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A b s t r a c t - - W e  propose operator splitting methods for solving the linear complementarity prob- 
lems arising from the pricing of American options. The space discretization of the underlying Black- 
Scholes equation is done using a central finite~difference scheme. The time discretization as well as 
the operator splittings are based on the Crank-Nicolson method and the two-step backward differen- 
tiation formula. Numerical experiments show that the operator splitting methodology is much more 
efficient than the projected SOR, while the accuracy of both methods are similar. (~) 2004 Elsevier 
Ltd. All rights reserved. 

K e y w o r d s - - A m e r i c a n  option, Operator splitting method, Time discretization, Linear comple- 
mentarity problem. 

1.  I N T R O D U C T I O N  

Options give a right to buy (call option) or sell (put  option) an underlying asset, which can be a 

stock, for a given price (strike/exercise price). The wri ter  of option, who sold the option, has the 

obligation to buy or sell the underlying asset if the holder of opt ion chooses to  exercise the option. 
A European option can be exercised only when the option expires, while an American option can 

be exercised any t ime before the expiry date. Thus, American options are more flexible and, 

hence, they are generally more valuable. 
The seminal paper  [1] describes the Black-Scholes parabolic  par t ia l  differential equation which 

gives the value of European options. One of the first papers  s tudying the valuation of American 
options is [2]. Since then there has been a lot of research on pricing options; see [3] and references 

therein. 
For European options, there  exist analytical  formulas to calculate their  price. American options 

have an addit ional  constraint  for the value of the option, and due to this,  they  lead to free 

boundary  problems. In general, numerical methods have to be employed to compute the value of 

American options. In this paper ,  we consider methods based on a finite-difference discretization 
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of the Black-Scholes equation for pricing American options. Typically, the space discretization is 
performed using central finite-dii~erence schemes. We will also use this type of discretization in 
the following. 

The most common time discretization for the Black-Scholes equation is the CrankoNicolson 
method. It  is second-order accurate with respect to the size of the time step, but it has poor 

stability properties which lead to oscillations in the price function. The two-step backward 

differentiation formula (BDF) time discretization is also second-order accurate in time but it has 
better stability properties [4], while being slightly more complicated to use since it is a multistep 
method. We consider both methods in this paper. 

These traditional time discretizations lead to a linear complementarity problem at each time 
step. It is much more difficult to construct efficient solution methods for linear complementarity 
problems than for linear problems. The most commonly used method is the projected successive 
over relaxation (PSOR) method [3,5,6]. It is rather inefficient for finer space discretization. In 
order to avoid the solution of linear complementarity problems, we propose time discretization 
schemes based on operator splitting. These techniques are often used in computational fluid 
dynamics; see [7,8] and references therein. The basic idea is to decouple problematic operators 

into separate fractional time steps in the discretization. In our case, we decouple the Black- 
Scholes operator and the constraint for the value of the option. This splitting leads to the 
solution of a linear problem and to a simple correction step at each time step. Thus, the arising 
subproblems can be solved much more easily and efficiently than the original problem. In the 
numerical experiments, we also show that  the accuracy of the split and nonsplit versions of the 
discretizations are essentially the same. 

The outline of the paper is the following. First, we describe the linear complementarity problem 
giving the value of the American options. Then, the space and time discretizations are consid- 
ered. After this, the operator splittings are described for the Crank-Nicolson and BDF time 
discretizations. Numerical experiments demonstrate the efficiency and accuracy of the proposed 

approach. Finally, some conclusions are given as well as a proposal for future research. 

2. M O D E L  F O R  A M E R I C A N  O P T I O N S  

We consider an American put option which gives the right to sell the underlying asset with 
the exercise price at any time before the expiry time of the option. In the following, we denote 
the exercise price by E, the expiry time by T, the risk free interest rate by r, and the volatility 
by G. The price v of the option can be obtained from the solution of the linear complementarity 
problem 

Ov 1 2 2 02v  Ov 

[v - ( E  - x ) ] .  ~ = 0, 

v - (E -x )>O,  ),>_0, 
v = max(E - x, 0), 

V ~ E ,  

v - + 0 ,  

x > 0 and t ~ [0, T], 

x > 0 and t E [0,T], 

x > 0 and t E [0, T], 

x > 0 and t - -  T, 

x = 0 a n d t e [ 0 , T ] ,  

x -+ oo and $ e [0, T], 

(1) 

where t is the time and x is the value of the underlying asset [3]. One should note that  we have 
a final condition in (1) and the integration in time is done backwards. The auxiliary variable 
in (1) forces the value of the option to be higher than E - x. 

