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The aim of this article is to present some new stability sufficient conditions for
discrete-time nonlinear systems. It shows how to use nonnegative semi-definite
functions as Lyapunov functions instead of positive definite ones for studying the
stability of a given system. Several examples and some applications to control
theory are presented to illustrate the various theorems. Q 1998 Academic Press

1. INTRODUCTION

This paper deals with the stability of nonlinear discrete-time systems
that can be described by an autonomous difference equation

x k q 1 s f x k , f 0 s 0. 1Ž . Ž . Ž . Ž .Ž .

Stability is a very important property in control system design. Some of the
most important results in stability theory have been known for many
decades. Well-known stability criteria for linear systems were developed a
long time ago. Stability of nonlinear systems can be studied via lineariza-
tion but the general and the most powerful technique is Lyapunov’s second
method. This method actually has its origin in energy considerations. It
consists in the use of an auxiliary function, which generalizes the role of
energy in mechanical systems. For differential equations the method has
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w xbeen used since 1893 7 , while for difference equations its use is more
w xrecent and can be summarized as follows 2, 3, 5 :

Ž .THEOREM 1.1 Lyapunov . The null solution, or the equilibrium state at
Ž .the origin of system 1 is stable if there is some neighborhood of the origin

Ž . Ž .where a positï e definite function V x exists such that its difference DV x s
Ž Ž .. Ž . Ž .V f x y V x along the solutions of 1 is negatï e semi-definite in that

region.

Ž .THEOREM 1.2 Lyapunov . The null solution, or the equilibrium state at
Ž .the origin of system 1 , is asymptotically stable if there is some neighborhood

Ž .of the origin where a positï e definite function V x exists such that its
Ž . Ž .difference DV x along the solutions of 1 is negatï e definite in that region.

The existence of a positive definite function, whose difference is nega-
tive definite, is actually a necessary and sufficient condition for the
asymptotic stability. However, it is often difficult to find such a function.

w xThanks to LaSalle’s invariance principle 6, 4 , the assumption on the
difference of the Lyapunov function in the asymptotic stability theorem
has been considerably relaxed:

Ž .THEOREM 1.3. The null solution of system 1 is asymptotically stable if
there is some neighborhood DD of the origin where a positï e definite function
Ž . Ž . Ž .V x exists such that its difference DV x along the solutions of 1 is negatï e

Ž .semi-definite in DD, and such that no solution of 1 can stay fore¨er in
� < Ž . 4x g DD DV x s 0 , other than the trï ial solution.

Theorem 1.3 is a generalization of the original Lyapunov’s asymptotic
stability theorem. It is very useful in practice, for it does not require the
definiteness of the difference of the Lyapunov function and so it is easier
to find Lyapunov functions satisfying the assumptions of Theorem 1.3 than
it is to find Lyapunov functions which satisfy the assumptions of Theo-
rem 1.2.

Our contribution can be seen as a continuation of the works summa-
rized in the paragraph above. The primary objective of this paper is to give
a new generalization of Lyapunov’s theorems. We do not only relax the
definiteness requirement on the difference of the Lyapunov function, but
also on the Lyapunov function used in the stability theorem as well as in
the asymptotic stability theorem. We show how the results of Lyapunov
can apply when the Lyapunov function is only semi-definite. Our result can

Ž .be formulated as follows: The null solution of system 1 is stable if it is
asymptotically stable with respect to perturbations belonging to the set
where the Lyapunov function V vanishes. It is asymptotically stable if it is
asymptotically stable with respect to perturbations belonging to the largest
invariant set contained in the set where the difference DV vanishes. The
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natural interest is that it is often much easier to find a nonnegative
Lyapunov function satisfying the conditions of our results than it is to find
a positive definite one which satisfies the assumptions of Theorems 1.1,
1.2, and 1.3. For a simple illustration, consider the following 2-dimensional

w xsystem 6 :

¡ ay kŽ .
x k q 1 s ,Ž . 21 q x kŽ .~ 2Ž .bx kŽ .
y k q 1 s ,Ž . 21 q y kŽ .¢
a and b are two constants.

w xLaSalle 6 has applied Theorem 1.3 with the definite Lyapunov function
2 2 Ž .V s x q y . He has shown that the null solution of system 2 is globally

asymptotically stable if a2 F 1, b2 F 1, and a2 q b2 - 2. By using the
Ž .2results of this paper with the semi-definite function V s xy , one can

Ž .easily prove that system 2 is globally asymptotically stable if and only if
< <ab - 1. Section 3 contains the main stability theorems of this paper as
well as some illustrating examples and remarks.

The last section of this paper is devoted to investigating the feedback
stabilization of nonlinear control systems that can be described by

x k q 1 s f x k , u k , f 0, 0 s 0,Ž . Ž . Ž . Ž .Ž .
3Ž .½ y k s h x k ,Ž . Ž .Ž .

Ž . Ž .where x k and y k denote the state and the measurable output, respec-
Ž .tively, and u k is the input or the control.

The stabilization of nonlinear control systems has become, during the
last two decades, one of the most important problems in control theory
and engineering design: whatever the control system performance criterion

Ž .may be, one must check that the resulting system is stable. System 3 is
said to be state feedback stabilizable if there exists a continuous feedback

Ž . Ž .law u x in such a way that the closed-loop system x k q 1 s
Ž Ž . Ž Ž ...f x k , u x k is asymptotically stable. When the complete state mea-

surement is not available, one has to compute a stabilizing control using
Ž .only the measurable output y k . If there exists an output feedback law

Ž . Ž . Ž Ž . Ž Ž ...u y in such a way that the closed-loop system x k q 1 s f x k , u y k
Ž Ž . Ž Ž Ž .... Ž .s f x k , u h x k is asymptotically stable then system 3 is said to be

output feedback stabilizable. However, it is rarely possible to stabilize a
given system by means of an output feedback control. The alternative way

Ž .is to achieve the stabilization of system 3 by using dynamic output
Ž .feedback. This consists in constructing an observer for system 3 , i.e., a
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Ž . Ž Ž . Ž . Ž ..dynamical system x k q 1 s g x k , y k , u k which produces an esti-ˆ ˆ
Ž . Ž . Ž Ž ..mate x k of the state x k and computing a feedback law u x k in suchˆ ˆ

a way that the null solution of the composite system

x k q 1 s f x k , a x k ,Ž . Ž . Ž .Ž .Ž .ˆ½ e k q 1 s f x k , a x k y g x k , h x k , a x kŽ . Ž . Ž . Ž . Ž . Ž .Ž . Ž . Ž .Ž . Ž .ˆ ˆ ˆ

is asymptotically stable.
As an application of the theorems of Section 3, we give a sufficient and

necessary condition for the asymptotic stability of systems in cascade form

x k q 1 s f x k , y k ,Ž . Ž . Ž .Ž .
4Ž .½ y k q 1 s g y k .Ž . Ž .Ž .

