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Abstract

We look for Schrödinger solutions in Lovelock gravity in D > 4. We span the entire parameter space 
and determine parametric relations under which the Schrödinger solution exists. We find that in arbitrary 
dimensions pure Lovelock theories have Schrödinger solutions of arbitrary radius, on a co-dimension one 
locus in the Lovelock parameter space. This co-dimension one locus contains the subspace over which 
the Lovelock gravity can be written in the Chern–Simons form. Schrödinger solutions do not exist outside 
this locus and on this locus they exist for arbitrary dynamical exponent z. This freedom in z is due to the 
degeneracy in the configuration space. We show that this degeneracy survives certain deformation away 
from the Lovelock moduli space.
© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The Schrödinger solutions belong to a class of solutions to the gravitational equations of 
motion which asymptotically do not preserve the Lorentz symmetry. They, however, do respect 
some non-relativistic symmetries. The deviation from the relativistic symmetry is parametrized 
by the Schrödinger scaling exponent z, or the dynamical exponent.
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The Schrödinger solution was first obtained by Son [1] as well as Balasubramanian and Mc-
greevy [2]. They assumed the stress tensor consisting of the cosmological constant term and the 
pressure-less dust. The Schrödinger solution possesses the Galilean boost invariance by assign-
ing a specific transformation property to one of the light-like directions [1,2] (non-relativistic 
metrics in higher derivative gravity were discussed in [3]).

In this note we analyze this question in more detail by spanning the entire coupling parameter 
space of Lovelock theories in various dimensions. Up to four space–time dimensions, the Love-
lock action is identical to the Einstein Hilbert action with the cosmological constant, but from 
five dimensions onwards the Lovelock action has additional Gauss–Bonnet term in the action. 
This term can be added in four dimensions as well but being total derivative term it does not con-
tribute to the dynamics. In five and higher dimensions the Gauss–Bonnet term does contribute 
to the dynamics. Similarly the cubic order Lovelock term can be added from six dimensions 
onwards but it contributes to dynamics only from seven dimensions onwards.

We will show that the Schrödinger metric is generically not a solution to the Lovelock equa-
tions of motion, however, it exists as a solution on a co-dimension 1 locus in the Lovelock 
coupling space. We show that the Schrödinger solution exists precisely on the same locus on 
which the Lifshitz solution is known to exist.1 In our computation we restrict ourselves to the 
Lovelock terms up to cubic order in the curvature tensor but we generalize our analysis to ar-
bitrary dimensions. The co-dimension 1 locus on which we get the Schrödinger solution is 
interesting from another point of view. It is known that the Lovelock theories can be written 
in terms of the parity preserving Chern–Simons theory. However, this representation exists only 
for specific values of the Lovelock couplings. The Chern–Simons formulation exists at a point on 
this co-dimension 1 locus on which we find the Schrödinger solutions. We present these solutions 
in the Chern–Simons gauge field forms as well.

The Schrödinger solutions are relevant from the point of view of application to holographi-
cally dual condensed matter physics systems. It then naturally raises a question of relevance of 
these higher dimensional solutions to 2 + 1 and 3 + 1 dimensional condensed matter systems. 
In this regard it is worth pointing out that unlike the AdS and Lifshitz holography which relates 
D dimensional theory of gravity to D − 1 dimensional field theory, the Schrödinger hologra-
phy relates D dimensional theory of gravity to D − 2 dimensional field theory. Therefore, 4 + 1
and 5 + 1 dimensional Lovelock theories are relevant to 2 + 1 and 3 + 1 dimensional boundary 
physics. Higher dimensional theories can be dimensionally reduced to lower dimensional the-
ories. Such higher dimensional theories typically give rise to scalar-tensor theories of gravity 
which are either referred to as Galileon or Horndeski theories [5–8]. For example, let us consider 
D = d + n + 1 dimensional theory of gravity with the cosmological constant, the Einstein–
Hilbert, the Gauss–Bonnet term

S =
∫

dDx
√−g [R − 2� + a2L2] , (1.1)

where L2 is the Gauss–Bonnet term. We will dimensionally reduce it down to d + 1 dimensions 
by using an n-dimensional compact manifold K̃n such that

ds2
D = ds̄2

d+1 + eφdK̃2
n . (1.2)

This is a simple but consistent diagonal toroidal compactification which gives rise to one extra 
scalar degree of freedom, that is the size of the internal space. All terms with a tilde refer to 

1 For closely related solutions of Kasner type in the Lovelock theory, see [4].
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internal n dimensional space, while terms with a bar refer to the d + 1 dimensional space–time. 
As we integrate out the internal space the effective action looks like [9]

S̄(d+1) =
∫

dd+1x
√−ḡ e

n
2 φ

{
R̄ − 2� + a2Ḡ + n

4
(n − 1)(∂φ∂φ)

− a2n(n − 1)Ḡμν∂μφ∂νφ

− a2

4
n(n − 1)(n − 2)

[
(∂φ∂φ)∇2φ − (n − 1)

4
(∂φ∂φ)2

]
+ e−φR̃

[
1 + a2R̄ + 4a2(n − 2)(n − 3)(∂φ∂φ)