In order to obtain an equation in a finite domain, the domain (0, oo) is truncated to be (0, cE), 
where c is typically three or four. The boundary condition at x =- c E  is chosen to be v = 0. 
Normally, this truncation of the domain leads to a negligible error in the value of the option [9]. 
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3.  S P A C E  D I S C R E T I Z A T I O N  

For the space discretization, we use a uniform grid on interval (0, cE) with n + 1 grid points. 
The grid step size is denoted by Ax. Let the value of v at grid point xi = i A x  be denoted by vi, 
i = 0 , . . . ,  n. By using central finite differences, we get 

1cr2 202V 
~ x ~  ( )  

and 
Ov 1 

~ ~ 2 - £ ~ x r ~ ( ~ + ~  - v~- l ) .  (3) 

By substituting xc = l a x  to approximations (2) and (3), we obtain 

V1 ~ 0 ~  + ~ ° v  _ ~ ~ ~1 ( ~  _ ~)~-~ _ ( ~  + ~)~ + ~ ( ~  + ~)~÷~. (4) 

Let us denote by A the matrix arising from the finite-difference scheme (4). Then, the semidis- 
crete form of the PDE in (1) reads 

Ov 
o-7 + Av  - ~ = 0, t e [0, T]. (5) 

It can be shown [10] that  this discretization leads A to be an M-matr ix  if the condition a 2 > r 
is verified, and this guarantees that there are no oscillations in the solution due to the space 
discretization. If cr 2 > r does not hold, an M-matr ix  can still be obtained by adding some 

artificial diffusion into the Black-Scholes operator. 

4 .  T I M E  D I S C R E T I Z A T I O N S  

We use a uniform time step At. The solution v at time t = k A t  is denoted by v (k). Similarly, 
the auxiliary variable/~ at time t = k A t  is denoted by A (k). The nodal values at t -- T are given 
by v~ m) = max(E  - x~, 0), where m = T / A t .  

A typical time stepping scheme for American option pricing, in which v (k) and A (k) are com- 

puted from v (k+l), is given by 

1 _ + ( / 1 -  + - 0, - -  

A---~ (6) 
0, > x,, _> 0, 1,2, , n -  1 

Here, the parameter a is chosen to be between zero and one. The following three choices lead 
to well-known schemes: a --- 1 gives the implicit backward Euler method, a = 1/2 gives the 
Crank-Nicolson method, and a = 0 gives the explicit forward Euler method. Out of all possible 
values of a, only the Crank-Nicolson method is second-order accurate in time. The implicit 
Euler method has good stability properties, while the Crank-Nicolson method has poor stability 
properties, since it is not L-stable [4]. 

The two-step backward differentiation formula (BDF) is second-order accurate in time and 
L-stable [4]. In [11], the BDF was used for pricing American options. The BDF for (5), in which 
v (k) and A (k) are computed from v (k+l) and v (k+2), is given by 

2 A(k) ) 
At (7) 

The time integration has to be started with some other method, since the BDF is a two-step 
scheme. We will use the implicit Euler method for the first time step. This is likely to reduce 
the accuracy of the solution, but the asymptotic second-order accuracy is still maintained. 

The arising problems (6) and (7) are linear complementarity problems. Special methods have 
been developed for their solution. The projected SOR (PSOR) method is the simplest and the 
most commonly used among these methods [3,5,6]. 
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5. O P E R A T O R  S P L I T T I N G S  

The idea of our splittings is to treat the Black-Scholes operator in one fractional time step and 
the constraint v~ k) > E - x~ in another fractional time step. For example, it is typical to treat 
the incompressibility constraint in the Navier-Stokes equations in a similar manner; see [7,8] and 
references therein. For the discretizations (6) and (7), the first fractional step reads 

and 

1 _ ~(k)) 
(8) 

respectively. The intermediate vector ~(k) can be efficiently solved from (8) and (9) by using the 
LU decomposition. 

The second fractional step enforces the constraint by projecting the solution to be feasible and 
updates the auxiliary variable A. This step associated to (8) and (9) is given by 

1 
At \ ./ (10) 

and 

(11) 

respectively. The component pairs u i- (k) and A~ k) from (10) and (11) can be solved easily, since 
they are not coupled with other components. 

6. N U M E R I C A L  E X P E R I M E N T S  

We consider an American put option with the following parameters: the volatility a = 0.4, 
the risk free interest rate r = 0.1, the exercise price E = 10.0, and the expiry time T = 0.5. In 
our experiments, the computational domain (0, cE) × [0, T] is (0, 50) x [0, 0.5]. We compare the 
accuracy of all proposed discretizations. The number n of space steps and the number m of time 
steps are chosen in such a way that almost the best possible accuracy is reached with a given 
number mn of space-time grid points. 

