The Existence Theorems of the Random Solutions for Random Hammerstein Type Nonlinear Integral Equations

GVOZHEN LI
Department of Mathematics, Jiangxi Normal University
Nanchang, Jiangxi, 330027, P.R. China

L. DEBNATH
Department of Mathematics, University of Central Florida
Orlando, FL 32816, U.S.A.

(Received April 1999; accepted May 1999)

Abstract—This paper deals with the existence theorems of random solutions of random Hammerstein type nonlinear integral equations. These theorems are proved by using the random fixed-point theorems of cone expansion and compression of random operator discussed by Li and Sheng [1]. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords—Random integral equation, Random solution, Random fixed-point.

1. INTRODUCTION

Let \((\Omega, \mathcal{U}, \mu)\) be a complete measure space, \(E\) a separable infinite dimensional real Banach space, \((E, \beta)\) a measurable space, where \(\beta\) denotes the \(\sigma\)-algebra of all Borel subsets generated by all open subsets in \(E\), \(P\) a cone \([2]\) in \(E\), \(P_r = \{x \in P, \|x\| < r\}\), \(P_r = \{x \in P, \|x\| = r\}\), \(\partial P_r = \{x \in P, \|x\| = r\}\), \(P_{r_1, r_2} = \{x \in P, 0 < r_2 < \|x\| < r_1\}\). A mapping \(T : \Omega \times P_r \rightarrow P_r\) is called a random operator for each \(x \in P_r\), \(T(x, x)\) is measurable.

A measurable map \(\phi : \Omega \rightarrow P_r\) is a random fixed-point of the random operator \(T\) if \(T(\omega, \phi(\omega)) = \phi(\omega)\) for each \(\omega \in \Omega\).

LEMMA 1.1. (See [1].) Let \(T : \Omega \times P_r \rightarrow P_r\) be a random completely continuous operator and \(0 < r_2 < r_1 < r\) such that

\[
\begin{align*}
(i) & \quad \left\{ \begin{array}{l}
(\omega, x) \in \Omega \times \partial P_{r_1} \Rightarrow T(\omega, x) \notin x, \\
(\omega, x) \in \Omega \times \partial P_{r_2} \Rightarrow T(\omega, x) \notin x;
\end{array} \right. \\
(ii) & \quad \left\{ \begin{array}{l}
(\omega, x) \in \Omega \times \partial P_{r_1} \Rightarrow T(\omega, x) \notin x, \\
(\omega, x) \in \Omega \times \partial P_{r_2} \Rightarrow T(\omega, x) \notin x.
\end{array} \right.
\end{align*}
\]

Then \(T\) has at least a random fixed-point \(x_0(\omega) \in P_{r_1, r_2}\) where \(r_2 < \|x_0(\omega)\| < r_1\).

This work was funded by Natural Science Foundation of China. Furthermore, we would like to thank the referee for the helpful suggestions.
Let \mathbb{R}^N be an N-dimensional Euclidean space, G be a bounded closed domain in \mathbb{R}^N, $C(G)$ separable Banach space of all continuous functions on G, $(C(G), \beta)$ be a measurable space, $\beta\sigma$-algebra of all Borel subsets generated by all open subsets in $C(G)$. Some ideas and results can be found in [3].

We consider a general polynomial type random nonlinear Hammerstein integral equation

$$
\phi = \int_G k(\omega, x, y) f(y, \phi) \, dy = A(\omega, \phi) = A(\omega) \phi,
$$

where $f(x, u) = \sum_{i=1}^{n} a_i(x) u^{a_i}, a_i > 0 (i = 1, 2, \ldots, n)$, and $\phi : \Omega \times G \rightarrow C(G)$ denotes $\phi(\omega)(x)$, since for fixed $x \in G \phi : \Omega \rightarrow C(G)$ is a random variable with values in $C(G)$. For a fixed $\omega \in \Omega$, $\phi(\omega) : G \rightarrow \mathbb{R}$ is a continuous function.

We prove existence theorems of random solutions of integral equation (1.1).

