structure induced by that of G [1, Section 2.3]. We define
the j-th upper ramification subgroup G j of G for j ∈ Q>0 to be the scheme-theoretic closure in G of
(the finite subgroup scheme of G × Spec(K ) associated to) the kernel of this surjection. On the other
hand, for i ∈ Q�0, the scheme-theoretic closure in G of the kernel of the natural homomorphism

G(OK sep ) → G(OK sep/m�i
K sep ) is denoted by Gi and called the i-th lower ramification subgroup of G . In

particular, we have the equality

Gi(OK sep) = Ker
(
G(OK sep) → G

(
OK sep/m�i

K sep

))
.

We also put

G j+(OK sep) =
⋃
j′> j

G j′(OK sep), Gi+(OK sep) =
⋃
i′>i

Gi′(OK sep)

and set G j+ and Gi+ to be their scheme-theoretic closures in G , respectively.
As in the classical case, the upper (respectively lower) ramification subgroups are compatible

with quotients (respectively subgroups). Namely, for a faithfully flat homomorphism G → G′′ of fi-
nite flat group schemes over OK , the image of G j(OK sep ) in G′′(OK sep ) coincides with (G′′) j(OK sep )

[1, Lemme 2.3.2]. From the definition, we also see that for a closed immersion G′ → G of finite flat
group schemes over OK , the subgroup G′(OK sep ) ∩ Gi(OK sep ) coincides with (G′)i(OK sep ). In addition,
for a finite extension L/K of relative ramification index e′ , we have natural isomorphisms

(OL ×OK G) je′ → OL ×OK G j, (OL ×OK G)ie′ → OL ×OK Gi

of finite flat group schemes over OL .
Suppose that K is of mixed characteristic (0, p) and G is killed by pn . Then we have G j = 0 for

j > e(n + 1/(p − 1)), where e is the absolute ramification index of K [17, Theorem 7]. Let G∨ be the
Cartier dual of G and consider the Cartier pairing

〈 , 〉G :G(OK̄ ) × G∨(OK̄ ) → Z/pnZ(1).

When G is killed by p, we have the following duality theorem for the upper and the lower ramifica-
tion subgroups of G [28, Theorem 1.6], [14, Proposition 6].

Theorem 3.1. Let K be a complete discrete valuation field of mixed characteristic (0, p) with absolute ram-
ification index e and G be a finite flat group scheme over OK killed by p. For j � pe/(p − 1), we have an
equality
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G j(OK̄ )⊥ = (
G∨)

l( j)+(OK̄ )

of subgroups of G∨(OK̄ ), where ⊥ means the orthogonal subgroup with respect to the pairing 〈 , 〉G and
l( j) = e/(p − 1) − j/p.

3.2. Kisin modules and finite flat group schemes of equal characteristic

Consider the complete discrete valuation field X = k((u)) with uniformizer u and perfect residue
field k. We embed OX =S1 = k[[u]] into R by u �→ π as before. Then R is the completion of the ring
of integers of an algebraic closure of X . We let X sep denote the separable closure of X in Frac(R).

Let Y be a finite extension of X in Frac(R) of relative ramification index e′ and let φ also denote
the absolute Frobenius endomorphism of Y . We identify OY with l[[v]] for a finite extension l of k.
Define a category Modr,φ

/OY
to be the category of free OY -modules N of finite rank endowed with a

φ-semilinear map φN :N →N such that the cokernel of the map 1 ⊗φN :OY ⊗φ,OY N→ N is killed
by uer .

For an object M of Modr,φ
/OX

= Modr,φ
/S1

, we consider the OY -module OY ⊗OX M with

the φ-semilinear map φ ⊗ φM as an object of Modr,φ
/OY

. This defines a base change functor

OY ⊗OX − : Modr,φ
/S1

→ Modr,φ
/OY

. We also have a dual object N∨ for an object N of the category

Modr,φ
/OY

, which is defined similarly to the duality theory of Modr,φ
/S1

. Moreover, for an object M of

Modr,φ
/S1

, we have a natural isomorphism

OY ⊗OX M∨ → (OY ⊗OX M)∨

of Modr,φ
/OY

, by which we identify both sides.
For a finite flat group scheme H over a base scheme of characteristic p, we let FH and VH denote

the Frobenius and the Verschiebung of H, respectively. We say that a finite flat group scheme H over
OY is v-height � s if its Verschiebung VH is zero and the cokernel of the natural map