This allows us to achieve the stabilization of control systems

x k q 1 s F x k , y k , u k , ¨ k ,Ž . Ž . Ž . Ž . Ž .Ž .
5Ž .½ y k q 1 s g y k , ¨ k ,Ž . Ž . Ž .Ž .

Ž Ž . Ž ..by means of a decentralized feedback law u x , ¨ y .
We derive also a sufficient condition for the feedback stabilization of

Ž . Ž . Ž Ž . .control systems 3 that are free dynamics stable, i.e., x k q 1 s f x k , 0
is stable but not asymptotically stable. The last paragraph of this section

Ž .deals with the stabilization of system 3 by an estimated state feedback.
Ž .We show that if there exists an observer which produces an estimate x kˆ

Ž . Ž .of the state x k of system 3 and if some conditions hold then it is
Ž . Ž .possible to stabilize system 3 by an estimated state feedback law u x . Anˆ

application to bilinear systems is given.

2. NOTATIONS AND PRELIMINARIES

Let us consider a system of difference equations

x k q 1 s f x k , x g UU ,Ž . Ž .Ž .
6Ž .½ f 0 s 0,Ž .

where UU is a neighborhood of the origin in R n and f : R n ª R n is a
continuous function.

kŽ .For each p g UU, let f p denote the value at time k of the solution of
Ž . kŽ . Ž ky1Ž .. 0Ž .6 starting at p. We recall that f p s f f p , f p s p.
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First of all, we give some usual notations and standard definitions:

N is the set of nonnegative integers, R is the set of real numbers, and
Ž .M R is the set of n = n square matrices.n

5 5 n Ž .denotes a norm on R and also its associated norm on M R .n
n n n� 5 5 4 � 5 5 4 � 5 5B s x g R : x - e , B s x g R : x F e , S s x g R : xe e e

4s e .
qŽ . � kŽ . 4f p s f p , k g N .

qŽ .L p is the v-limit set of p.

Ž .In general we are interested in points x g UU such that f x s x .0 0 0
They are usually called an equilibrium point of the system. Corresponding

kŽ .to each equilibrium point x , we have a constant solution f x ' x0 0 0
Ž .of 6 .

Ž .DEFINITION 2.1. Let x g UU be an equilibrium point. System 6 is0
ŽLyapunov stable at x or x is a Lyapunov stable equilibrium point for0 0

Ž ..6 , if for each e ) 0 there is a positive d such that for each x g UU with
5 5 5 kŽ . 5x y x - d , one has f x y x - e for all k g N.0 0

Ž .System 6 is unstable at x if it is not Lyapunov stable at x .0 0

Let AA be the set of points p g UU for which

lim f k p s xŽ . 0
kªq`

kŽ .holds, for all solutions f p issuing from p. AA is called the region of
attraction, or domain of attraction of x . An equilibrium point is said to be0
attractï e if it is an interior point of its region of attraction. We say also

Ž .that system 6 is attractive at x . In general, an attractive equilibrium0
Ž wpoint is not necessarily Lyapunov stable an example can be found in 2,

x.p. 170 .

DEFINITION 2.2. x is an asymptotically stable equilibrium point for0
Ž .system 6 if it is Lyapunov stable and attractive.

In the sequel, we will take x s 0.0

Ž .DEFINITION 2.3. A set Y is invariant if f Y s Y, positively invariant if
Ž . Ž .f Y ; Y, and negatively invariant if Y ; f Y .

For any positively invariant set Y, AA will denote the relative domain ofY
attractivity i.e., AA s AA l Y.Y

DEFINITION 2.4. Let Y be a closed positively invariant set such that
0 g Y. The origin is said to be:

Ž . qŽ .a Y-stable if ;e ) 0, 'd ) 0: f B l Y ; B .d e
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Ž .b Y-asymptotically stable if it is Y-stable and there exists d ) 0
such that

lim f k x s 0, ; x g Y l B .Ž . d
kªq`

Ž . Ž Ž . Ž ..DEFINITION 2.5. A control system x k q 1 s F x k , u k is stabiliz-
Ž .able if there exists a feedback control law u x in such a way that the

Ž . Ž Ž . Ž Ž ...closed-loop system x k q 1 s F x k , u x k is asymptotically stable.

DEFINITION 2.6. A real valued function V is a Lyapunov function for
Ž . Ž . Ž Ž ..system 6 in a neighborhood UU of the origin if V 0 s 0 and V f x y

Ž .V x F 0 for all x g UU.

Ž .In the sequel, if the system 6 has a nonnegative Lyapunov function
defined in a neighborhood of the origin VV ; UU, we will denote by G the0
set where V vanishes, G the set where the difference of V along the
solutions of the system vanishes, and GU the largest positively invariant set
contained in G.

One can easily show that G , GU , and G are closed sets, G is positively0 0
invariant, and

G : GU : G.0

3. MAIN RESULTS

In the first part of this section, we give the stability theorems. The
second subsection contains some remarks and examples.

3.1. Stability Theorems

The first theorem concerns the Lyapunov stability.

THEOREM 3.1. If there exist a neighborhood VV ; UU of the origin and a
0Ž .function V g C VV , R such that

Ž . Ž . Ž .1 V x G 0 for all x g VV and V 0 s 0,
Ž . Ž . Ž Ž .. Ž .2 DV x s V f x y V x F 0 for all x g VV ,
Ž . � Ž .3 the origin is G -asymptotically stable, where: G s x g VV : V x0 0
4s 0 ,

then the origin is Lyapunö stable.