In Table 1, we give the maximum errors for the option price v and the CPU times on a HP 
]5600 workstation for the Crank-Nicolson-based time discretizations. The same information for 
the BDF-based time discretizations are given in Table 2. In the PSOR method, the relaxation 
parameter is one leading to the projected Gauss-Seidel method and the stopping criterion is 
chosen experimentally in such a way that the total error is 10% larger than the discretization 
error. The operator splitting is denoted by O-S in the tables and it uses the LU decomposition 
to solve the tridiagonal systems of linear equations in the first fractional step. 

7. C O N C L U S I O N S  

The proposed operator splittings for American options lead to solution of tridiagonal systems 
of linear equations and simple projections. The numerical experiments demonstrate that the 
solution of these problems is much faster for larger problems than the use of the PSOR method to 
solve the original linear complementarity problems; moreover, operator splitting does not reduce 
essentially the accuracy of solutions. With the PSOR method, the CPU time is increased by a 
factor of eight when both space and time discretizations are made twice finer. The corresponding 



Table 1. 
schemes. 

Operator Splitting Methods 

The CPU times and the maximum errors for the Crank-Nicolson-based 

n m 

16 2 

32 4 

64 8 

128 16 

256 32 

512 64 

1024 128 

2048 256 

4096 512 

PSOR O-S 

Error CPU Error 

1.20515E-01 

4.50055E-02 

9.39104E-03 

2.45729E-03 

9.09189E-04 

1.80041E-04 

7.21728E-05 

2.45297E-05 

1.06021E-05 

0.000 

0.001 

0.005 

0.017 

0.119 

1.302 

11.944 

111.962 

1 038.110 

CPU 

1.28368E-01 0.000 

4.46548E-02 0.000 

8.23145E-03 0.001 

1.34804E-03 0.004 

1.45181E-03 0.014 

3.20324E-04 0.053 

1.33409E-04 0.209 

5.95396E--05 0.852 

3.30749E-05 3.333 

Table 2. The CPU times and the maximum errors for the BDF-based schemes. 

n 

16 2 

32 4 

64 8 

128 16 

256 32 

512 64 

1024 128 

2O48 256 

4094 512 

PSOR O-S 

Error CPU Error 

1.48356E-01 

4.31706E-02 

1.29812E-02 

3.08468E-03 

1.09742E-03 

3.52142E-04 

1.54448E-04 

5.77862E-05 

2.54980E-05 

0.000 

0.001 

0.009 

0.022 

0.194 

1.716 

15.012 

145.808 

1 268.679 

1.63957E-01 

4.23987E-02 

1.01632E-02 

1.92143E-03 

7.43285E-04 

2.89327E-04 

1.18621E-04 

4.21406E-05 

1.99552E-05 

CPU 

0.000 

0.000 

0.001 

0.004 

0.013 

0.050 

0.195 

0.781 

3.058 

813 

fac to r  for o p e r a t o r  s p l i t t i n g  is four. I t  would  be  poss ib le  to  i mp ro v e  t h e  efficiency of t h e  P S O R  

m e t h o d  by  t u n i n g  t h e  r e l a x a t i o n  p a r a m e t e r ,  b u t  st i l l  i t  would  n o t  b e  c o m p e t i t i v e  w i t h  t h e  o p e r a t o r  

sp l i t t i ng  app roach .  In  t h e  P S O R  m e t h o d ,  i t  is n o t  easy  to  t u n e  t h e  r e l a x a t i o n  p a r a m e t e r  a n d  

to  choose  a su i t ab l e  to l e rance  in t h e  s t o p p i n g  cr i te r ion .  Due  to  th is ,  t h e  o p e r a t o r  sp l i t t i ng  is 

m u c h  easier  to  use, s ince  i t  is a p a r a m e t e r  free m e t h o d .  T h e  a c c u r a c y  of  t h e  Cran k -N i co l s o n  a n d  

B D F - b a s e d  m e t h o d s  were s imi la r  in  n u m e r i c a l  e x p e r i m e n t s .  

A n  i n t e r e s t i n g  top ic  for f u t u r e  r e sea rch  is to  s t u d y  o p e r a t o r  sp l i t t i ngs  for p r i c ing  A m e r i c a n  op- 

t ions  us ing  h i g h e r - d i m e n s i o n a l  models ,  for example ,  t h e  Black-Scholes  e q u a t i o n  w i t h  a s t ochas t i c  

volat i l i ty.  T h e s e  p r o b l e m s  are  c o m p u t a t i o n a l l y  m u c h  more  expens ive  to  solve a n d  i t  is n o t  easy  

to des ign  a n  efficient so lu t ion  p r o c e d u r e  w i t h o u t  re ly ing  on  o p e r a t o r  sp l i t t ing .  
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