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Abstract

András Biró and Vera Sós prove that for any subgroup G of T generated freely by finitely many generators
there is a sequence A ⊆ N such that for all β ∈ T we have (‖.‖ denotes the distance to the nearest integer)

β ∈ G ⇒
∑
n∈A

‖nβ‖ < ∞, β /∈ G ⇒ lim sup
n∈A,n→∞

‖nβ‖ > 0.

We extend this result to arbitrary countable subgroups of T. We also show that not only the sum of norms
but the sum of arbitrary small powers of these norms can be kept small. Our proof combines ideas from the
above article with new methods, involving a filter characterization of subgroups of T.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

We study certain subgroups of T = R/Z and methods to describe them by sequences of pos-
itive integers. By ‖.‖ we denote the distance to the nearest integer. It is easily seen that for any
sequence A ⊆ N the set {β ∈ T: limn∈A,n→∞ ‖nβ‖ = 0} is a subgroup of T. It seems natural to
ask which subgroups arise in this way. In [2] A. Biró, J.-M. Deshouillers and V.T. Sós show that
for any countable group G < T there is some A ⊆ N that characterizes G in the above sense.
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Another way to connect subsets of N and T is to consider the set {β ∈ T:
∑

n∈A ‖nβ‖ < ∞}
which again is a subgroup of T. Following a question of P. Liardet, A. Biró and V.T. Sós show
in [3] that if 1, α1, . . . , αt ∈ R are linearly independent over the rationals there is a sequence
A ⊆ N, that characterizes 〈α1, . . . , αt 〉 < T simultaneously in both ways. Such a sequence is
called a ‘strong characterizing sequence’ of 〈α1, . . . , αt 〉. Our aim is to find strong characterizing
sequences for arbitrary countable subgroups of T. The main result is

Theorem 1. Let G = {αt : t ∈ N} be a subgroup of T. Then there exists a sequence A ⊆ N, such
that for all β ∈ T

β ∈ G ⇒ ∀r > 0
∑
n∈A

‖nβ‖r < ∞, β /∈ G ⇒ lim sup
n∈A,n→∞

‖nβ‖ � 1/6.

We want to mention the recent paper [1] of A. Biró which proves more precise results for
finitely generated free Abelian subgroups of compact groups.

2. Connecting two methods

In our proof we use the following reformulation of Theorem 1 in [5].

Proposition 2. Let G be an arbitrary subgroup of T. Then there is a filter F on N that charac-
terizes G in the sense that for all β ∈ T

β ∈ G ⇒ F − lim
n

‖nβ‖ = 0.

A filter on a set X is a proper subset of the powerset of X which is closed under finite inter-
sections and forming supersets. (See for example [4, p. 74].) Here ‘F − limn ‖nβ‖ = 0’ means
that for all ε > 0 one has {n ∈ N: ‖nβ‖ � ε} ∈ F. The filter-convergence defined in this way is
more general than ordinary convergence: For a sequence A ⊆ N let F(A) be the filter consisting
of all sets containing {k ∈ A: k � n} for some n ∈ N. Then we have for all β ∈ T

lim
n∈A,n→∞‖nβ‖ = 0 ⇔ F(A) − lim

n
‖nβ‖ = 0.

The following notation will be useful: Given α1, . . . , αt ∈ T, ε > 0 and N ∈ N the corresponding
infinite respectively finite Bohr sets are defined by

Hε(α1, . . . , αt ) := {
n ∈ N: ‖nα1‖, . . . ,‖nαt‖ � ε

}
,

HN,ε(α1, . . . , αt ) := {
n � N : ‖nα1‖, . . . ,‖nαt‖ � ε

}
.

Using the finite intersection property of filters, one sees that F− limn ‖nβ‖ = 0 for all elements β

of some given G < T implies that for all α1, . . . , αt ∈ G and ε > 0, Hε(α1, . . . , αt ) ∈ F. For each
subgroup G < T there is a canonical (i.e. smallest) candidate for a filter that characterizes G,
namely the filter FG which consists of all sets containing a set Hε(α1, . . . , αt ) (ε > 0, t ∈ N,
α1, . . . , αt ∈ G).

To illustrate the connections between the number theoretic approach in [2] respectively [3]
and the more abstract point of view in [5] we show that the result on the characterization of
countable subgroups by sequences of positive integers in [2] implies Proposition 2.
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Proof of Proposition 2. Let G < T be an arbitrary subgroup and let FG be the filter described
above. By definition of FG we have FG − limn ‖nβ‖ = 0 or each β ∈ G. Now assume FG −
limn ‖nβ‖ = 0 for some β ∈ T. For k ∈ N let Mk := H1/k(β) ∈ FG. According to the construction
of FG, there are sequences t1 < t2 < · · · (tk ∈ N), (αt )t∈N (αt ∈ G) and ε1 > ε2 > · · · (εk > 0)
such that Mk ⊇ Hεk

(α1, . . . , αtk ) for all k ∈ N.
By the result of A. Biró, J.-M. Deshouillers and V.T. Sós there is a sequence A ⊆ N, such that{

β ∈ T: lim
n∈A,n→∞‖nβ‖ = 0

}
= 〈αt : t ∈ N〉.