Proof. Suppose that the origin is not stable. Then there exists e ) 0 for
Ž .which it is possible to construct a sequence of initial conditions x ;n ng N

B satisfying lim x s 0 and such that for each n g N, the positivee nª` n
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qŽ . � kŽ . 4trajectory f x does not stay within B , i.e., f x , k g N ­ B . Inn e n e

other words, for each initial condition x , there exists a set of positiven
kŽ .integers KK ; N such that f x f B for all k g KK . Let k be then n e n n

smallest element of KK ; k is simply the first exit-time from B for then n e

Žsolution issued from x the solution does not leave B before the timen e

. Ž .k . The sequence k ; N satisfiesn n ng N

k y1 kn nx , f x , . . . , f x ; B and f x G e , ;n g N.Ž . Ž . Ž .� 4n n n e n

7Ž .

Ž .First of all, let us remark that 7 implies the property

k � 4f x - e , ;k g 0, . . . , q m q - k . 8Ž . Ž .Ž .n n

It must be emphasized, however, that the definition of k does not given
kŽ . kŽ .any information about f x for k ) k : it is possible to have f x g Bn n n e

kŽ .as well as to have f x f B .n e

We take e sufficiently small in order to have B l G ; AA .e 0 G 0

The origin is G -asymptotically stable, so there exists N g N such that0
Ž .the solutions of 6 satisfy

e
kf y - , ;k G N and ; y g B l G . 9Ž . Ž .e 02

ŽThanks to the compacity of B l G , one can easily check that the integere 0
.N can be chosen independently of z.

The continuity of the solutions with respect to initial conditions ensures
the existence of d ) 0 such that

e
k k5 5; x , y g B = B , x y y - d « f x y f y - , ;k F N.Ž . Ž . Ž .e e 2

10Ž .

Ž .The sequence x tends to the origin as n tends to q`, so theren ng N

5 5 Ž .exists n g N such that x - d for all n G n . Thus, by 10 , one has0 n 0

e
m � 4f x - , ;m g 0, . . . , N and ;n G n .Ž .n 02

Ž .So, by 8 , this implies that N - k for all n G n . Therefore, we haven 0
Ž .0 - k y N - k for all n G n . Taking into account 7 , we getn n 0

k yNnf x - e , ;n G n .Ž .n 0
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Ž . k nyN Ž .Therefore, the sequence u defined by u s f x has a conver-n nG n n n0
Ž .gent subsequence say u . Let z s lim u g B . Since V isfŽn. nG n nªq` f Žn. e0

assumed to be continuous, we have

0 F V z s lim V u s lim V f kfŽn.yN xŽ . Ž . Ž .Ž .fŽn. f Žn.
nªq` nªq`

F lim V x s0.Ž .fŽn.
nªq`

Ž .Hence, z belongs to B l G and then 9 yieldse 0

e
Nf z - . 11Ž . Ž .

2
kfŽn.yN Ž . 5Since z s lim f x , there exists p G n such that z ynªq` f Žn. 0

k pyN Ž .5 Ž .f x - d . So, by 10 , we getp

e
N N k yNpf z y f f x - . 12Ž . Ž . Ž .Ž .p 2

Ž . Ž .Finally, the combination of 11 and 12 leads to

k pf x - e ,Ž .p

Ž .which is a contradiction to 7 . This ends the proof of Theorem 3.1.

Now we state and prove the asymptotic stability theorem.

THEOREM 3.2. If there exist a neighborhood VV ; UU of the origin and a
0Ž .function V g C VV , R such that

Ž . Ž . Ž .1 V x G 0 for all x g VV and V 0 s 0,
Ž . Ž . Ž Ž .. Ž .2 DV x s V f x y V x F 0 for all x g VV ,
Ž . U U3 0 is G -asymptotically stable where G is the largest positï ely

� Ž Ž .. Ž . 4in¨ariant set contained in G s x g VV : V f x y V x s 0 ,

then the origin is asymptotically stable.

� Ž . 4Proof. The set G s x g VV : V x s 0 is positively invariant, so it is0
contained in GU. All the assumptions of Theorem 3.1 are satisfied which
implies that the origin is stable, that is, for any positive d there exists a

Ž .positive number g such that any solution of 6 which starts in B remainsg

in B for all integers n.d

Let AA U be the domain of attractivity relative to GU. We choose d ) 0,G
U

Usuch that B l G ; AA . To show the attractivity of the origin, we shalld G
prove that B is contained in the domain of attractivity, i.e.,g

; x g B , lim f k x s 0. 13Ž . Ž .g
kªq`
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Let x g B and let e be any positive real number. Thanks to the stability0 g

of the origin, it is possible to find h ) 0 in such a way

f n B ; B , ;n g N. 14Ž .Ž .h e

U
USince B l G ; AA , there exists N g N such thatd G

h
Unf y - ;n G N , ; y g B l G . 15Ž . Ž .d2

The continuity of the solutions ensures the existence of a ) 0 such that

h
n n5 5; x , y g B = B , x y y - a « f x y f y - ;n F N.Ž . Ž . Ž .d d 2

16Ž .

qŽ .Now, let y be an element of L x . According to the LaSalle Invariance0
U Ž .Principle, y belongs to B l G , so, by 15 , we haved

h
nf y - , ;n G N. 17Ž . Ž .

2

qŽ .On the other hand y g L x , hence0

p'p g N, f x y y - a . 18Ž . Ž .0

Ž . Ž . Ž .Using 18 , 16 , and 17 we get

h h
Nqpf x - q s h . 19Ž . Ž .0 2 2

Ž .From 14 , it follows

n Nqpf f x - e , ;n g N.Ž .Ž .0

kŽ .This proves that lim f x s 0. So we have shown that there existsk ªq` 0
a positive real number g such that B is contained in the domain ofg

attractivity, and thus Theorem 3.2 is established.

Ž . nNow suppose that the system 6 is defined on R and there exists a
0Ž n q. Ž .nonnegative function V g C R , R which is a Lyapunov function for 6

Ž . Ž Ž .. Ž . n Uthat is DV x s V f x y V x F 0 for all x g R . As above, G de-
� n Ž .notes the largest positively invariant set contained in G s x g R : DV x

Ž Ž .. Ž . 4s V f x y V x s 0 . One can ask the following: Does the global
asymptotic stability of the system restricted to the positively invariant set

U Ž .G imply the global asymptotic stability of system 6 ? The answer is
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unfortunately no as it can be shown in Example 3.3 below. Nevertheless,
we have the following global result which is a consequence of the LaSalle
Invariance Principle and Theorem 3.2.