]
+ a2G̃e−2φ

}
, (1.3)

where Ḡ is d + 1 dimensional Gauss–Bonnet term, G̃ is n dimensional Gauss–Bonnet term and 
Ḡμν is the Einstein tensor of d + 1 dimensional space. The effective action written above can be 
related to the so called Galileon action, with the Galileon field is realized as the scalar parametriz-
ing the volume of the internal space. As we have reduced from the Einstein–Gauss–Bonnet
action, in the reduced action all the terms are up to quartic order in derivatives of the metric 
or the scalar or of both, but the equations of motion following from it will still be of second 
order. The term of the form (∂φ∂φ)∇2φ is often called the DGP term [10] appearing in the de-
coupling limit of the DGP model, and the term of the form (∂φ∂φ)2 is the standard Galileon 
term [5]. We will argue that the Schrödinger solution exists in a co-dimension 1 subspace of 
Lovelock moduli space, for example, if we restrict to only the Gauss–Bonnet term then it exists 
on a subspace which relates a2 to �. We will get back to the issue of dimension reduction in this 
context in the discussion section. As long as n ≤ 2, neither the DGP term nor the Galileon term 
appears in the dimensionally reduced theory. In addition, for Ricci-flat compact spaces the lower 
dimensional action, up to the addition of higher derivative curvature terms, has a familiar form.

This note is organized in the following manner. We will first give basics of the Lovelock 
theory in arbitrary dimensions. Most of the information in this section is not new but is useful 
to fix the notation. In the next section we will look at various solutions to the Lovelock equa-
tions of motion. It is well known that the AdS solution generically exists for arbitrary values of 
Lovelock couplings in any dimension. This feature is not shared by the Schrödinger solution. 
We present the solution for general value of D and in explicit form for dimensions D = 5, 6, 7. 
We also comment on the solutions with anisotropic scaling in spatial direction and their relation 
to AdS × R type solutions. In section 4, we analyze branches of the AdS solution [11,12]. Our 
interest in presenting this result is to emphasize that the non-relativistic solutions exist only when 
the discriminant vanishes. Degeneracy in the configuration space [13,14] has been well studied 
for Lifshitz solutions [15,16]. We show that this degeneracy is responsible for unconstrained z
for Schrödinger case as well. Unlike Lifshitz, in the case of Schrödinger solutions this degen-
eracy extends beyond the Lovelock moduli space. In this sense our results provide a template 
for a dynamical exponent z for which all values are equally likely. Any suitable value of z then 
can be obtained by either appropriately modifying the couplings in this theory or by adding new 
interactions.

It is known that the Lovelock theory in odd space–time dimensions can be written in the 
Chern–Simons form and in even space–time dimensions in the Born–Infeld form exactly when 
the discriminant vanishes [11]. We discuss the relation between vanishing discriminant and locus 
of non-relativistic solutions in section 5 and write down the Schrödinger solution in the Chern–
Simons gauge field form in odd space–time dimensions and in the Born–Infeld gauge field form 
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in even space–time dimensions. Finally, we point out the relation with the causality and stability 
constraints obtained in the Lovelock theories in higher dimensions [17–19]. Finally we summa-
rize our results and speculate about their applications. Various technical details are relegated to 
Appendix A. Appendix A.1 contains details of Lovelock equations of motion. Appendix A.2
recounts details of AdS and Lifshitz solutions, which are given for the purpose of comparison 
with the Schrödinger solution. Appendix A.3 contains spin connections and curvature tensors for 
Schrödinger solution.

2. The Lovelock gravity theory

Let us consider following action

I = 1

16πG

∫
M

dDx

[(D−1)/2]∑
p=0

apLp , (2.1)

where G is the D dimensional Newton’s constant, ap are coupling constants with a0 = −2� =
(D − 1)(D − 2)/�2, a1 = 1, a2 is the Gauss–Bonnet coupling etc.,2 and Lp are terms in the 
Lagrangian density of the Lovelock action,

Lp = 1

2p

√−gδ
ν1ν2···ν2p
μ1μ2···μ2p

Rμ1μ2
ν1ν2

· · ·Rμ2p−1μ2p
ν2p−1ν2p

, (2.2)

where δ
ν1ν2···ν2p
μ1μ2···μ2p

is totally antisymmetric product of 2p Kronecker deltas normalized to take 
values 0 and ±1, and hence is completely antisymmetric in all its upper and lower indices sepa-
rately. It can also be considered as the determinant of a (2p × 2p) matrix whose (ij)-th element 
is given by δνi

μj
.

We are using notation of [11] and the equation of motion can be written in the compact form 
as

Eν
μ =

[(D−1)/2]∑
p=0

ap

2p
δ
νν1ν2···ν2p
μμ1μ2···μ2p

Rμ1μ2
ν1ν2

· · ·Rμ2p−1μ2p
ν2p−1ν2p

= 0 . (2.3)

Writing the Lovelock terms in this fashion makes it obvious that up to D = 4 only relevant 
couplings are a0 and a1. The Gauss–Bonnet term with the coupling a2 is topological in D = 4
but it is dynamical in D = 5, 6. In these dimensions we will explore the parameter space spanned 
by a0 and a2 to find the range of values for which the Lifshitz solution is possible. In D = 6, 
the term with coupling a3 can be written down but like the Gauss–Bonnet in D = 4, this term
is topological in D = 6 and hence does not affect the equation of motion. However, this term 
becomes relevant in D > 6. We will explore the three dimensional parameter space spanned by 
a0, a2 and a3 and find conditions for Lifshitz solutions.