In particular we have limn∈A,n→∞ ‖nαt‖ = 0 for all t ∈ N. Thus for fixed m ∈ N we can
find nm ∈ N satisfying ‖nαt‖ � εm for all n ∈ A, n � nm and for all t � tm. This implies
{n ∈ A: n > nm} ⊆ Hεm(α1, . . . , αtm) ⊆ Mm, i.e. for all n ∈ A, n � nm we have ‖nβ‖ � 1/m.
Since m ∈ N was arbitrary this yields limn∈A,n→∞ ‖nβ‖ = 0 and, as A is a characterizing se-
quence, β ∈ 〈αt : t ∈ N〉 < G. �
3. Ideas of the proof

The rest of this article focuses on the proof of Theorem 1. The proof splits in several lemmas.
Before we state and prove them rigorously, we want to give a short sketch of the strategy of the
proof and the informal meaning of the individual lemmas.

Lemma 5 shows how the countable group G may be represented as the limes inferior of certain
open subsets Vt of T. These sets may by seen as approximations of G.

Lemma 4 shows that the behaviour of the values ‖nβ‖, where n runs in an appropriate finite
Bohr set, may decide whether β lies in an approximation Vt of G. Part (1) of the lemma uses
Proposition 2, while part (2) follows easily by a compactness argument similar to the reasoning
in [2].

The methods developed so far are powerful enough to prove the existence of sequences that
characterize countable groups in the sense of [2]. To provide a strong characterizing sequence
we use Lemma 7 to replace a Bohr set H by a somewhat thinner set S that contains the same
amount of information but allows in addition to keep the sum

∑
n∈S ‖nα‖r (α ∈ G, r > 0) under

control. The proof of Lemma 7 is based on Lemma 6, a deep result on the structure of Bohr sets
due to A. Biró and V.T. Sós [3].

4. Preparations

The following technical facts will be needed later. The proof is elementary, so we skip it.

Lemma 3. Let α,β ∈ T and n ∈ N.

(1) Assume ‖α‖,‖2α‖, . . . ,‖nα‖ � d < 1/3. Then ‖α‖ � d/n.
(2) Assume ‖β + 20α‖,‖β + 21α‖, . . . ,‖β + 2nα‖ � d < 1/6. Then ‖α‖ � d/2n−2.

Given α1, . . . , αt ∈ T and M ∈ N we define

〈α1, . . . , αt 〉M := {
k1α1 + · · · + ktαt : |k1|, . . . , |kt | � M

}
.

We further define ‖βS‖ := sup{‖nβ‖: n ∈ S} for β ∈ T and S ⊆ N.
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Lemma 4. Let α1, . . . , αt ∈ T and ε > 0.

(1) There exists some positive integer M such that∥∥βHε(α1, . . . , αt )
∥∥ � 1/6 ⇒ β ∈ 〈α1, . . . , αt 〉M.

(2) If V ⊇ 〈α1, . . . , αt 〉M is an open subset of T, there exists some positive integer N such that∥∥βHN,ε(α1, . . . , αt )
∥∥ � 1/6 ⇒ β ∈ V.

Proof. Throughout the proof we suppress mentioning α1, . . . , αt while notating Bohr sets.
(1) Suppose β satisfies ‖βHε‖ � 1/6. Let F be a filter on N that characterizes 〈α1, . . . , αt 〉

and let m ∈ N be fixed. Of course we have Hε/m ∈ F. For n ∈ Hε/m and k � m we have kn ∈ Hε

and in particular ‖knβ‖ � 1/6. Since 1/6 < 1/3 this implies ‖nβ‖ � 1
6m

by Lemma 3. Thus we
have ‖βHε/m‖ � 1

6m
and since m was arbitrary we get F − limn ‖nβ‖ = 0. F was assumed to

characterize 〈α1, . . . , αt 〉 thus we have β ∈ 〈α1, . . . , αt 〉.
It remains to show that {β ∈ T: ‖βHε‖ � 1/6} is finite. The torsion subgroup of 〈α1, . . . , αt 〉

is finite and cyclic, let its order be q ∈ N. Then q〈α1, . . . , αt 〉 is torsion free, hence we find
some γ1, . . . , γn ∈ T, such that q〈α1, . . . , αt 〉 is freely generated by qγ1, . . . , qγn. We have
〈α1, . . . , αt 〉 = 〈γ1, . . . , γn,1/q〉 and there are uniquely determined kij ∈ Z (i � t , j � n) and
ki ∈ {0, . . . , q − 1} (i � t), such that

α1 =
n∑

j=1

kij γj + ki/q (i � t).