0Ž n q.THEOREM 3.3. If there exists a function V g C R , R satisfying

Ž . Ž . n Ž .1 V x G 0 for all x g R and V 0 s 0,
Ž . Ž . Ž Ž .. Ž . n2 DV x s V f x y V x F 0 for all x g R ,
Ž . U U3 0 is G -globally asymptotically stable where G is the largest

� n Ž Ž .. Ž . 4positï ely in¨ariant set contained in G s x g R : V f x y V x s 0 ,
Ž . Ž .4 All the solutions of system 6 are bounded,

then the origin is globally asymptotically stable.

3.2. Remarks and Examples

Remark 3.1. Theorem 3.2 states that the asymptotic stability of the
origin is equivalent to its GU-asymptotic stability. This equivalence is no
more true for the Lyapunov stability as it can be shown thanks to the
following example:

EXAMPLE 3.1.

¡ 2x k q 1 s x k q y k ,Ž . Ž . Ž .~y k q 1 s y k ,Ž . Ž . 20Ž .¢ 2x , y g R .Ž .

Ž . 2 �Ž . 2 4Let V x, y s y . We have G s x, y g R : y s 0 .0
nŽ . ŽThe origin is G -stable but the solution of the system is f x, y s x q0

2 . Ž .ny , y , which tends to infinity for all initial data x, y . Thus the system is
unstable. This shows that G -stability of the origin is not sufficient to get0
the stability of the origin with respect to arbitrary perturbations.

EXAMPLE 3.2. It is known that if f is a CC1 function and the lineariza-
Ž .tion of system 6 at zero, namely

­ f
A s 0 21Ž . Ž .

­ x

Žis stable that is, the eigenvalues l of the matrix A lie in the open uniti
< < . Ž .disk: l - 1 , then system 6 is locally asymptotically stable and when thei

Ž .linearization 21 has at least one eigenvalue l outside the closed unit disk
Ž < < . Ž .i.e., l ) 1 then system 6 is unstable. But, when the linearized system is
critical, that is, the matrix A has all its eigenvalues inside the closed unit

< <disk with at least one eigenvalue l which satisfies l s 1, then one cannot
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Ž . Ž .conclude about the stability of system 6 , that is, the zero solution of 6
may be stable or unstable. So the results of this article can be helpful to
study the stability properties of systems whose linearization is critical. For
instance, consider the example

¡x k q 1 s y k ,Ž . Ž .
y kŽ .~y k q 1 s ,Ž . 22Ž .21 q b x kŽ .¢ 2x k , y k g R , b ) 0.Ž . Ž .Ž .

Ž .The linearized system around the equilibrium 0, 0 is

x k q 1 s y k ,Ž . Ž .
23Ž .½ y k q 1 s y k .Ž . Ž .

0 1 ŽHere A s . The linearized system is critical here it is stable but notž /0 1
.asymptotically stable , so the linearization techniques do not allow us to

Ž . Ž . 2conclude about the stability of system 22 . Let V x, y s y . We have
2wŽ Ž Ž .2 .. xDV s y 1r 1 q b x k y 1 F 0, so V is a nonnegative Lyapunov

Ž . Ufunction for system 22 . Moreover, we have G s G and the origin is0
U Ž .G -asymptotically stable. Hence, by Theorem 3.2, the zero solution of 22

is asymptotically stable.

EXAMPLE 3.3. Consider a system described by

¡ x k 3Ž . 2x k q 1 s q y k x k ,Ž . Ž . Ž .Ž .2 2~ y kŽ . 24Ž .
y k q 1 s ,Ž .

2¢ 2x k , y k g R .Ž . Ž .Ž .
Ž . 2 Ž . 2If we take V x, y s y then DV x, y s y3r4 y F 0.

�Ž . 2 Ž . 4 �Ž . 4 UG s x, y g R : V x, y s 0 s x, 0 : x g R s G and so G s G .0 0
The origin is GU-globally asymptotically stable but the system is not
globally asymptotically stable. Indeed, one can see that the set

x , y g R2 : xy s 1� 4Ž .
is invariant, and so global asymptotic stability cannot be expected.

EXAMPLE 3.4. Consider a system described by

¡x k q 1 s Ax k q f x k , y k ,Ž . Ž . Ž . Ž .Ž .~y k q 1 s By k q g x k , y k , 25Ž . Ž . Ž . Ž .Ž . Ž .¢ n px , y g R = R ,Ž .
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Ž . Ž .where A g M R and B g M R are two constant square matrices suchn p
� < < 4that all the eigenvalues of A belong to z g C: z s 1 while all the

� < < 4eigenvalues of B are in z g C: z - 1 , f and g are two functions of class
2 Ž . XŽ . Ž . XŽ . Ž XC with f 0, 0 s 0, f 0, 0 s 0, g 0, 0 s 0, g 0, 0 s 0. Here, f is the

.Jacobian matrix of f.
w x Ž .J. Carr 1, Theorem 8, p. 35 has established that system 25 has a

Ž . 2 Ž . XŽ .center manifold y s h x with h of class C and h 0 s 0, h 0 s 0. He
has also proved the following result

w xTHEOREM 3.4 1 . If the zero solution of

x k q 1 s Ax k q f x k , h x k 26Ž . Ž . Ž . Ž . Ž .Ž .Ž .
Ž .is asymptotically stable then so is the zero solution of system 25 .

w xThe proof proposed in 1 is very clever but here, using Theorem 3.2, we
can give a simpler proof.

Indeed, the matrix B has all its eigenvalues with modulus - 1, so there
Ž . Texists a symmetric positive definite matrix Q g M R such that B QB yp

Ž .Q s yI , where I is the identity matrix of M R .p p p
w Ž .xT w Ž .xLet V s y y h x Q y y h x . The difference of V along the solu-

Ž .tions of 25 is

T
DV s By q g x , y y h Ax q f x , yŽ . Ž .Ž .Ž .

= Q By q g x , y y h Ax q f x , yŽ . Ž .Ž .Ž .
Ty y y h x Q y y h x .Ž . Ž .