We will start with the study of solution to the D = 5 equations of motion. We therefore write 
the action of pure gravity in D-dimensions as

I =
∫

dDx
√−g [R − 2� +Lhd ] (2.4)

2 It is important to note that the mass dimensions of various parameters appearing in the action, eq. (2.1) are as follows 
[G] = D − 2, [�] = [a0] = 2, [a1] = 0, [a2] = −2, [a3] = −4, · · · , and the parameter � has dimensions of length.
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where � is the cosmological constant and Lhd is the Lagrangian for the higher derivative terms 
of the Lovelock form.

As mentioned earlier in D = 5 space–time dimensions the higher derivative Lagrangian den-
sity contains the quadratic Lovelock term, also known as the Gauss–Bonnet term, which appears 
in the Lagrangian with the coupling constant, a2,

Lhd = a2L2, where

L2 = (R2 − 4RμνR
μν + Rμνρσ Rμνρσ ).

(2.5)

For D = 7 space–time dimensions we will have, in addition to the Gauss–Bonnet term, the 
cubic Lovelock term L3,

Lhd = a2L2 + a3L3 (2.6)

where a3 is the coupling constant of the cubic Lovelock term. The cubic term is explicitly written 
as

L3 = 2RμνσκRσκρτR
ρτ

μν + 8Rμν
σρRσκ

ντR
ρτ

μκ + 24RμνσκRσκνρRρ
μ

+ 3RRμνρσ Rμνρσ + 24RμνσκRσμRκν + 16RμνRνσ Rσ
μ

− 12RRμνRμν + R3.

(2.7)

The equation of motion that follows from here is as written below,

G(1)
μν + a2G

(2)
μν + a3G

(3)
μν − �gμν = 0 (2.8)

where the explicit forms of G(1)
μν , G(2)

μν and G(3)
μν are given in Appendix A.1. The equations of 

motion in D = 5 are obtained by setting a3 = 0 in (2.8). We will now study specific solutions to 
the equations of motion.

3. Solutions to the Lovelock gravity

In this section we will analyze solutions to the Lovelock gravity equations of motion. In Ap-
pendix A.2 we will summarize known results about the AdS and Lifshitz solutions. In particular 
the AdS solution is possible for generic values of the Lovelock couplings a2, a3, etc. On the other 
hand the Lifshitz solutions exist only on the co-dimension one subspace. As we will see below 
the Schrödinger solutions can be obtained only on the same co-dimension one locus in the pa-
rameter space. Furthermore, as we will see, on this locus the solution admits arbitrary dynamical 
scaling exponent z, which is also true for the Lifshitz solutions.

3.1. The Schrödinger solution

We consider the Schrödinger space–times as solutions of the higher derivative Lovelock grav-
ity theories. This is an example of non-relativistic space–time, known apart from the Lifshitz 
solution. We will look for the Schrödinger solution to the Lovelock gravity equations of motion 
in arbitrary dimensions but we will restrict to terms cubic in curvature tensor. Generalization to 
higher order Lovelock terms is tedious but straightforward.
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The metric ansatz for the Schrödinger solution looks like

ds2 = L2
sch

[
− dt2

r2z
+ dr2

r2
+ 2

r2
dtdξ + 1

r2

D−3∑
i=1

dx2
i

]
. (3.1)

Note that this metric for the Schrödinger solution also has two parameters, z which is the 
Schrödinger exponent and Lsch which is the “Schrödinger radius”. We will first state the re-
sults for arbitrary D but restricting up to cubic Lovelock terms and then write down explicit 
expressions for D = 5, 6, 7.

The Schrödinger space–time solution in general D dimensions exists subject to following two 
constraints,

� = − (D − 1)(D − 2)

4L2
Sch

(
1 − (D − 3)(D − 4)(D − 5)(D − 6)

a3

L4
sch

)
,

a2 = L2
Sch

2(D − 3)(D − 4)
+ 3(D − 5)(D − 6)

2L2
Sch

a3 .

(3.2)

The dynamical exponent z is unconstrained. If we eliminate Lsch, then it gives one relation 
between the parameters in the Lovelock action. Thus the Schrödinger solutions exist on co-
dimension one subspace of the Lovelock moduli space.

In D = 5 space–time we have the Gauss–Bonnet term in the Lovelock action besides the 
Einstein–Hilbert and the cosmological constant term. The constraint (3.2) corresponds to

� = − 3

L2
Sch

and a2 = L2
Sch

4
=⇒ a2� = −3/4 . (3.3)

The non-zero components of the Ricci tensor and the Ricci scalar R for the metric of Schrödinger 
space–time are given by Rtt = 2 

(
z2 + 1

)
/r2z, Rtξ = Rrr = Rxixi

= −4/r2; and R = −20/L2
Sch. 