2. EXISTENCE THEOREMS

Theorem 2.1. Suppose that

(i) $k(\omega, x, y)$ is a nonnegative bounded random continuous kernel such that

$$
\int_G k(\omega, x, y) \, dx > 0, \quad \text{for all } (\omega, y) \in \Omega \times G,
$$

(ii) $a_i(x) \geq 0$, for all $x \in G$, $a_i(x) \in C(G)$, $0 < a_i < 1$ ($i = 1, 2, \ldots, n$)

and there exists some a_{i_0} satisfying $\inf_{x \in G} a_{i_0}(x) > 0$. Then equation (1.1) has at least one nonnegative, not identically vanishing random continuous solution $\phi(\omega, x) \in C(G)$.

Proof. First, we construct a cone in $(C(G), \| \cdot \|_C)$

$$
P = \{ \phi \mid \phi \in C(G), \phi(x) \geq 0, \| \phi \|_L \geq \beta M^{-1} \| \phi \|_C \}, \quad (2.1)
$$

where

$$
\beta = \inf_{y \in G} \int_{\omega \in \Omega} k(\omega, x, y) \, dx > 0,
$$

$$
M = \sup_{(x, y) \in \Omega \times G} k(\omega, x, y),
$$

$$
\| \phi \|_C = \max_{\omega \in \Omega} \| \phi(\omega) \|,
$$

$$
\| \phi \|_L = \left(\int_G \| \phi(x) \|^p \, dx \right)^{1/p}.
$$

It is easy to show that P is a cone.

We next consider three steps to prove the theorem.

(i) We prove that for each $\omega \in \Omega$, $A(\omega)(\cdot) : P \rightarrow P$ is a completely continuous operator. In fact, $\phi \in P$, and

$$
\| A(\omega) \phi \|_L = \int_G (A(\omega) \phi) \, dx = \int_G dx \left(\int_G k(\omega, x, y) f(y, \phi(y)) \, dy \right) \geq \beta \left\| \bar{f} \phi \right\|_L,
$$

where $\bar{f} \phi$ denote $f(x, \phi(x))$. On the other hand, $A(\omega) \phi \leq M \| \bar{f} \phi \|_L$ and hence,

$$
\| A(\omega) \phi \|_L \geq \beta M^{-1} \| A(\omega) \phi \|_C.
$$

Hence, $A(\omega) \phi \in P$, that is, $A(\omega)(\cdot) : P \rightarrow P$, for all $\omega \in \Omega$.

It is easy to see that \(\tilde{f} : P \to L \) is a continuous bounded operator. Then, for any fixed \(\omega \in \Omega \), \(A(\omega, \cdot) : P \to P \) is a completely continuous operator.

(ii) We prove that \(A(\omega)\phi : \Omega \to P \) is a random operator for all \(\phi \in P \).

Set \(Q = C(G \times G) \), \(Q \) is a separable real Banach space with a norm

\[
\| K(x, y) \| = \max_{x, y \in G} | K(x, y) |, \quad \text{for all } K(x, y) \in Q.
\]

Since \(k(\omega, x, y) \) is a random continuous kernel for all \(\omega \in \Omega \), \(k(\omega, x, y) \in Q \). The kernel \(k(\omega, x, y) \) may be seen as mapping \(k(\omega) : \Omega \to Q \), \(k(\omega) \) is a \(Q \)-valued random variable.

We first recall the following known propositions and a corollary.

1. Suppose that \(X \) is a separable Banach space, \(x(\omega) : \Omega \to X \) is an \(X \)-valued random variable if and only if for every linear functional \(x^* \in D \), \(x^*(x(\omega)) \) is a real-valued random variable (where set \(D \subset X^* \) is said to be a total set on \(X \), i.e., if for every \(x \neq 0 \), \(x \in X \), there exists one \(x^* \in D \) such that \(x^*(x) \neq 0 \)).

2. In a separable Banach space, random variable \(\Rightarrow \) weakly random variable.

3. Let \(X \) be a separable Banach space, \(X_0^* \) be a total set on \(X \), \(x : \Omega \to X \), then \(x(x) \) is a weakly random variable \(\Rightarrow \) for all \(x^* \in X_0^* \), \(x^*(x(\omega)) \) is a real-valued random variable.

Corollary. In a separable Banach space, \(x(\omega) : \Omega \to X \) is \(X \)-random variable if and only if for all \(x^* \in X_0^* \), \(x^*(x(\omega)) \) is a real-valued random variable. We write

\[
\tilde{f}(y) = f(y, \phi(y)) \in C(G), \quad \phi \in C(G).
\]

We then set

\[
\tilde{A}(\omega) \tilde{f} = A(\omega) \phi = \int_G k(\omega, x, y) \tilde{f}(y) \, dy.
\]

Obviously, for all \(\omega \in \Omega \), \(\tilde{A}(\omega) : C(G) \to C(G) \) is completely continuous.