VH∨ :OY ⊗φ,OY Lie
(
H∨) → Lie

(
H∨)

is killed by vs . The category of finite flat group schemes over OY of v-height � s is denoted by C�s
OY

.
Then we have an anti-equivalence of categories

HY (−) : Modr,φ
/OY

→ C�ee′r
OY

[16, Théorème 7.4]. The group scheme HY (N) is defined as a functor over OY by

A �→ HomOY ,φ(N,A),

where we consider an OY -algebra A as a φ-module over OY with the absolute Frobenius endomor-
phism of A. If we choose a basis e1, . . . , ed of N and take a matrix A = (ai, j) ∈ Md(OY ) satisfying

φ(e1, . . . , ed) = (e1, . . . , ed)A,

then HY (N) is isomorphic to the additive group scheme over OY defined by the system of equations

X p
i −

d∑
j=1

a j,i X j = 0 (i = 1, . . . ,d).
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For an object M of Modr,φ
/S1

, we also have a natural isomorphism

OY ×OX HX (M) → HY (OY ⊗OX M)

of finite flat group schemes over OY . We drop the subscript Y of HY if there is no risk of confusion.
The following lemma is a variant of the scheme-theoretic closure for finite flat group schemes.

Lemma 3.2. Let M be an object of Modr,φ
/S1

and L be a GX -stable subgroup of T ∗
S

(M). Then there exists

a surjection M → M′′ of Modr,φ
/S1

such that the image of the corresponding injection T ∗
S

(M′′) → T ∗
S

(M)

coincides with L. A surjection M →M′′ satisfying this property is unique up to a unique isomorphism.

Proof. This follows from [24, Lemma 2.3.6]. Indeed, let Modφ

/X denote the category of etale φ-

modules over X [15, Section A1]. We have an equivalence of categories T∗ from Modφ

/X to the

category of finite GX -modules over Fp defined by T∗(M) = (X sep ⊗X M)φ=1. For an object M of

Modφ

/X , we also put T ∗(M) = HomX ,φ(M,X sep). Then the natural map

T∗(M) → HomFp

(
T ∗(M),Fp

)
is an isomorphism of GX -modules. Set M = X ⊗S1 M. We have a natural isomorphism of GX -
modules T ∗

S
(M) → T ∗(M) and let M ′′ be the quotient of M corresponding to the surjection

T∗(M) → HomFp

(
T ∗(M),Fp

) → HomFp (L,Fp).

Then the Kisin module M′′ = Im(M → M → M ′′) satisfies the desired property. �
Since the finite flat group scheme H(M) is generically etale, the group H(M)(OX sep ) can be iden-

tified with the group H(M)(R) and we have the j-th upper ramification subgroup H(M) j(OX sep ) =
H(M) j(R) of H(M). We also have the i-th lower ramification subgroup

H(M)i(OX sep) = Ker
(
H(M)(OX sep) → H(M)

(
OX sep/m�i

X sep

))
,

which we identify with

H(M)i(R) = Ker
(
H(M)(R) → H(M)

(
R/m�i

R

))
by using the injection OX sep/m�i

X sep → R/m�i
R . Since H(M)(R) = T ∗

S
(M), the pairing 〈 , 〉M of Sec-

tion 2.2 induces a perfect pairing

〈 , 〉M :H(M)(R) ×H
(
M∨)

(R) → R.

Then the main theorem of this section is the following.

Theorem 3.3. Let M be an object of Modr,φ
/S1

. Then we have H(M) j = 0 for j > per/(p − 1). Moreover, for
j � per/(p − 1), we have the equality

H(M) j(R)⊥ = H
(
M∨)

lr( j)+(R)

of subgroups of H(M∨)(R), where ⊥ means the orthogonal subgroup with respect to the pairing 〈 , 〉M and
lr( j) = er/(p − 1) − j/p.
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Proof. We proceed as in the proof of [14, Proposition 6]. Let Y be a finite separable extension of X
in X sep of relative ramification index e′ and put MY = OY ⊗S1 M. Then we have a commutative
diagram

H(M)(R) ×H(M∨)(R)

� �

〈 , 〉M
R

HY (MY )(R) ×HY (M∨
Y )(R) 〈 , 〉MY

R,

where 〈 , 〉MY is a perfect pairing defined similarly to the pairing 〈 , 〉M and the vertical arrows
are isomorphisms. Since H(M∨) is generically etale, after making a finite separable base change and
replacing e by ee′, we may assume that the GX -action on H(M∨)(R) is trivial.