In D = 6 space–time the Gauss–Bonnet term is important but the curvature cubed Lovelock term 
being a total derivative is not. The constraint eq. (3.2) becomes � = −5/L2

Sch and a2 = L2
Sch/12. 

We again write down the components of the Ricci tensor Rtt = (
2z2 + z + 2

)
r−2z, Rtξ = Rrr =

Rxixi
= −5/r2 and the Ricci scalar R = −(30/L2

Sch).
In D = 7 space–time apart from the Gauss–Bonnet term, the cubic order Lovelock term will 

also be important and hence the action will contain three parameters, �, a2 and a3. The constraint 
(3.2) in this case takes the form

� = − 15

2L2
sch

(
1 − 24

L4
sch

a3

)
and a2 = L2

sch

24
+ 3

a3

L2
sch

. (3.4)

The Ricci tensor components are Rtt = 2 
(
z2 + z + 1

)
r−2z, Rtξ = Rrr = Rxixi

= −6/r2, and 
the Ricci Scalar becomes R = −(42/L2

Sch).

3.2. Other solutions

Lifshitz solutions,3 where the time coordinate (t ) scaled differently compared to the other 
coordinates, are known to be solutions of Lovelock gravity. As an alternative one can consider a 

3 See eq. (A.7) for Lifshitz metric in Appendix A.2, where we discuss Lifshitz solutions briefly.
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different version of the Lifshitz solutions where instead of the time coordinate one of the spatial 
coordinates may scale differently compared to others. We call it “spatial Lifshitz” space–time. 
More specifically, we take in D = 5 dimensions the following metric

ds2 = L2
Lif

(
−dt2 + dr2 + dx2

1 + dx2
2

r2
+ dx2

3

r2z

)
. (3.5)

It is obvious from the metric in eq. (3.5) that the x3 coordinate scales differently compared to the 
other coordinates with a Lifshitz exponent parametrized by z.

Following the similar procedure as in the previous two subsections, we can obtain this “spatial 
Lifshitz” as a solution to the Lovelock action eq. (2.4). In D = 5, for the Gauss–Bonnet case 
eq. (2.5), we find the solution to be identical to both the Schrödinger case eq. (3.3), and the 
Lifshitz case eq. (A.9). Similarly, for D = 7 dimensions in the cubic Lovelock theory we find 
this “spatial Lifshitz” as a solution, again, identical to both the Schrödinger case eq. (3.4), and the 
Lifshitz case eq. (A.10). In all these cases, this solution exists at the same point in the coupling 
space at which the Schrödinger and Lifshitz solutions exist. Thus we see that the special point 
continues to be relevant as long as one direction, whether spatial or temporal, has anisotropic 
scaling property. In case of multiple anisotropic directions also one can show that such solutions 
exist at special points in the coupling space but generically this point is different from the one 
under consideration.

It is also worth mentioning that the situation here is analogous to what happens in the case of 
Schrödinger solutions discussed earlier, namely the dynamical exponent z remains unconstrained 
for this solution as well. This, in particular, allows us to consider a special case when the dynam-
ical exponent for the “spatial Lifshitz” solution vanishes, i.e., z = 0. A vanishing z in eq. (3.5)
corresponds to the metric in the x3 direction being invariant under scaling of the radial coordi-
nate. Since the metric in the directions transverse to x3 is simple AdS metric in the Poincaré 
coordinates, we obtain a AdS4 × R solution of the form

ds2 = L2

(
−dt2 + dr2 + dx2

1 + dx2
2

r2
+ dx2

3

)
. (3.6)

This kind of anisotropic solution was studied earlier in [20], where additional matter in the form 
of a linearly varying dilaton was coupled to two derivative Einstein gravity with negative cosmo-
logical constant to construct such anisotropic solutions.

Finally we would like to mention that Lovelock equations of motion do not support black 
brane solutions with either Lifshitz or Schrödinger asymptotic.

We illustrate this in five dimensions by considering a finite temperature metric ansatz for the 
Lifshitz solutions of the following form

ds2 = L2
lif

[
− f (r)dt2

r2z
+ dr2

r2f (r)
+ 1

r2

3∑
i=1

dx2
i

]
(3.7)

with f (r) = 1 + c1r
c2 , where c1 and c2 are constants. The equations of motion are solved by 

this ansatz if z = 1 and c2 = −2 with arbitrary c1. That is, finite temperature black brane so-
lutions with only AdS asymptotic are allowed. A similar analysis can be done for Schrödinger 
solutions and again we find that there are no finite temperature Schrödinger black brane solutions 
to eq. (3.3).
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4. The phase-space of solutions

In this section we analyze the parameter space of the higher derivative theory and understand 
in some more detail the phase space of the solutions we obtained in the previous section. We 
are working with the action eq. (2.4) and the number of parameters of the theory depend on D. 
For D ≤ 4, the cosmological constant � is the only parameter. For D = 5, 6 we have � and the 
Gauss–Bonnet coupling constant a2 and from D = 7 onwards we also have a3 the cubic term 
coupling. While AdS solution is parametrized only by its radius LAdS, the Schrödinger and Lif-
shitz solution has two parameters, radius LSch, respectively LLif and the dynamical exponent z. 
Note that the Schrödinger solutions obtained in the last section and the Lifshitz solutions exist on 
the locus which does not pass through the origin of the Lovelock moduli space. Thus these solu-
tions would cease to exist if we turn off higher derivative couplings and they cannot be obtained 
perturbatively in Lovelock couplings.