On the one hand f and g are supposed to be C 2, so one can write

f x , y s f x , h x q F x , y y y h x ,Ž . Ž . Ž . Ž .Ž .
g x , y s g x , h x q G x , y y y h x ,Ž . Ž . Ž . Ž .Ž .

h Ax q f x , yŽ .Ž .
s h Ax q f x , h x q H x , y ? F x , y ? y y h x .Ž . Ž . Ž . Ž .Ž .Ž .

The matrices F, G, and H are defined by

­ f1
F x , y s x , sy q 1 y s h x ds,Ž . Ž . Ž .Ž .H

­ y0

­ g1
G x , y s x , sy q 1 y s h x ds,Ž . Ž . Ž .Ž .H

­ y0

­ h1
H x , y s Ax q f x , h x q sF x , y ? y y h x ds.Ž . Ž . Ž . Ž .Ž .Ž .H

­ x0
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Ž .On the other hand the set y s h x is positively invariant, so

Bh x q g x , h x y h Ax q f x , h x s 0.Ž . Ž . Ž .Ž . Ž .Ž .
Thus

DV s B y y h x q G x , y y y h xŽ . Ž . Ž .Ž
TyH x , y F x , y y y h x QŽ . Ž . Ž . .

= B y y h x q G x , y y y h xŽ . Ž . Ž .Ž .Ž
yH x , y F x , y y y h xŽ . Ž . Ž . .

Ty y y h x Q y y h xŽ . Ž .
T Ts y y h x B QB y Q y y h xŽ . Ž .

Tq y y h x e x , y y y h x ,Ž . Ž . Ž .
where

e x , yŽ .
Ts B Q G x , y y H x , y F x , yŽ . Ž . Ž .

Tq G x , y y H x , y F x , y QBŽ . Ž . Ž .
Tq G x , y y H x , y F x , y Q G x , y y H x , y F x , y .Ž . Ž . Ž . Ž . Ž . Ž .

Ž .So the difference of V along the solutions of 25 becomes

T
DV s y y h x yI q e x , y y y h x .Ž . Ž . Ž .Ž . Ž .Ž .p

The functions F, G, and H are of class C1 and vanish at the origin, so the
Ž . 1 Ž .matrix e x, y is symmetric, C in x, y and vanishes at the origin. Hence,

in a neighborhood of the origin, one has

y1 2
DV F y y h x .Ž .

2

Thus Theorem 3.2 can apply to finish the proof.

4. APPLICATIONS TO CONTROL PROBLEMS

4.1. Stability and Stabilization of Cascade Systems

In this section we use the theorems of Section 3 to study a special class
of nonlinear discrete-time systems called Cascade systems. The continu-
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Žous-time systems of this form have been studied by many authors an
w x.extensive bibliography can be found in 8, 9 . Consider the following

cascade nonlinear system:

¡x k q 1 s f x k , y k ,Ž . Ž . Ž .Ž .
~y k q 1 s g y k ,Ž . Ž . 27Ž . Ž .¢ n mx k , y k g R = R ,Ž . Ž .Ž .

Ž . Ž .where f and g are continuous functions, f 0, 0 s 0, and g 0 s 0.
Consider then the systems

x k q 1 s f x k , 0 ,Ž . Ž .Ž .
28Ž .n½ x k g R .Ž .

y k q 1 s g y k ,Ž . Ž .Ž .
29Ž .m½ y k g R .Ž .

Using Theorem 3.2, we can state the following

Ž .PROPOSITION 4.1. The system 27 is asymptotically stable if and only if
Ž . Ž .the subsystems 28 and 29 are asymptotically stable.

Ž .Proof. ‘‘If’’ By the converse Lyapunov theorem, the asymptotic stabil-
Ž . Ž .ity of system 29 guarantees the existence of a Lyapunov function V y

defined on a neighborhood YY of the origin of R m and satisfying

V y ) 0, ; y / 0, V 0 s 0,Ž . Ž .
and

V g y y V y - 0 ; y / 0.Ž . Ž .Ž .

Ž . ŽFor the overall system 27 , this function considered as a function of
Ž .. Ž .x, y is a nonnegative function. Its difference along the solutions of 29

�Ž . Ž . 4 �Ž .is nonpositive and vanishes on the set G s x, y : DV x, y s 0 s x, 0 ,
n4 Ux g R . Here G s G s G . Moreover, x s 0 is assumed to be an0

Ž . Ž Ž . .asymptotically stable equilibrium point of x k q 1 s f x k , 0 , so the
origin is GU-asymptotically stable. Thus, all the hypotheses of Theorem 3.2
are satisfied which implies that the origin is an asymptotically stable

Ž .equilibrium point of the system 27 .
Ž . Ž . Ž .‘‘Only if’’ Suppose x, y s 0, 0 is an asymptotically stable equilib-

Ž .rium point of 27 . Then x s 0 is an asymptotically stable equilibrium
Ž . �Ž . n4 Ž .point of 28 because x, 0 , x g R is a positively invariant set for 27

Ž .and y s 0 is an asymptotically stable equilibrium point of 29 because
m�Ž . 4 Ž .y, 0 , y g R is a positively invariant set for 27 .
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The above result can be easily generalized by induction to relate the
stability properties of the large-scale system

¡z k q 1 s f z k ,Ž . Ž .Ž .1 1 1

z k q 1 s f z k , z k ,Ž . Ž . Ž .Ž .2 2 1 2
.~ . 30Ž ..

z k q 1 s f z k , z k , . . . , z k ,Ž . Ž . Ž . Ž .Ž .p p 1 2 p

m¢ iz k g R , i s 1, . . . , p ,Ž .i

to those of a collection of isolated subsystems

z k q 1 s f 0, . . . , 0, z k . 31Ž . Ž . Ž .Ž .i i i

COROLLARY 4.1. The origin z s 0 is an asymptotically stable equilibrium
Ž .point of 30 if and only if z s 0 is an asymptotically stable equilibrium pointi

Ž . � 4of 31 , for all i g 1, . . . , p .

From Proposition 4.1 and Corollary 4.1 we derive a stabilization result
for control systems described by

x k q 1 s F x k , y k , u k , ¨ k ,Ž . Ž . Ž . Ž . Ž .Ž .
32Ž .½ y k q 1 s G y k , ¨ k ,Ž . Ž . Ž .Ž .