We construct two total sets on \(Q \).

(a) If \((x_0, y_0) \in G \times G \), set \(g_{x_0, y_0}(k) = k(x_0, y_0) \), for all \(k(x, y) \in Q \). Hence, \(Q_1^* = \{ g_x, y : x, y \in G \} \) is a total set on \(Q \) and for all \(\omega \in \Omega \), \(g_{x_0, y_0}(\omega, x, y) = k(\omega, x, y) \).

(b) If \(x_0 \in G \), \(f_0 \in C(G) \), set

\[
H_{x_0, f_0}(k) = \int_G k(x_0, y) f_0(y) \, dy, \quad \text{for all } k(x, y) \in Q.
\]

Hence, \(Q_2^* = \{ H_{x, f} : x \in G, \ f \in C(G) \} \) is a total set on \(Q \) and

\[
H_{x, f}(k(\omega, x, y)) = \int_G k(\omega, x, y) \tilde{f}(y) = \tilde{A}(\omega) \tilde{f} = A(\omega) \phi.
\]

From known propositions \(Q_1^* \) and \(Q_2^* \), we know that \(k(\omega, x, y) : \Omega \to Q \) is a random variable, where \(k \) is a random kernel and

\[
\Rightarrow \text{ for all } x \in G, \text{ for all } f \in C(G), \Phi(\omega, x) = \int_G k(\omega, x, y) f(y) \, dy \text{ is a random variable},
\]

\[
\Rightarrow \text{ for all } f \in C(G), \Phi(\omega, x) = \int_G k(\omega, x, y) f(y) \, dy \text{ is a } C(G) \text{-valued random variable},
\]

\[
\Rightarrow \text{ for all } f \in C(G), \tilde{A}(\omega) f \text{ is a } C(G) \text{-valued random variable},
\]

\[
\Rightarrow \tilde{A} : \Omega \times C(G) \to C(G) \text{ is a random operator}.
\]

In particular, we take \(\tilde{f}(y) = f(y, \phi(y)) \), \(\tilde{A}(\omega) \tilde{f} = A(\omega) \phi \) is a \(C(G) \)-valued random operator.

Then \(\phi \in P \subset C(G) \), \(A(\omega) \phi : \Omega \times P \to P \) is a random completely continuous operator.

(iii) We prove that \(A(\omega) \phi \), i.e., \(A(\omega, \phi) \) satisfies conditions of Lemma 1.1.
Suppose that P_r is a bounded open set in $P(r > 0)$

$$0 < r < (\tau_0 \beta)^{1 - a_{i_0}}^{-1}, \quad \tau_0 = \inf_{x \in G} a_{i_0}(x) > 0.$$

(2.2)

We prove that

for all $(\omega, \phi) \in \Omega \times \partial P_r \Rightarrow A(\omega, \phi) \notin \phi.$

(2.3)

In fact, if there is $(\omega_0, \phi_0) \in \Omega \times \partial P_r$ such that

$$A(\omega_0, \phi_0) \leq \phi_0, \quad 0 \leq \phi_0(x) \leq r$$

so that

$$\phi_0(x) \geq A(\omega_0, \phi_0(x)) \geq \int_G k(\omega_0, x, y) a_{i_0}(y) [\phi_0(y)]^{a_{i_0}} dy \geq \frac{\tau_0}{r^{1 - a_{i_0}}} \int_G k(\omega_0, x, y) \phi_0(y) dy,$$

(2.4)

since

$$\int_G \phi_0(x) dx > 0, \quad r \leq (\tau_0 \beta) (1 - a_{i_0})^{-1}.$$

This contradicts (2.2), then (2.3) holds.

On the other hand, we take $R > r$ such that

$$R > M \sum_{i=1}^n \|a_i\| L R^{a_i}.$$

(2.5)

We prove that

$$(\omega, \phi) \in \Omega \times \partial P_R \Rightarrow A(\omega, \phi) \notin \phi.$$

(2.6)

This contradicts (2.4), then (2.5) holds.