4.1. The phase-space of solutions in D = 5

The AdS solution in D = 5 is written in eq. (A.5). One can re-express it as LAdS being deter-
mined in terms of �.

1

L2
AdS

= 6 ± √
36 + 48a2�

24a2
(4.1)

which indicates that there are two branches for the AdS solution with different AdS-radius. This 
AdS solution exists when the term within the square root is non-negative

� ≥ − 3

4a2
. (4.2)

There is one more constraint on the parameters for the existence of AdS solution coming from 
the demand that L2

AdS > 0, which is a2 > 0.
The two branches of the AdS solutions meet at a point in the 2-dimensional phase-space 

spanned by the parameters {�, a2}, given by � = −3/(4a2). The Schrödinger solution and the 
Lifshitz solution in D = 5 eq. (3.3) and eq. (A.9) exist at this point in the phase-space with 
arbitrary value of the dynamical exponent z. We will discuss the relation between unconstrained 
z and the degeneracy of the configuration space later in this section.

4.2. The phase-space of solutions in D = 7

The AdS solution in D = 7 dimensions is given in eq. (A.6). The AdS radius squared L2
AdS

can be expressed in terms of the parameters �, a2 and a3. From eq. (A.6) it is easy to see that 
one has to solve a cubic equation for L2

AdS and the solutions are

L2
AdS = 540a2� + s�(s� − 15) + 225

3s�2

L2
AdS = −540a2� + (s� + 15)2

6�2s
± i

(
540a2� − s2�2 + 225

)
2
√

3�2s

(4.3)

where
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s3 =
−135

(
6�

(
15a2 + 6a3� −

√
180a2a3� + 36a2

3�2 + 50a3 − 240a3
2� − 75a2

2

)
+ 25

)
�3

.

(4.4)

One can see that the last two roots are complex conjugate of each other. Now demanding that the 
term within the square root in eq. (4.4) vanishes, i.e.,

180a2a3� + 36a2
3�2 + 50a3 − 240a3

2� − 75a2
2 = 0, (4.5)

and also using � = 1
L2

AdS

(
−15 + 180 a2

L2
AdS

− 360 a3
L4

AdS

)
, one obtains a relation between a2

and a3

a2 = L2
AdS

24
+ 3

a3

L2
AdS

=⇒ � = − 15

2L2
AdS

(
1 − 24a3

L4
AdS

)
. (4.6)

These relations are same as those encountered in our study of Schrödinger and Lifshitz solutions 
in D = 7. For these values, the imaginary parts of the second and third roots in eq. (4.3) vanish 
and they become equal, whereas the first root remains different,

L2
AdS = −2

√
60a2� + 25 − 5

�
, L2

AdS =
√

60a2� + 25 − 5

�
, L2

AdS =
√

60a2� + 25 − 5

�
.

(4.7)

Interestingly, there is yet another choice which simplifies solutions to the cubic equation. Con-
sider the choice a2 = −5/(12�), and set the discriminant equal to zero then the quantity s in 
(4.4) vanishes and all three roots of the cubic become equal to L2

AdS = −5/� This point is on 
the co-dimension one locus and admits solutions of Schrödinger and Lifshitz kind.

4.3. Degeneracy of the configuration space

We will now take up the issue of unconstrained dynamical exponent in the Lifshitz and the 
Schrödinger metrics in eq. (A.7) and eq. (3.1) respectively. It is known in the literature, see 
[13,14], that in pure Lovelock theories, unconstrained dynamical exponent z of the Lifshitz solu-
tions follows from the existence of degeneracy of the configuration space. The degeneracy of the 
configuration space corresponds to complete arbitrariness in specifying the metric component 
gtt (r) on this locus. Since this metric component is completely unconstrained, it naturally fol-
lows that the dynamical exponent is not constrained. While this result is known for the Lifshitz 
metrics, we believe our results for the Schrödinger metrics are new. More specifically, in D = 5
space–time dimensions, the statement of degeneracy in configuration space amounts to the fact 
that a metric ansatz of the following form for the Schrödinger geometry

ds2 = L2
sch

[
− f (r)

dt2

r2z
+ dr2

r2
+ 2

r2
dtdξ + 1

r2

2∑
i=1

dx2
i

]
, (4.8)

happens to be a solution for the action in eq. (2.4) with any arbitrary choice of the function f (r), 
at the same locus in the parameter space, eq. (3.3).
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The degeneracy of the configuration space was studied mostly in the context of the Chern–
Simons representation of the Lovelock theory. Since the Chern–Simons action does not have any 
free parameters, this representation exists only at a point in the Lovelock moduli space. However, 
in dimensions D > 6 the Lifshitz and Schrödinger solutions exist on a subspace which extends 
way beyond the Chern–Simons point. In order to understand the relation between the degeneracy 
of the configuration space and the special locus better, we deform the five dimensional Lovelock 
theory by adding R2 and RμνR

μν terms to it. Since neither Lifshitz nor Schrödinger solution 
exists in the Lovelock moduli space away from this locus, only way to study dependence of the 
degeneracy on the couplings is to expand the coupling constant space by adding new terms.