Let x∨ be an element of H(M∨)(R) and consider the surjection M∨ → N of the category Modr,φ
/S1

corresponding to the subspace Fp x∨ ⊆ H(M∨)(R) by Lemma 3.2. Then we have the commutative
diagram

H(M)(R) ×H(M∨)(R)
〈 , 〉M

R

H(N∨)(R) ×H(N)(R) 〈 , 〉N
R.

Thus, by the compatibility with quotients (respectively subgroups) of the upper (respectively lower)
ramification subgroups, the theorem follows from Lemma 3.4 below. �
Lemma 3.4. Let N be an object of Modr,φ

/S1
which is free of rank one over S1 . Then we have H(N∨) j(R) = 0

if j > per/(p − 1) and H(N)i(R) = 0 if i > er/(p − 1). For j � per/(p − 1), the subgroup H(N∨) j(R) is
zero if and only if H(N)lr ( j)+(R) =H(N)(R).

Proof. Let n be a basis of N and n∨ be its dual basis of N∨ . Put φN(n) = usan with 0 � s � er and
a ∈ S

×
1 . Then we have φN∨ (n∨) = uer−sa′n∨ with some a′ ∈ S

×
1 . Hence the defining equations of

H(N) and H(N∨) are X p − usaX = 0 and X p − uer−sa′ X = 0, respectively. By a calculation as in [17,
Section 3], we see that

H
(
N∨) j

(R) =
{
H(N∨)(R) ( j � p(er − s)/(p − 1)),

0 ( j > p(er − s)/(p − 1)),

H(N)i(R) =
{
H(N)(R) (i � s/(p − 1)),

0 (i > s/(p − 1))

and the first assertion follows. Moreover, for j � per/(p − 1), we have lr( j) � 0 and

H
(
N∨) j

(R) = 0 ⇔ j > p(er − s)/(p − 1)

⇔ lr( j) < s/(p − 1) ⇔ H(N)lr( j)+(R) = H(N)(R). �
By the previous lemma, we also have the following corollary.

Corollary 3.5. Let M be an object of Modr,φ
/S1

. Then the i-th lower ramification subgroup H(M)i vanishes for
i > er/(p − 1).
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Proof. As in the proof of Theorem 3.3, we may assume that the GX -module H(M)(R) is trivial. For
i > er/(p − 1), take an element x ∈ H(M)i(R) and consider the quotient M → N corresponding to
the subspace Fp x ⊆H(M)(R). By Lemma 3.4, we have H(N)i(R) = 0 and thus x = 0. �
Remark 3.6. Let K be a complete discrete valuation field of mixed characteristic (0, p) and G be a
finite flat group scheme over OK killed by p. Then, by using the usual scheme-theoretic closure of
finite group schemes, we can easily see that the i-th lower ramification subgroup Gi vanishes for
i > e/(p − 1), just as in the proof of Corollary 3.5.

4. Comparison of ramification

Let p > 2 be a rational prime and K be a complete discrete valuation field of mixed charac-
teristic (0, p) with perfect residue field k, as in Section 2. Then it is known that there exists an
anti-equivalence G(−) from the category Mod1,φ

/S1
to the category of finite flat group schemes over

OK killed by p. On the other hand, we also have the anti-equivalence H(−) : Mod1,φ

/S1
→ C�e

OX
defined

in Section 3 and an isomorphism of G K∞ -modules

εM :G(M)(OK̄ )|G K∞ → H(M)(R).

In this section, we prove that this isomorphism is compatible with the upper and the lower ramifi-
cation subgroups of both sides. For the proof, after recalling the definitions of the anti-equivalence
G(−) and the isomorphism εM [7,20,21], we show that these are compatible with the base changes
inside K∞/K and dualities on both sides. Then, by the duality theorems presented in Section 3, we
reduce ourselves to comparing the lower ramification subgroups of both sides, which is achieved by
constructing an isomorphism as pointed schemes between reductions of G(M) and H(M).