Ž . Ž Ž . Ž .. Ž .where z k s x k , y k is the state vector of the system and w k s
Ž Ž . Ž .. p qu k , ¨ k g R = R is the control. F and G are continuous,
Ž . Ž .F 0, 0, 0, 0 s 0, and G 0, 0 s 0.
The problem addressed here is to find conditions under which it is

Ž .possible to stabilize system 32 by a ‘‘decentralized’’ feedback control
Ž . Ž Ž . Ž ..w z s u x , ¨ y . Proposition 4.1 allows us to establish the following

Ž .COROLLARY 4.2. The cascade control system 32 is stabilizable by means
Ž Ž .. Ž Ž Ž .. Ž Ž ...of a decentralized feedback law w z k s u x k , ¨ y k if and only if

Ž . Ž Ž . Ž . . Ž . Ž Ž . Ž ..the systems x k q 1 s F x k , 0, u k , 0 and y k q 1 s G y k , ¨ k are
stabilizable.

Ž . Ž Ž . Ž . Ž . Ž ..In particular, when G y, u s Ay q Bu and F x k , y k , u k , ¨ k s
Ž Ž . Ž ..f x k , y k we rediscover the following classical result

Ž . Ž Ž . .COROLLARY 4.3. If the system x k q 1 s f x k , 0 is asymptotically
Ž .stable and the pair A, B is a stabilizable pair of matrices then the system

x k q 1 s f x k , y k ,Ž . Ž . Ž .Ž .½ y k q 1 s Ay k q Bu k ,Ž . Ž . Ž .

is stabilizable by a linear feedback law u s Ky.
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We would like to mention here that the result given in Corollary 4.3 can
also be proved by means of the center manifold machinery as it has done
for the continuous-time systems. However, the center manifold theorems

Ž .cannot be used to achieve the stabilization of system 32 because no
assumptions are made on the linear part of the functions F and G.

4.2. Stabilization of Nonlinear Systems with Stable Free Dynamics

Consider a discrete-time control nonlinear system described by

x k q 1 s f x k , u k , 33Ž . Ž . Ž . Ž .Ž .
Ž . n mwhere x k g R is the state of the system at time k, u g R is the

n m n 2 Ž .control, and f : R = R ª R is a C function satisfying f 0, 0 s 0. The
problem addressed here is how to find a feedback control which stabilizes
the system at its equilibrium point. To be more precise we recall the
following definition:

Ž .DEFINITION 4.1. System 33 is said to be stabilizable if there exists a
n m Ž .continuous mapping u: R ª R satisfying u 0 s 0 and such that the

Ž . Ž Ž . Ž Ž ...closed loop system x k q 1 s f x k , u x k is asymptotically stable at
the origin.

Thanks to Theorem 3.1 and Theorem 3.2 we shall develop a machinery
Ž .to construct a stabilizing feedback for systems of the form 33 that are

Ž .Lyapunov stable but not asymptotically stable when the control is identi-
cally null. Furthermore, we make the following assumption:

Ž .HH There exist a neighborhood VV of the origin and a function
2Ž n . Ž . Ž . Ž Ž ..V g C R , R satisfying V x G 0 for all x g VV , V 0 s 0, and V f x, 0

Ž .F V x for all x g VV .

Before stating our stabilization result we need to introduce the following
notations: As in Section 3, G denotes the set where V vanishes, i.e.,0

˜ n n 2� < Ž . 4G s x g VV V x s 0 . We define f : R ª R to be the C function0
defined on R n by

f̃ x s f x , 0 . 34Ž . Ž . Ž .
k̃ n nFor all k g N, we define recursively f : R ª R by

0̃f x s x ,Ž .
k̃ ˜ k̃y1f x s f f x , for k G 1.Ž . Ž .Ž .

˜ n m n m mV: R = R ª R and w : R = R = R ª R are defined respectively by

Ṽ x , u s V f x , u , 35Ž . Ž . Ž .Ž .
2 ˜­ V1 Tw x , u , ¨ s 1 y t ¨ x x , tu x ¨ x dt. 36Ž . Ž . Ž . Ž . Ž . Ž .Ž .H 2­ u0
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Ž . Ž .For a fixed h ) 0, let K x and K x be any nonnegative continuous real1 2
Ž . Ž .valued functions satisfying K x q K x / 0, ; x g VV and1 2

K x G sup w x , u , ¨ , ; x g VV . 37Ž . Ž . Ž .1
5 5 5 5u Fh , ¨ s1

­ V ­ f˜K x G f x x , 0 , ; x g VV , 38Ž . Ž . Ž . Ž .Ž .2 ­ x ­ u

and set
h

K x s . 39Ž . Ž .
hK x q K xŽ . Ž .1 2

Now we can state our stabilization result:

Ž . Ž .THEOREM 4.1. Under the assumption HH , if the unforced system x k q 1
Ž Ž . .s f x k , 0 is G -asymptotically stable and the set0

k̃q1 k̃<W s x g VV V f x y V f x s 0 andŽ . Ž .Ž . Ž .½
­ V ­ f

kq1 k˜ ˜f x f x , 0 s 0, ;k g NŽ . Ž .Ž . Ž . 5­ x ­ u

Ž .is reduced to G then, for any positï e constant h, system 33 is asymptoti-0
cally stabilizable by means of the continuous feedback law

T­ V ­ f˜u x s yK x f x x , 0 40Ž . Ž . Ž . Ž . Ž .Ž .ž /­ x ­ u

which satisfies

u x F h , ; x g VV .Ž .

Proof. If one computes the difference of the Lyapunov function V
Ž . Ž . Ž .along the solutions of the closed-loop system 33 ] 40 , one gets from 35

and the Taylor expansion formula

DV x s V f x , u x y V xŽ . Ž . Ž .Ž .Ž .
˜s V x , u x y V xŽ . Ž .Ž .

˜­ V˜s V x , 0 y V x q x , 0 u xŽ . Ž . Ž . Ž .
­ u

2 ˜­ V1 Tq 1 y t u x x , tu x u x dt.Ž . Ž . Ž . Ž .Ž .H 2­ u0
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Notice that

˜ ˜V x , 0 s V f x , 41Ž . Ž . Ž .Ž .
and

˜­ V ­ V ­ f˜x , 0 s f x x , 0 .Ž . Ž . Ž .Ž .
­ u ­ x ­ u

Ž . Ž .So, from 36 and 40 , one gets

1
T˜DV x s V f x y V x y u x u x q w x , u x , u x .Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž .Ž .

K xŽ .