Let us deform the Lovelock action in D = 5 (2.4) by adding R2 and RμνR
μν terms. This 

deformation of the Lovelock theory is given in terms of two parameters b1 and b2,

I =
∫

d5x
√−g

[
R − 2� + a2(R

2 − 4RμνR
μν + Rμνρσ Rμνρσ ) + b1R

2 + b2RμνR
μν

]
.

(4.9)

We are now considering the most general action of gravity up to quadratic order in curvatures in 
D = 5. This action now contains 4 parameters, �, a2, b1 and b2.

The Lifshitz solution, eq. (A.7), as is known in the literature [14], occurs at

λ = − 3

L2
Lif

− b1
2z(z + 3)(z(z + 3) + 6)

L4
Lif

− b2
z(z + 3)

(
z2 + 3

)
L4

Lif

,

a2 = L2
Lif

4
− b1(z(z + 3) + 6) − b2

2

(
z2 + 3

)
.

(4.10)

When b1 = b2 = 0 we get back eq. (A.9), the Lifshitz solution exists for non-zero b1, b2 but with 
fixed dynamical exponent z, determined by the parameters of the theory. This agrees with [14]
that the degeneracy in the configuration space for the Lifshitz solution occurs only at

λ = − 3

L2
Lif

, a2 = L2
Lif

4
, b1 = b2 = 0. (4.11)

Interestingly, the Schrödinger solution with the metric ansatz, eq. (3.1) in D = 5, for a general 
theory of higher derivative gravity beyond Gauss–Bonnet theory with action eq. (4.9), is obtained 
as

� = − 3

L2
sch

− b1
80

L4
sch

+ b2
4
(
3z2 − 7

)
L4

sch

,

a2 = L2
sch

4
− 10b1 + b2

(
z2 − 3

)
.

(4.12)

We recover eq. (3.3), as expected, when we put b1 = b2 = 0. But, it is interesting to notice that in 
eq. (4.12), we get a solution with unconstrained z when b2 = 0 but b1 �= 0. Which in turn means, 
if we go beyond the Gauss–Bonnet theory and deform it with only R2 term, but with no RμνR

μν

term, we still obtain a Schrödinger solution with arbitrary dynamical exponent. It is then natural 
to ask, if the degeneracy of the configuration space is still present at this locus in parameter space 
beyond Gauss–Bonnet point, and it indeed turns out to be true. More specifically, a Schrödinger 
metric with the ansatz
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ds2 = L2
sch

[
− f (r)

dt2

r2z
+ dr2

r2
+ 2

r2
dtdξ + 1

r2

2∑
i=1

dx2
i

]
, (4.13)

is a solution to the equations of motion obtained from the action in eq. (4.9) with b2 = 0, for

� = − 3

L2
sch

− b1
80

L4
sch

, a2 = L2
sch

4
− 10b1 (4.14)

with arbitrary f (r). We thus conclude that the degeneracy in configuration space and the solu-
tions with arbitrary dynamical exponent belong to the same locus on the parameter space. The 
special locus in Gauss–Bonnet theory on which both Lifshitz and Schrödinger solutions co-exist 
also a Chern–Simons description but the degeneracy of the configuration space of Schrödinger 
solution is neither confined to Chern–Simons description nor to the Lovelock subspace. Al-
though, we have carried out the study of degeneracy of the configuration space in D = 5 for 
Gauss–Bonnet theory and its deformation to more general quadratic curvature theories, similar 
analysis can be done in D > 5 dimensions.

5. Lovelock gravity as AdS Chern–Simons gravity and Born–Infeld gravity

The Lovelock theory has the property that the action has general covariance and the field 
equations contain at most two derivatives of the metric. We parametrize the Lovelock theory 
using a set of real coefficients ap, p = 0, 1, · · · , [D/2] which are coupling constants of the 
higher derivative terms. It is convenient to adopt the first order approach, with the dynamical 
variables being the vielbein, ea = ea

μdxμ, and the spin connection, ωab = ωab
μ dxμ, obeying 

first order equations of motion. It is straightforward to solve the vanishing of the torsion for the 
connection and eliminate them by writing them in terms of the vielbeins to obtain the standard 
second order form in terms of metric.

The action is constructed as a polynomial of degree [D/2] in Rab = (1/2)Rab
μν dxμ ∧ dxν

and

I = 1

16πG

∫
M

dDx

[D/2]∑
p=0

apLp, where Lp = εa1···aD
Ra1a2 · · ·Ra2p−1a2p ea2p+1 · · · eaD .