4.1. Breuil–Kisin classification

In this subsection, we briefly recall the classification of finite flat group schemes and p-divisible
groups over OK due to Breuil and Kisin [6–8,20,21] and its properties. Their classification theorem is
as follows.

Theorem 4.1.

1. There exists an anti-equivalence of categories G(−) from Mod1,φ

/S
to the category of p-divisible groups

over OK with a natural isomorphism of G K∞ -modules

εM : T pG(M)|G K∞ → T ∗
S(M),

where T pG(M) = lim←− nG(M)[pn](OK̄ ) is the p-adic Tate module of the p-divisible group G(M).

2. There exists an anti-equivalence of categories G(−) from Mod1,φ

/S∞ to the category of finite flat group
schemes over OK killed by some p-power with a natural isomorphism of G K∞ -modules

εM :G(M)(OK̄ )|G K∞ → T ∗
S(M).

3. Let M be an object of the category Mod1,φ

/S∞ and take a resolution of Kisin modules

0 →M1
f→M2 →M → 0,
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where Mi is an object of the category Mod1,φ

/S
. Put G = G(M) and Γi = G(Mi). Then we have an exact

sequence of fppf sheaves

0 → G → Γ2
G( f )→ Γ1 → 0

which induces the commutative diagram with exact rows

0 T pΓ2

εM2

T pΓ1

εM1

G(OK̄ )

εM

0

0 T ∗
S

(M2) T ∗
S

(M1) T ∗
S

(M) 0.

We have two definitions of the functor G(−) and the isomorphism εM . One is putting G(−) =
GrB(MS(−)) with the anti-equivalence GrB(−) of [7], as in [21]. The isomorphism εM is constructed
in the proof of [21, Proposition 1.1.13]. Then we can prove Theorem 4.1(3) by using [11, Proposi-
tion 2.1.3 and Theorem 2.3.4]. The other is given in [20], as follows. For a p-divisible group Γ over
OK , set ModK(Γ ) to be the section D∗(Γ )(S→OK ) of the contravariant Dieudonné crystal D∗(Γ ) [5] on
the divided power thickening S → OK defined by u �→ π . The S-module ModK(Γ ) is endowed with
the natural Frobenius and the Hodge filtration. Then it is shown that this defines an anti-equivalence
from the category of p-divisible groups over OK to the category Mod1,φ

/S with a quasi-inverse GrK

[20, Proposition A.6]. Put G(−) = GrK(MS(−)) and define G(−) for the category Mod1,φ

/S∞ by taking

a resolution as in Theorem 4.1(3). For an object M of the category Mod1,φ

/S
, put M = MS(M) and

Γ = G(M). Consider the divided power thickening Acrys → OC induced by the map θ : W (R) → OC

and we let FAcrys denote the section of a crystalline sheaf F on this thickening. Then we define the
isomorphism εM in this case to be the composite of the isomorphism T ∗

S
(M) → T ∗

crys(M) and the
natural isomorphism εM : T pΓ → T ∗

crys(M) induced by the isomorphism

T pΓ → T ∗
crys

(
D∗(Γ )(S→OK )

) = HomS,Fil1,φ1

(
D∗(Γ )Acrys ,D

∗(Qp/Zp)Acrys

)
sending a homomorphism g :Qp/Zp → Γ of p-divisible groups over OC to D∗(g) [12, Theorem 7].
We can see that these two definitions are naturally isomorphic to each other.

We need an explicit construction of the isomorphism εM for an object M of Mod1,φ

/S1
[21, Propo-

sition 1.1.13]. Let H1 be the divided power polynomial ring RDP〈u − π〉 over RDP. Consider the n-th
projection prn : R → ÕK̄ . The map pr0 induces a surjection H1 = RDP〈u −π〉 → ÕK̄ defined by u �→ π ,
which is a divided power thickening of ÕK̄ . The map H1 → RDP defined by u �→ π induces an iso-
morphism of G K∞ -modules

G(M)(OK̄ ) = HomS,Fil1,φ1
(M, H1) → HomS,Fil1,φ1

(
M, RDP)

(see the proof of [7, Lemme 5.3.1]) and the isomorphism εM is the composite of this map and the
natural isomorphism T ∗

S
(M) → T ∗

crys(M).