From (2.3), (2.5), and Lemma 1.1, we know that $A(\omega, \phi)$ has random fixed-point $\phi(\omega, x) \in P_R \setminus \overline{P}_r$, i.e., random Hammerstein equation (1.1) has a nonnegative random continuous solution which does not vanish identically.

Theorem 2.2. Suppose that

(i) $k(\omega, x, y)$ is a nonnegative bounded random continuous kernel, that is,

$$\int_G k(\omega, x, y) \, dx > 0, \quad \text{for all } (\omega, y) \in \Omega \times G.$$

(ii) $a_i(x) > 0$, $a_i(x) \in C(G)$, $a_i > 1$ ($i = 1, 2, \ldots, n$) and there exist some a_{i_1}, satisfying

$$\inf_{x \in G} a_{i_1}(x) > 0.$$

Then equation (1.1) has at least one nonnegative, not identically vanishing random continuous solution $\phi(\omega, x)$.

Proof. By the same method used for Theorem 2.1, we may prove that $A : \Omega \times P \rightarrow P$ is a random completely continuous operator, where P denotes a cone (2.1) in $C(G)$. We take

$$R \geq \beta^{(-a_{i_1}+1)/(a_{i_1}-1)} \tau_1^{(-(a_{i_1}-1)^{-1})} \left(M \text{ mes } G \right)^{(a_{i_1})/(a_{i_1}-1)},$$

(2.6)
Theorems of Random Solutions

where

\[\tau_1 = \inf_{x \in G} a_i(x) > 0, \quad M = \sup_{(x,y) \in G \times G} k(\omega, x, y), \]

and mes \(G \) represents the measure of \(G \).

First, we prove that

\[(\omega, \phi) \in \Omega \times \partial P_R \Rightarrow A(\omega, \phi) \notin \phi. \tag{2.7} \]

In fact, there exists \((\omega_2, \phi_2) \in \Omega \times \partial P_R \) such that \(A(\omega_2, \phi_2) \leq \phi_2 \), hence,

\[(\text{mes} G) \| A(\omega_2, \phi_2) \|_C \geq \int_G A(\omega_2, \phi_2) \, dx \]

\[\geq \int_G k(\omega, x, y) a_i(y) \, d\mu(\omega) \int_G \phi_2(y) \, dy \geq \beta \tau_1 \int_G [\phi_2(y)]^{a_i} \, dy. \]

By Theorem 192 [4], we have

\[\left(\int_G [\phi_2(x)]^{a_i} \, dx \right)^{\frac{1}{a_i}} \geq (\text{mes} G)^{\frac{1}{a_i}} - 1 \int_G \phi_2(x) \, dx, \]

since \(\phi_2 \in P, \int_G \phi_2(x) \, dx \geq \beta M^{-1} \| \phi_2 \|_C \). Hence,

\[R = \| \phi_2 \|_C \geq \| A(\omega_2, \phi_2) \|_C \geq \beta^{a_i + 1} \tau_1 (M \text{ mes} G)^{-a_i}, \]

\[\| \phi_2 \|_C^{a_i} = \beta^{a_i + 1} \tau_1 (M \text{ mes} G)^{-a_i} R^{a_i}. \]

This contradicts (3.6) and so (2.7) holds.

On the other hand, we take \(r \) such that \(0 < r < R \) and

\[M \sum_{i=1}^n \| a_i \|_L \, r^{a_i} < 1. \tag{2.8} \]

We prove that

\[(\omega, \phi) \in \Omega \times \partial P_r \Rightarrow A(\omega, \phi) \notin \phi. \tag{2.9} \]

In fact, there exists \((\omega_3, \phi_3) \in \Omega \times \partial P_r \) such that \(A(\omega_3, \phi_3) \geq \phi_3(x) \). Hence,

\[r = \| \phi_3 \|_C \leq \| A(\omega_3, \phi_3) \|_C \leq M \sum_{i=1}^n \| a_i \|_L \, \| \phi_3 \|_C^{a_i} = M \sum_{i=1}^n \| a_i \|_L \, r^{a_i}. \]

This contradicts (2.8) and so (2.9) holds.

From (2.7), (2.9), and Lemma 1.1, we know \(A(\omega, \phi) \) has at least one random fixed-point \(\phi(\omega, x) \in C(G) \). For any \(\omega \in \Omega, \phi(\omega, x) \in P_{P_r} \), denotes \(\phi(\omega, x) \in C(G) \) and is nonnegative, but does not vanish identically.

REFERENCES