Thus we can find some δ > 0, such that for all m ∈ qN

‖mγ1‖, . . . ,‖mγn‖ � δ ⇒ ‖mα1‖, . . . ,‖mαt‖ � ε.

For each β satisfying ‖βHε‖ � 1/6 there are uniquely determined kj ∈ Z (j � n) and
k ∈ {0, . . . , q − 1} such that β = ∑n

j=1 kjγj + k/q . If the kj (j � n) do not vanish simulta-
neously, Kronecker’s theorem assures that we can find m ∈ qN, such that

∀j � n
1

6
∑n

j=1 |k1| < sign(kj )mγj <
5

6
∑n

j=1 |ki | mod 1

⇒ 1

6
< m

n∑
i=1

kiγi <
5

6
mod 1,

i.e. ‖mβ‖ > 1/6. Thus 5
6
∑n

i=1 |ki | > δ. This shows that there are only finitely many choices for

the ki (i � n). Thus {β ∈ T: ‖βHε‖ � 1/6} is also finite and we can find some M ∈ N, such that
{β ∈ T: ‖βHε‖ � 1/6} ⊆ 〈α1, . . . , αt 〉M .

(2) Let M be as in (1). Then 〈α1, . . . , αt 〉M ⊆ V implies

∅ = V c ∩ {
β ∈ T: ‖βHε‖ � 1/6

} = V c ∩
⋂ {

β ∈ T: ‖nβ‖ � 1/6
}
.

n∈Hε
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Since T is compact and all of the above sets are closed, the intersection of finitely many of
these sets must be empty, i.e. we can find some N ∈ N such that V c ∩ ⋂

n∈HN,ε
{β ∈ T: ‖nβ‖ �

1/6} = ∅. Obviously this N is as required. �
Lemma 5. Let G = {αt : t ∈ N} be a subgroup of T and let (Mt)t∈N be a sequence of positive
integers. There exists a sequence (Vt )t∈N of open subsets of T such that

(i) Vt ⊇ 〈α1, . . . , αt 〉Mt (t ∈ N),
(ii)

⋃
k∈N

⋂
t�k Vt = lim inft→∞ Vt = G.

Proof. We may assume that (Mt)t∈N is increasing. We choose a sequence (δt )t∈N of positive
numbers that decreases to 0 and satisfies for all t ∈ N

(1) 2δt < min{‖α − α′‖: α,α′ ∈ 〈α1, . . . , αt 〉Mt , α �= α′},
(2) δt + δt+1 < min{‖α − α′‖: α ∈ 〈α1, . . . , αt 〉Mt , α′ ∈ 〈α1, . . . , αt+1〉Mt+1 \ 〈α1, . . . , αt 〉Mt }.

Using this, we define

Vt := {
β ∈ T: ∃α ∈ 〈α1, . . . , αt 〉Mt , ‖α − β‖ < δt

}
.

We obviously have lim inft→∞ Vt ⊇ G. To show the reverse inclusion, assume β ∈ lim inft→∞ Vt ,
i.e. β ∈ Vt for all t � t0 for some t0 ∈ N. By definition of the Vt for all t � t0 there is some
γt ∈ 〈α1, . . . , αt 〉Mt satisfying ‖β − γt‖ < δt and (1) shows that this γt is uniquely determined.
Further γt �= γt+1 for some t � t0 would contradict (2), thus we have γt0 = γt0+1 = γt0+2 = · · · .
In particular this shows ‖β − γt0‖ = ‖β − γt‖ < δt → 0, hence β = γt0 ∈ G. �

From Lemma 1 in [3] one gets

Lemma 6. Let t ∈ N. There exists some constant C1 = C1(t), such that for all α1, . . . , αt ∈ T,
positive ε � 1/C1 and positive integers N there are suitable nonzero integers n1, . . . , nR and
positive integers K1, . . . ,KR , R � C1, satisfying

(a)
∑R

i=1 Ki‖niαj‖ � C1ε (1 � j � t),

(b)
∑R

i=1 Ki |ni | � C1N ,

(c) HN,ε(α1, . . . , αt ) ⊆ {∑R
i=1 kini : 1 � ki � Ki}.