Let M be an object of Mod1,φ

/S1
and put M = MS(M). In [7, Section 3], Breuil gave an explicit

description of the affine algebra RM of the finite flat group scheme G(M) = GrB(M) in terms of M.
Let e1, . . . , ed be an adapted basis of M [7, Définition 2.1.2.6] such that

Fil1 M = ur1 S1e1 ⊕ · · · ⊕ urd S1ed + (
Filp S

)
M,

φ1
(
ur1 e1, . . . , urd ed

) = (e1, . . . , ed)G
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with a matrix G ∈ GLd(S1) (note that we adopt the transpose of the notation in [7]). Put S̃1 =
k[u]/(uep) and identify this k-algebra with S1/ Filp S1. Assume that the image G̃ of G in GLd( S̃1)

is contained in the subgroup GLd(k[up]/(uep)). Consider the ring homomorphisms

k[u]/(uep) → OK1/pOK1 ← OK1 ,

where the first map is the φ−1-semilinear isomorphism defined by u �→ π1. We choose a lift Gπ =
(ai, j) of G̃ by this map to GLd(OK ) using the assumption on G and put

RM = OK [X1, . . . , Xd]
(X p

1 + π e−r1

F (π)
(
∑d

j=1 a j,1 X j), . . . , X p
d + π e−rd

F (π)
(
∑d

j=1 a j,d X j))
.

Then we have an isomorphism of p-adic formal schemes Spf(RM) � G(M). The induced map

Ψ : HomOK -alg.(RM,OK̄ ) → G(M)(OK̄ ) = HomS,Fil1,φ1
(M, H1)

is defined as follows. Let f : RM → OK̄ be an element of the left-hand side. Set xi = f (Xi) and x̄i to
be its image in ÕK̄ . Let (ÕK̄ )DP be the divided power envelope of the ring ÕK̄ with respect to the

ideal m�e/p
K̄

. Then the map pr1 induces an isomorphism pr1 : RDP → (ÕK̄ )DP. We let yi denote the in-
verse image of x̄i by this isomorphism. Then Ψ ( f ) is the unique element of the right-hand side which
is congruent to the S-linear map (ei �→ yi) modulo Filp H1 (see the proof of [7, Proposition 3.1.5]).
From this description, we see that the zero section of the group scheme Spec(RM) is defined by
X1 = · · · = Xd = 0.

4.2. Compatibility with a base change and Cartier duality

The functor G(−) is compatible with the base changes inside K∞/K . Moreover, Caruso proved its
compatibility with Cartier duality [10]. In this subsection, we briefly present a proof of these facts,
along with similar compatibilities of the isomorphism εM . First we recall the following lemma.

Lemma 4.2. The functor Γ �→ T pΓ |G K∞ from the category of p-divisible groups over OK to the category of
p-adically continuous G K∞ -representations is fully faithful.

Proof. This follows from Tate’s theorem [27, Section 4.2, Corollary 1] and [8, Theorem 3.4.3]. �
Let us show the compatibility with the base change. Put S′ = W [[v]] and let φ :S′ → S′ de-

note the natural φ-semilinear map defined by v �→ v p . Note that the polynomial E ′(v) = E(v pn
)

is the Eisenstein polynomial of the uniformizer πn ∈ Kn . Consider the categories Mod1,φ

/S′
1
, Mod1,φ

/S′∞
and Mod1,φ

/S′ of Kisin modules over S′ of E ′-height � 1. Using the W -algebra homomorphism

S′ → W (R) defined by v �→ [π1/pn ], we define a similar functor T ∗
S′ to T ∗

S
. The homomorphism

of W -algebras S → S′ defined by u �→ v pn
induces natural functors (−)′ : Mod1,φ

/S∞ → Mod1,φ

/S′∞
and

(−)′ : Mod1,φ

/S
→ Mod1,φ

/S′ by

M �→M′ =S′ ⊗S M, φM′ = φ ⊗ φM.