Ž .It follows that, for x g VV such that u x s 0, one has

˜DV x s V f x y V x ,Ž . Ž . Ž .Ž .
Ž .and otherwise, w x, u, ¨ being homogeneous of degree 2 with respect to

¨ , one gets

1 2˜DV x s V f x y V x y u xŽ . Ž . Ž . Ž .Ž .
K xŽ .

u xŽ .2q u x w x , u x , .Ž . Ž .ž /u xŽ .

Ž . Ž . Ž . Ž . 5 Ž .5From 37 ] 38 ] 39 and 40 , one has for any x g VV , u x F h, and so
Ž .one can deduce that DV x F 0.

It remains to prove the asymptotic stability of the origin. To this end, by
Theorem 3.2, it is sufficient to show that the origin is GU-asymptotically
stable where GU is the largest invariant set contained in the locus

<G s x g VV DV x s V f x , u x y V x s 0 .� 4Ž . Ž . Ž .Ž .Ž .

We have

˜DV x s 0 m V f x y V x s 0 and u x s 0Ž . Ž . Ž . Ž .Ž .
­ V ­ f˜ ˜m V f x y V x s 0 and f x x , 0 s 0.Ž . Ž . Ž . Ž .Ž . Ž .
­ x ­ u

42Ž .

U Ž .Let x be any element of G and x k be the solution of the closed-loop
Ž . Ž . Ž . U Usystem 33 ] 40 with x 0 s x g G . Since G is positively invariant for
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Ž . U Ž .the closed-loop system, one has x k g G for all k G 0. Now u x ' 0
U Ž . Ž . Uon G , so the closed-loop system 33 ] 40 on G is governed by

˜x k q 1 s f x k , 0 s f x k . 43Ž . Ž . Ž . Ž .Ž . Ž .
k̃Ž . Ž . Ž .Therefore, the solution issued from x is x k s f x . Hence, by 42 , x

satisfies

k̃q1 k̃V f x y V f x s 0Ž . Ž .Ž . Ž .
and

­ V ­ f
kq1 k˜ ˜f x f x , 0 s 0, ;k g N.Ž . Ž .Ž . Ž .

­ x ­ u

This implies that x g W. Thus GU : W. By hypothesis, the set W is
assumed to be equal to G , so we have GU s G . On the other hand0 0

Ž .system 43 is supposed to be G -asymptotically stable, so the origin is0
U Ž . Ž .G -asymptotically stable for 33 ] 40 . This completes the proof of Theo-

rem 4.1.

Ž . ŽRemark 4.1. When system 33 is such that the unforced system x k q
. Ž Ž . .1 s f x k , 0 is not stable, the above stabilization procedure can still

2 Ž .apply if one can find a C preliminary feedback u s b x in such a way
Ž . Ž Ž . Ž .. Ž .that x k q 1 s f x k , b x is stable. In fact, one can write f x, u s

Ž Ž . .f x, b x q ¨ . Therefore, if the conditions of Theorem 4.1 are satisfied
Ž̃ . Ž Ž .. Ž . Ž .with f x s f x, b x , then the feedback law u x s b x y

˜ TŽ .ŽŽ .Ž Ž ..Ž .Ž Ž ... Ž .K x ­ Vr­ x f x ­ fr­ u x, b x stabilizes system 33 .

EXAMPLE 4.1. To illustrate the stabilization procedure of Theorem 4.1,
let us consider the following nonlinear control system evolving on R3:

¡ x kŽ .1 2 2x k q 1 s q x k q x k q x k ,Ž . Ž . Ž . Ž .1 2 2 32
2~x k q 1 s x k q 2 x k u k ,Ž . Ž . Ž . Ž .Ž . 442 1 3 1 Ž .
4x kŽ .1

x k q 1 s x k q u k .Ž . Ž . Ž .3 3 22¢ 1 q x kŽ .2

The unforced dynamic system

¡ x kŽ .1 2 2x k q 1 s q x k q x k q x k ,Ž . Ž . Ž . Ž .1 2 2 32~
x k q 1 s 0,Ž .2¢x k q 1 s x kŽ . Ž .3 3
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is Lyapunov-stable but not asymptotically stable. By using Theorem 4.1, we
Ž . Ž Ž ..shall compute a stabilizing feedback law u x here x s x , x , x . Let V1 2 3

Ž . 2 2 � 4be the nonnegative function V x s x q x . Here G s x s x s 0 .2 3 0 2 3
Ž . 2We have DV x s yx F 0, so V is a Lyapunov function for the2

unforced system. On the one hand, it is obvious that the origin is G -0
asymptotically stable. On the other hand, one may easily check that

� 4 Ž .W s x s x s 0 s G . So, one can apply Theorem 4.1 to system 442 3 0
and the procedure for the computation of a stabilizer feedback is the
following.

With the same notations as above, simple computations give

24x2 12w x , u , ¨ s x q 2 x ¨ q ¨ ,Ž . Ž .Ž .1 3 1 22ž /ž /1 q x2

Ž . Ž 2 .2 Ž 4 Ž 2 ..2so one can take K x s x q 2 x q x r 1 q x .1 1 3 1 2

­ V ­ f 2 x 4 x1 3
f̃ x x , 0 s 0, ,Ž . Ž .Ž . 2ž /­ x ­ u 1 q x2

Ž . 8 2so one can take K x s 1 q x x . Thus, we get the following bounded2 1 3
stabilizer,

T
4 22h x x 1 q xŽ .1 3 2

u x s 0, y ,Ž . 2 2 28 2 2 2 8 2ž /h x q 1 q x x q 2 x q 1 q x 1 q x xŽ . Ž . Ž . Ž .ž /1 2 1 3 2 1 3

where h is an arbitrary positive real constant.

4.3. A Separation Principle

We consider input-output nonlinear systems described by

x k q 1 s f x k , u kŽ . Ž . Ž .Ž .
45Ž .½ y k s h x k ,Ž . Ž .Ž .