(5.1)

Imposing the condition that the theory possesses maximum possible degrees of freedom deter-
mines all Lovelock couplings in terms � and GN . The action in odd dimensions can then be 
written as a Chern–Simons action with AdS, dS or Poincaré symmetry [21–23], and in even 
dimensions as a Born–Infeld like action [24].4

5.1. Odd dimensions: Lovelock gravity as Chern–Simons gravity

5.1.1. The Chern–Simons theory
It is well known that gravity in (2 + 1) dimensions can equivalently be written as a Chern–

Simons theory for the gauge groups ISO(2, 1) or SO(2, 2), but with no propagating bulk degrees 

4 Though having explicit torsion in the Lagrangian for D = 4k − 1 is possible with the same requirements, we will not 
consider them here.
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of freedom. In higher dimensions, D = 2n −1, n ≥ 2, the essential idea for constructing a Chern–
Simons theory is to utilize the fact that there exists a 2n-form in D = 2n,

Q2n(A) = T r[Fn] = T r[F ∧ F ∧ · · · ∧ F︸ ︷︷ ︸
n−times

] . (5.2)

This form is closed, i.e. dQ2n = 0, where A is the Lie Algebra valued connection 1-form A =
Aa

μTadxμ and F = dA + A ∧ A is the corresponding field strength or curvature 2-form, with Ta

being the generators of the Lie algebra g of the gauge group G [25]. The fact that Q2n is closed 
leads to the existence of a (2n − 1)-form L2n−1

CS such that

dL2n−1
CS = Q2n = T r[Fn] (5.3)

which can always be solved as

L2n−1
CS (A) = 1

(n + 1)!
1∫

0

dt T r
[
A(tdA + t2A2)n−1] + α (5.4)

with α being some arbitrary closed (2n − 1)-form. This way one constructs a Chern–Simons 
Lagrangian L2n−1

CS (A) in D = 2n − 1 dimensions with an action

ICS(A) =
∫

M2n−1

L2n−1
CS (A). (5.5)

5.1.2. Connection with the Lovelock gravity
In odd dimensions, i.e., D = 2n − 1, it was argued that the requirement of having maximum 

possible degrees of freedom fixes the Lovelock coefficients as [25]

ap = κL2p−D

D − 2p

(
n − 1

p

)
, 0 ≤ p ≤ n − 1 (5.6)

leaving the action depending on only two parameters, gravitational constant κ and the cosmo-
logical constant �.5 The precise connection of Lovelock theories with Chern–Simons gravity 
theories in odd dimensions (D = 2n − 1) is that the Lagrangian for the Lovelock theory can be 
cast as a Chern–Simons theory for the group AdS. This can be demonstrated through the pack-
aging of the Lovelock vielbeins ea and connections ωab in the following connection 1-form as

WAB =
[

ωab ea

L

− ea

L
0

]
(5.7)

where the indices a, b = 1, · · · , D and A, B = 1, · · · , D + 1. Note that the A, B-indices are 
raised or lowered with respect to the AdS metric

�AB =
[

ηab 0
0 −1

]
. (5.8)

5 Note that L is the length parameter related to cosmological constant as � = ± (D−1)(D−2)

2L2 , where as the Newton’s 
constant GN is related to κ through κ−1 = 2(D − 2)!�D−2GN .
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This connection defines a curvature 2-form, also called the AdS curvature, as

FAB = dWAB + WA
C ∧ WC

B =
[

Rab + ea∧eb

L2
T a

L

−T a

L
0

]
(5.9)

where Rab = dωab + ωa
c ∧ ωc

b is the curvature 2-form for the 1-form ωab , which is 
(2n − 1)-dimensional and not to be confused with the 2n-dimensional AdS curvature 2-form 
FAB . T a is the torsion form and setting it to zero corresponds to imposing torsion-free con-
straint.

Next, using the invariant tensor for the AdS group εA1···A2n
along with the 2n-dimensional 

AdS curvature FAB one constructs the Euler form in 2n-dimension

E2n = εA1···A2n
FA1A2 · · ·FA2n−1A2n . (5.10)

Using the Bianchi identity for the AdS curvature FAB we can show that this Euler density 
is closed, dE2n = 0. Using explicit form of FAB given in eq. (5.9) one can then write the 
(2n − 1)-form L2n−1

CS in terms of the (2n − 1)-dimensional curvature 2-form Rab and the viel-
beins ea ,

L2n−1
CS =

[D/2]∑
p=0

ap εa1···aD
Ra1a2 · · ·Ra2p−1a2p ea2p+1 · · · eaD , (5.11)

and dL2n−1
CS = E2n. The coefficients ap are completely fixed here due to the relation between the 

Chern–Simons density and the Euler density and they turn out to be exactly same as those in 
eq. (5.6). The field equations obtained from the action in eq. (5.5) are

εa1a2a3···α2n−1F
a2a3 · · ·Fa2n−2a2n−1 = 0,

εa1a2a3···α2n−1F
a3a4 · · ·Fa2n−3a2n−2T a2n−1 = 0.