Then we have a natural isomorphism of G K∞ -modules T ∗
S

(M) → T ∗
S′ (M′). On the other hand, these

categories classify finite flat group schemes killed by some p-power and p-divisible groups over OKn

by Theorem 4.1, and we let G′(−) denote the anti-equivalences of the theorem over OKn .
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Proposition 4.3. Let M be an object of the category Mod1,φ

/S
(respectively Mod1,φ

/S∞ ) and M′ be the associated

object of the category Mod1,φ

/S′ (respectively Mod1,φ

/S′∞
). Then there exists a natural isomorphism

G′(M′) → OKn ×OK G(M)

of p-divisible groups (respectively finite flat group schemes) over OKn which respectively makes the following
diagrams commutative:

T pG(M)|G K∞ ∼
�

T pG′(M′)|G K∞

�

T ∗
S

(M) ∼ T ∗
S′(M′),

G(M)(OK̄ )|G K∞ ∼
�

G′(M′)(OK̄ )|G K∞

�

T ∗
S

(M) ∼ T ∗
S′(M′).

Proof. The assertion for the category Mod1,φ

/S
follows from Lemma 4.2, and this implies the assertion

for Mod1,φ

/S∞ by taking a resolution of M as in Theorem 4.1(3). Note that the isomorphism G′(M′) →
OKn ×OK G(M) is independent of the choice of a resolution [20, Lemma 2.3.4]. �

Next we show the compatibility with Cartier duality. For the element t ∈ Sur, we let tn denote its
image in the ring Sur

n = Sur/pnSur.

Proposition 4.4. Let M be an object of the category Mod1,φ

/S
(respectively Mod1,φ

/S∞ ) and M∨ be its dual

object. Then there exists a natural isomorphism G(M)∨ → G(M∨) of p-divisible groups (respectively finite
flat group schemes) over OK such that the induced map

δM : T p
(
G(M)∨

) → T pG
(
M∨) εM∨→ T ∗

S

(
M∨)

(
respectivelyδM : G(M)∨(OK̄ ) → G

(
M∨)

(OK̄ )
εM∨→ T ∗

S

(
M∨))

respectively makes the following diagrams of G K∞ -modules commutative:

T pG(M) × T p(G(M)∨)

�εM �δM

Zp(1)

�

T ∗
S

(M) × T ∗
S

(M∨) 〈 , 〉M
Zpt,

G(M)(OK̄ ) × G(M)∨(OK̄ )

�εM �δM

Z/pnZ(1)

�

T ∗
S

(M) × T ∗
S

(M∨) 〈 , 〉M
(Z/pnZ)tn.
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Here the top arrows are the Cartier pairings and the right vertical arrows are the isomorphisms induced by
(ζpn )n∈Z�0 �→ t.

Proof. For an object M of the category Mod1,φ

/S
, define δM : T p(G(M)∨) → T ∗

S
(M∨) to be the unique

isomorphism which fits into the commutative diagram of G K∞ -modules

T p(G(M)∨) HomZp (T p(G(M)),Zp(1))

T ∗
S

(M∨) HomZp (T ∗
S

(M),Zpt),

where the top (respectively the bottom) arrow is induced by the Cartier pairing (respectively the pairing
〈 , 〉M) and the right vertical arrow is induced by εM and the natural isomorphism Zp(1) → Zpt as in
the proposition. Then the isomorphism ε−1

M∨ ◦ δM defines the desired isomorphism G(M)∨ → G(M∨)

uniquely by Lemma 4.2.
Next let M be an object of the category Mod1,φ

/S∞ . Take a resolution 0 → M1 → M2 → M → 0
of M as in Theorem 4.1(3). Then this induces a resolution 0 → M∨

2 → M∨
1 → M∨ → 0 by the snake

lemma. Put G = G(M) and Γi = G(Mi). By the snake lemma, we have an epimorphism w :Γ1[pn] →
G whose dual map w∨ fits into the commutative diagram with exact rows

0 G(M∨) G(M∨
1 )

�

G(M∨
2 )

�

0

0 G∨ w∨
Γ ∨

1 Γ ∨
2 0.

Thus we get an isomorphism G(M∨) → G∨ , which is independent of the choice of a resolution [20,
Lemma 2.3.4]. On the other hand, we can check the commutativity of the diagram of the Cartier
pairings

T pΓ1 Hom(T p(Γ ∨
1 ),Zp(1))

G(OK̄ ) Hom(G∨(OK̄ ),Z/pnZ(1))

and of a similar diagram for T ∗
S

(M). Hence we can prove the compatibility with the duality pairings
by the functoriality of the connecting homomorphism of the snake lemma. �
4.3. Proof of the main theorem

Now we prove Theorem 1.1. By Theorem 3.1, Theorem 3.3 and Proposition 4.4, the assertion for
the upper ramification subgroups is reduced to showing that the isomorphism

