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The problem of the densest packing of n equal circles in a square has been solved for n < 10 
in [4, 61; and some solutions have been proposed for n > 10. In this paper we give some better 

packings for n = 10, 11, 13 and 14. 

1. Introduction 

Consider a finite family of n circular disks, each of diameter one, whose 
interiors are pair-wise disjoint and contained in a square S. A classical problem is 
to find the smallest side s of such a square. This is clearly equivalent to 
maximizing the minimum pairwise distance 112 among n points in a unit square and 
we have m = l/(s - 1). 

This problem has been solved for n s 9 [4, 61. For n < 27 efficient arrangements 
are given by Goldberg [4]. The case 12 = 10 has been successively improved by 
Schaer [7], Milan0 [5] and Valette [8] (see Fig. la and Ib). 

In this paper we give a better solution for 12 = 10, which, following the tradition 
instituted by the previous authors, we think to be optimal, and some better 
arrangements for IZ = 11, 13 and 14. 

2. Packing 10 circles 

In a square ABCD of side s - 1 let us define (whenever possible) the points 4, 

p2, . . . , P9 as shown in Fig. 2 where PI = A, P3 is a point of AD at distance x 
from D, and Pz, P4, Ps, P6, P,, Ps are on the boundary in such a way that the 

eight distances W%, p3), d(P,, p4), d(P,, PJ, d(P,, P,), d(P,, P,), d(P,, P,), 

d(P,, P,) and d(P,, PI) are equal to 1. Let y = d(P,, P,). 
It is not difficult to show that for some fixed s, the distance y is a continuous 

function of x, and for some fixed x, this distance is an increasing function of s. 
Numerical calculation gives that: 

forx =0 and s=3.365 y>1.0045 and 

forx=O.l and s=3.390 y<O.967. 

Elsevier Science Publishers B.V. (North-Holland) 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82462911?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


304 M. Mallard, C. Payan 

Goldberg’s solution 
sz3.4 

mr0.41667 

Milano’s solution 

sr3.38016 

mr0.42014 

Fig. 

Fig. 

Schaer’s solution 

sr3.38356 

m-0.41954 

la. 

Valette’s solution 

sr3.374227 

m-0.421 190 

lb. 

Fig. 2. 
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Fig. 3. 

It follows that for any value of s in [3.365,3.390] we have 

forx=O y > 1 and 

forx=O.l y<l. 

Then for any value of s in [3.365,3.390] there exists an x,,,~ in [0, 0.11 such that 
y = 1. In the following we will choose P3 such that d(P,, P,) = 1. 

Let PI0 be the point equidistant from P4, P6 and P9 and let z be d(P,,, Pa). 

z is a continuous and increasing function of S; and solving the equation z = 1 
for s in [3.365,3.390] gives s = 3.37372076. . . (this is obtained with x = 
0.02724496. . .). 

Corresponding to this value of s we obtain m = 0.42127954. . . . 

This packing is shown in Fig. 3. 

3. Packing 11, l3 or 14 circles 

The arrangements shown in Fig. 4 are given by Goldberg [4] and we propose 
the better packings shown in Fig. 5. In fact our packing of 13 circles can be 

sr3.512490 ~-3.828427 

mr0.398012 m-0.353553 

Fig. 4. 

sr3.097777 

m--0.345092 
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,_6+m+fit4/%@ 

=3.511254.:: 

s=2+fl=3.732... 

m= 0.398207... 
m=m=0.366025... 

2 

Fig. 5. 

s =34$=3.866025... 

m=T =0.346915. 

improved as shown in Fig. 6. In this figure plain lines represent unit distances and 
X is a point of DC at distance x from D. 

By adjusting the values of s and x we can make the distances d and e equal to 1, 
the other distances being greater than 1 and we obtain the packing shown in Fig. 

7. 

The corresponding values are: 

x =0.029018318. . . , f = 1.00018318. . . , g = 1.00019284. . . , 

s = 3.731523914. . . , m = 0.366096007. . . . 

The research of these arrangements has been facilitated by the use of 
Cabri-Geombtre, a software for Geometry developed in our laboratory. Elemen- 
tary objects of Cabri-Geombtre can be linked by geometrical relations which 
remain when moving any basic point [l-3]. 

Fig. 6. 
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Fig. 7. 
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