Ž . n Ž .where x k g R is the state of the system at time k and y k is the
measurable output of the system.

n n n m 0 Ž .f : R ª R and h: R ª R are C functions satisfying f 0, 0 s 0,
Ž .h 0 s 0.

Ž .An observer for 45 is a dynamical system whose inputs are the inputs
Ž . Ž .and the outputs of system 45 and which produces an estimate x k of theˆ

Ž . Ž . Ž .state x k in such a way x k y x k ª 0 as k ª q` and the estimationˆ
error must be small if it starts small.
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Ž .Here, we assume that 45 admits an observer of the form

x k s 1 s g x k , y k , u k , 46Ž . Ž . Ž . Ž . Ž .Ž .ˆ ˆ

Ž . Ž . Ž . Ž .where g is continuous and g 0, 0, 0 s 0. Let e k s x k y x k be theˆ
estimation error. The error equation is

e k q 1 s f x k , u k y g x k , y k , u k . 47Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .ˆ

Ž . Ž .System 46 is assumed to be an observer for 45 , so g and f satisfy
Ž . Ž Ž . .f x, u s g x, h x , u for all x and all admissible inputs u. Furthermore

Ž . Ž .the null solution e k ' 0 of 47 is asymptotically stable. The problem
Ž .addressed here is the following: Is it possible to stabilize system 45 by an

estimated state feedback? More precisely, suppose there exists a continu-
Ž .ous feedback law a x defined in a neighborhood of the origin in such a

way that the origin is an asymptotically stable equilibrium point for the
closed-loop system

x k q 1 s f x k , a x k . 48Ž . Ž . Ž . Ž .Ž .Ž .
Ž . Ž .Is the equilibrium x, e s 0, 0 of

x k q 1 s f x k , a x k ,Ž . Ž . Ž .Ž .Ž .ˆ
49Ž .½ e k q 1 s f x k , a x k y g x k , h x k , a x kŽ . Ž . Ž . Ž . Ž . Ž .Ž . Ž . Ž .Ž . Ž .ˆ ˆ ˆ

asymptotically stable?
Without any supplementary conditions, this question remains an open

problem. With the help of Theorem 3.2, we are able to give the following
result which solves the problem for a wide class of nonlinear control

Ž .systems including bilinear systems .

Ž . Ž .PROPOSITION 4.2. Suppose system 46 is an obser̈ er for system 45 and
there exists an autonomous Lyapunö continuous function W for the error

Ž .equation 47 satisfying

Ž . Ž . Ž .i W 0 s 0, W e ) 0 for all e / 0 in a neighborhood EE of the
Ž .origin e s 0 .

Ž . Ž Ž . Ž Ž . .. Ž .ii The difference W f x, u y g x y e, h x , u y W e is negatï e
definite in e g EE for all x g R n and all admissible controls u.

Then the problem of stabilization by an estimated state feedback for system
Ž .45 is sol̈ able. In other words if the origin x s 0 is an asymptotically stable

Ž . Ž . Ž .equilibrium point for system 48 then x, e s 0, 0 is also an asymptotically
Ž .stable equilibrium point for system 49 .

Ž .Proof. To show that system 49 is asymptotically stable, we define the
Ž . Ž . Ž . Ž .function V x, e s W e . V satisfies the assumptions 1 and 2 of Theo-
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rem 3.2. It remains to show that the origin is GU-asymptotically stable.
U �Ž . 4 UHere, we have G s G s G s x, 0 , x g VV . So, on G , we have x s xˆ0

and thus the system is governed by

x k q 1 s f x k , a x k ,Ž . Ž . Ž .Ž .Ž .
which is assumed to be asymptotically stable. This proves that assumption
Ž .3 of Theorem 3.2 is satisfied which ends the proof of Proposition 4.2.

EXAMPLE 4.2. Consider the following bilinear control system

x k q 1 s Ax k q uBx k ,Ž . Ž . Ž .
50Ž .½ y k s Cx k ,Ž . Ž .

Ž . n Ž . mwhere x k g R is the state of the system at time k g N, y k g R is
Ž .the measurable output of the system, and u k g U ; R is the input or the

control. A, B, and C are constant matrices of appropriate dimensions. We
Ž .assume that the pair A, C is observable. A candidate observer for system

Ž .50 is the system

x k q 1 s Ax k q uBx k q K y k y Cx k . 51Ž . Ž . Ž . Ž . Ž . Ž .Ž .ˆ ˆ ˆ ˆ

Indeed the error equation is

e k q 1 s A y KC e k q uBe k . 52Ž . Ž . Ž . Ž . Ž .
Ž .According to linear systems theory, the observability of the pair A, C

ensures the existence of a matrix K in such a way that all the eigenvalues
ˆof the matrix A s A y KC lie inside the open unit disk. Thus there exists

T̂ ˆ Ža symmetric positive definite matrix P such that A PA y P s yI I isn n
T .the n = n identity matrix and M denotes the transpose matrix of M . To

Ž .prove the asymptotic stability of 52 , we use the following candidate
Ž . T Ž .Lyapunov function W e s e Pe. Its difference along the solutions of 52

is

T T̂ T T ˆ TDW e s e A q ue B P Ae q uBe y e PeŽ . Ž . Ž .
T T̂ ˆ T̂ T ˆ 2 Ts e A PA y P q u A PB q B PA q u B PB eŽ .ž /

2 T T̂ T ˆ 2 T5 5s y e q e u A PB q B PA q u B PB eŽ .ž /
5 5 2 5 5 5 5 5 5 5 5 2 5 5 2 5 5F y e 1 y 2 u A P B y u B P .Ž .

5 5 5 5 5 5 5 5Thus for u F h a constant which depends on A , P , and B , we
Ž . 5 5 2have DW e F yg e where g is a positive constant. This proves that

Ž . Ž .system 51 is an observer for system 50 and moreover the function W
satisfies the conditions of Proposition 4.2.
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Ž . Ž .Now if system 50 is stabilizable by a state feedback law u s a x
5 Ž .5 n Žwhich satisfies a x F h for all x g R this can be realized if, for
Ž . .example, system 50 satisfies the assumptions of Theorem 4.1 then all the

Ž .hypotheses of Proposition 4.2 are satisfied and so system 50 can be
Ž .stabilized thanks to an estimated state feedback u s a x where theˆ

Ž .estimation x is given by the observer 51 .ˆ
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