δM :G(M)∨(OK̄ ) → T ∗
S

(
M∨) = H

(
M∨)

(R)

induces an isomorphism of the lower ramification subgroups



S. Hattori / Journal of Number Theory 132 (2012) 2084–2102 2099
(
G(M)∨

)
i(OK̄ ) → H

(
M∨)

i(R)

for any i ∈ Q�0. By the definition of the map δM , it is enough to show the assertion of Theorem 1.1

for the lower ramification subgroups. Namely, for an object M of the category Mod1,φ

/S1
, we reduced

ourselves to showing the natural map

εM :G(M)(OK̄ ) → T ∗
S(M) = H(M)(R)

induces an isomorphism of the i-th lower ramification subgroups for any i. For this, by Proposition 4.3
and replacing K1 by K , we may assume that e is divisible by p and the entries of a representing
matrix of φM is contained in the subring k[[up]] of S1. Note that, by Corollary 3.5 and Remark 3.6,
the i-th lower ramification subgroups of both sides vanish for i > e/(p − 1). Thus we are reduced to
showing the theorem below.

Theorem 4.5. Let M be an object of Mod1,φ

/S1
. Suppose that e is divisible by p and the entries of a representing

matrix of φM is contained in the subring k[[up]] of S1 . Consider the isomorphism of k-algebras k[u]/(ue) →
OK /pOK defined by u �→ π , by which we identify both sides. Then there exists an isomorphism of schemes

ηM : (OK /pOK ) ×OK G(M) → (
k[u]/(ue)) ×k[[u]] H(M)

which preserves the zero section and makes the following diagram commutative for any non-negative rational
number i � e:

G(M)(OK̄ )
εM H(M)(R)

G(M)(OK̄ /m�i
K̄

)
ηM

H(M)(R/m�i
R ).

Here the bottom arrow is induced by the isomorphism pr0 : R/m�i
R → OK̄ /m�i

K̄
lying over the isomorphism

k[u]/(ue) →OK /pOK .

Proof. Let m1, . . . ,md be a basis of M such that we can write as

φM(m1, . . . ,md) = (m1, . . . ,md)A

for some A ∈ Md(k[[up]]). We can take matrices P , Q ∈ GLd(k[[up]]) such that

P A Q = diag
(
ue−r1 , . . . , ue−rd

)
for some non-negative integers ri divisible by p with ri � e. Here diag(a1, . . . ,ad) denotes the diagonal
matrix whose (i, i)-th entry is ai . Set a basis n1, . . . ,nd of M to be (n1, . . . ,nd) = (m1, . . . ,md)φ

−1(Q ).
Then we have

φM(n1, . . . ,nd) = (n1, . . . ,nd)φ
−1(Q )−1 P−1 diag

(
ue−r1 , . . . , ue−rd

)
.

Thus the object M=MS(M) is described as
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Fil1 M = SpanS

(
ur1 ⊗ n1, . . . , urd ⊗ nd

) + (
Filp S

)
M,

φ1
(
ur1 ⊗ n1, . . . , urd ⊗ nd

) = (1 ⊗ n1, . . . ,1 ⊗ nd)G,

where G = c Q −1φ(P )−1 ∈ GLd(S1) with c = φ1(E(u)) as before. Take lifts P̂ and Q̂ of the matrices
P and Q in GLd(W [[up]]), respectively. Put Ĝ = φ(−F (u))Q̂ −1φ( P̂ )−1 ∈ GLd(W [[up]]). Since we have
the equality c = φ(−F (u)) in the ring S̃1, the images of the matrices G and Ĝ in GLd( S̃1) coincide
with each other. We write this image as G̃ , which is contained in the subgroup GLd(k[up]/(uep)).

Note that we have a commutative diagram of W -algebras

W [[u]] u �→π OK

k[[u]] k[u]/(ue) ∼ OK /pOK .