Lemma 7. Let t ∈ N. There exists some constant C2 = C2(t), such that for all α1, . . . , αt ∈ T,
positive ε � 1/C1(t), positive r � 1 and positive integers N and U there is a suitable nonempty
finite set S of integers satisfying

(i) U < minS,
(ii) for all j � t we have

∑
n∈S ‖nαj‖r � C2

εr

2r−1 ,

(iii) for all β ∈ T we have min{1/6,‖βHN,ε(α1, . . . , αt )‖} � ‖βS‖.
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Proof. Let α1, . . . , αt ∈ T and C1,R,Ki, ni (i � R) as given by Lemma 6. Let m > U be an
integer satisfying

‖mαj‖r � εr

lg2(8C2
1N)

for all j � t and let

S = {
m + 2l |ni |: 2l � 8KiR

}
.

Clearly S satisfies (i).
For each j � t we have

∑
n∈S

‖nαj‖r � card(S)‖mαj‖r +
∑
n∈S

∥∥(n − m)αj

∥∥r
.

To find an upper bound for the first term, we observe that Ki � C1N implies card(S) �
R lg2(8C1NR). Thus

card(S)‖mαj‖r � R lg2(8C1NR)
εr

lg2(8C2
1N)

� C1ε
r .

The second term can be estimated by

R∑
i=1

( �lg2(8KiR)�∑
l=0

2l‖niαj‖
)r

�
R∑

i=1

(2r )lg2(8KiR)+1 − 1

2r − 1
‖niα‖r <

16rRr

2r − 1

R∑
i=1

Kr
i ‖niα‖r .

For any a1, . . . , aR we have 1
R

∑R
i=1 ar

i � ( 1
R

∑R
i=1 ai)

r by Jensen’s inequality.
This yields

∑
n∈S

∥∥(n − m)αj

∥∥r � 16rR

2r − 1

(
R∑

i=1

Ki‖niαj‖
)r

� 16rC1

2r − 1
(C1ε)

r .

Thus S will satisfy (ii) if we let C2 := C1 + 16C2
1 .

Finally let β ∈ T and d := ‖βS‖. We may assume d < 1/6. Thus by Lemma 3 for all i � R

∥∥mβ + 2l |ni |β
∥∥ � d

(
l � lg2(8KiR)

)
implies

‖niβ‖ � d � d
.

2�lg2(8KiR)� − 2 KiR
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By Lemma 6 each n ∈ HN,ε(α1, . . . , αt ) has a representation n = ∑R
i=1 kini for some integers ki

(1 � i � R) satisfying 1 � ki � Ki . Using this representation we get

‖nβ‖ =
∥∥∥∥∥

R∑
i=1

kiniβ

∥∥∥∥∥ �
R∑

i=1

Ki‖niβ‖ �
R∑

i=1

Ki

d

KiR
= d.

Thus S satisfies (iii). �
5. Proof of the theorem

Finally we are able to give the proof of Theorem 1. Let (εt )t∈N be a sequence of positive

numbers, satisfying εt < 1/C1(t)
∑∞

t=1 C2(t)
ε

1/t
t

21/t−1
< ∞. Combining Lemmas 4 and 5 we find

a sequence (Nt )t∈N of positive integers and a sequence (Vt )t∈N of open subsets of T, such that:

(1) For all β ∈ T and for all t ∈ N,‖βHNt ,εt (α1, . . . , αt )‖ � 1/6 ⇒ β ∈ Vt .
(2)

⋃
k∈N

⋂
t�k Vt = G.

Using Lemma 7 we find some sequence (St )t∈N of subsets of N such that for all t ∈ T

(i) maxSt < minSt+1,

(ii)
∑

n∈St
‖nαj‖1/t � C2(t)

ε
1/t
t

21/t−1
(j � t),

(iii) for all β ∈ T, min{1/6,‖βHNt ,εt (α1, . . . , αt )‖} � ‖βSt‖.

By defining A := ⋃
t∈N

St we will in fact get a strong characterizing sequence of G as stated
in Theorem 1.

Assume β ∈ G and r > 0. Then β = at0 for some t0 ∈ N. If we let m > max{t0,1/r}, we have

∑
n∈A,n�minSm

‖nβ‖r �
∑
t�m

∑
n∈St

‖nαt0‖1/t �
∑
t�t0

C2(t)
ε

1/t
t

21/t − 1
< ∞.

Finally, assume β /∈ G. There exists a sequence t1 < t2 < · · · of positive integers such that β /∈ Vtk

(k ∈ N). So for each k ∈ N we have ‖βHεtk
,Ntk

(α1, . . . , αtk )‖ > 1/6 and thus can find some
nk ∈ Stk satisfying ‖βnk‖ � 1/6. This shows lim supn∈A,n→∞ ‖nβ‖ � 1/6. �
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