Consider the composite map

W
[[u]] → OK /pOK → OK1/pOK1

∼→ k[u]/(uep) = S̃1,

where the last arrow is the φ-semilinear isomorphism defined by π1 �→ u. Then the image of the ma-
trix −F (u)φ−1(Q̂ )−1 P̂−1 by this composite map coincides with G̃ . Let ai, j(u) ∈ W [[u]] be the (i, j)-th
entry of this matrix. From the explicit description of the affine algebra RM of G(M) = GrB(M) re-
called in Section 4.1, we see that RM is defined by the system of equations over OK

X p
i + π e−ri

F (π)

(
d∑

j=1

a j,i(π)X j

)
(i = 1, . . . ,d),

where ai, j(π) denotes the image of ai, j(u) by the map W [[u]] →OK defined as in the above diagram.
On the other hand, the defining equations of H(M) over k[[u]] are

X p
i + ue−ri

F (u)

(
d∑

j=1

ā j,i(u)X j

)
(i = 1, . . . ,d),

where āi, j(u) denotes the image of ai, j(u) by the natural map W [[u]] → k[[u]], and the zero section
of H(M) is by definition X1 = · · · = Xd = 0. This implies that there exists an isomorphism

ηM : (OK /pOK ) ×OK G(M) → (
k[u]/(ue)) ×k[[u]] H(M)

of schemes over the isomorphism k[u]/(ue) �OK /pOK defined by Xi �→ Xi . Thus, for i � e, we get a
bijection

ηM :G(M)
(
OK̄ /m�i

K̄

) → H(M)
(

R/m�i
R

)
satisfying ηM(0) = 0.
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To prove the compatibility of εM and ηM , let us consider the diagram

OK̄ (ÕK̄ )DP RDP
pr1

∼ R
φ

ÕK̄ R/m�e
R .

pr0

∼

Let x = (x1, . . . , xd) be an element of Spec(RM)(OK̄ ) and z = (ni �→ zi) be the corresponding element
of T ∗

S
(M) = HomS,φ(M, R) via the composite

Spec(RM)(OK̄ ) � G(M)(OK̄ )
εM→ T ∗

S(M).

Let yi ∈ R be the element such that pr1(yi) coincides with the image x̄i of xi in ÕK̄ . Then, in the ring
RDP, we have φ(zi) − yi ∈ Filp RDP. Put yi = (yi,0, yi,1, . . .) and zi = (zi,0, zi,1, . . .) with yi, j, zi, j ∈ ÕK̄ .
Since the natural map R → RDP induces an isomorphism

R/m�ep
R → RDP/ Filp RDP

and the kernel of the map pr1 : R → ÕK̄ coincides with the ideal m�ep
R , we have yi,1 = zp

i,1 = zi,0. This
implies x̄i = zi,0 and the compatibility of εM and ηM as in the theorem follows. Hence we conclude
the proof of Theorem 1.1. �

Note that we have also shown the following corollary.

Corollary 4.6. Let M be an object of the category Mod1,φ

/S1
. Consider the k-algebra k[[v]] as a k[[u]]-algebra by

the map u �→ v p . By the k-algebra isomorphism k[[v]]/(vep) → OK1/pOK1 defined by v �→ π1 , we identify
both sides. Then we have an isomorphism

(OK1/pOK1) ×OK G(M) → (
k
[[v]]/(vep)) ×k[[u]] H(M)

of schemes over k[[v]]/(vep) �OK1/pOK1 preserving the zero section.

Remark 4.7. Let M be an object of the category Modr,φ
/S1

. For j ∈ Q>0 (respectively i ∈ Q�0), let

M j (respectively Mi ) be the object which corresponds via the anti-equivalence H(−) to the closed
subgroup scheme H(M) j (respectively H(M)i ) of H(M). These objects define cofiltrations {M j} j∈Q>0

and {Mi}i∈Q�0 of M in the category Modr,φ
/S1

. Note that, for a finite flat group scheme over a discrete
valuation ring, its finite flat closed subgroup scheme is determined by the generic fiber. Therefore, for
r = 1, Theorem 1.1 and [8, Theorem 3.4.3] imply that the quotient M → M j (respectively M → Mi)
also corresponds via the anti-equivalence G(−) to the closed subgroup scheme G(M) j (respectively
G(M)i ) of G(M). They can be considered as “upper and lower ramification cofiltrations” of the Kisin
module M.

Remark 4.8. The way we have proved Theorem 1.1 is based on switching from the upper to the
lower ramification subgroups via duality. The author wonders if we can prove the theorem in an
“upper” way, namely by constructing a natural isomorphism between the sets of geometric connected
components of tubular neighborhoods of G(M) and H(M) using the similarity of their affine algebras,
even though they are in different characteristics.
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