(5.12)

5.2. Even dimensions: Lovelock gravity as Born–Infeld gravity

As we have seen in odd dimensions there are gravity actions which are invariant not just under 
Lorentz group but also under some its extensions, e.g. AdS group SO(D −1, 2). On the contrary, 
this is not possible in even dimensions, D = 2n. However the requirement of having maximum 
possible number of degrees of freedom fixes the Lovelock coefficients as [25]

ap = κ

(
n

p

)
, 0 ≤ p ≤ n. (5.13)

The Lovelock action depends on two constants only, the gravitational constant and the cosmo-
logical constant, and the Lagrangian, given in eq. (5.1), becomes

L = κ

2n
εa1···aD

F a1a2 · · ·FaD−1aD (5.14)

which is pfaffian of the two form Fab = Rab + eaeb

L2 and can be cast in Born–Infeld form [25]

L = 2n−1(n − 1)!κ
√

det

(
Rab + eaeb

L2

)
. (5.15)
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It is important to note that the two forms Fab are no longer a part of any AdS curvature. The field 
equations in even dimensions take the form

εab1···bD−1F
b1b2 · · ·FbD−3bD−2 ebD−1 = 0

εaba3···aD
F a3a4 · · ·FaD−3aD−2T aD−1eaD = 0.

(5.16)

5.3. Schrödinger space–time as a solution to Chern–Simons gravity in D = 5 dimensions

We will now explicitly show that the Schrödinger solution obtained earlier from the Lovelock 
action can also be seen as a solution to the Chern–Simons gravity in odd dimensions. We will 
work in D = 5 dimensions. The metric in 5-dimension looks like

ds2 = L2
sch

[
− dt2

r2z
+ dr2

r2
+ 2

r2
dtdξ + 1

r2
(dx2 + dy2)

]
. (5.17)

We make the following choice for vielbeins corresponding to the metric in eq. (5.17),

e1
t = −Lsch

rz
, e1

ξ = Lschr
z−2, e3

ξ = Lschr
z−2, e2

r = e4
x = e5

y = Lsch

r
. (5.18)

The spin connections ωab and the AdS curvature FAB for the Schrödinger metric are listed 
in Appendix A.3. It is easy to see that the AdS curvature FAB does indeed satisfy the field 
equations (5.12).

5.4. Relation with causality and stability constraints

Stability analysis of Lovelock theories in higher dimensions has been carried out in the past 
[17–19]. These studies derive constraints on the values of Gauss–Bonnet coupling (a2) and the 
cubic Lovelock coupling (a3) by demanding causality and stability condition on the solutions 
of the Lovelock theory in D = 7. These two conditions are satisfied in a region in the neigh-
borhood of the origin of the (a2, a3) plane and at an isolated point, which in our choice of 
normalization corresponds to (a2 = L2/36, a3 = L4/648). The Lovelock parameters (a2, a3) 
used in this paper are related to the parameters (β2, β3) or (λ1, λ2) used in [17] in the follow-
ing way a2 = β2L

2 = (λ1/12)L2 and a3 = β3L
4 = (λ2/72)L4. In terms of these parameters the 

isolated point, mentioned above, corresponds to (λ1 = 1/3, λ2 = 1/9).6 It is interesting to note 
that this isolated apex point in the phase diagram, see Fig. 1 in [19], is also the same point where 
we have the Chern–Simons representation for the Lovelock theory. The Schrödinger and Lifshitz 
solutions exist only at this point in the Lovelock coupling space, which presumably also implies 
that they also satisfy the causality and stability constraints. It would be interesting to check this 
explicitly for these solutions.

6. Discussion

We studied the coupling constant parameter space of Lovelock gravity theories in arbitrary 
dimensions, while restricting our analysis to the Lovelock terms up to cubic in curvatures. We 

6 Note that in [17] the cosmological constant is taken to be � = −15/L2 and relation between βi and λi is given for 
L = 1. This reduces the coupling parameter space from three to two dimensions, therefore the Schrödinger or Lifshitz 
solutions exist only at point in the reduced parameter space (β1, β2) or (λ1, λ2).
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demonstrated that Schrödinger solutions exist on co-dimension 1 subspace in the parameter 
space. Similar results for Lifshitz solutions already exist in the literature. Interestingly, both the 
solutions exist on the same locus. We found that on this locus, both Schrödinger and Lifshitz 
exponents were completely unconstrained. Even if we couple the Maxwell or Yang–Mills fields 
to these Lovelock theories, the Schrödinger and the Lifshitz moduli space would continue to be 
the same co-dimension 1 subspace.

As already mentioned earlier in the introduction, Schrödinger holography relates a theory 
of gravity to field theories living on a co-dimension 2 subspace. Therefore, D = 5 and D = 6
dimensional Schrödinger geometries are directly relevant for studying field theories with this 
symmetry in 2 + 1 and 3 + 1 dimensions. However, higher dimensional Schrödinger geometries 
in D ≥ 7 dimensions are also relevant for studying field theory systems in lower dimensions, 
since the higher dimensional Schrödinger space–times can be first dimensionally reduced to 
lower dimensions and then we can analyze those dimensionally reduced theories. As was pointed 
out in eq. (1.3), the dimensional reductions do generally lead to effective theories in the lower 
dimensions similar to Galileon type theories. In fact, in the case when n = 1 in eq. (1.3), that 
is, starting from D = d + 2 dimensions we come down to D = d + 1 dimensions, the effective 
action takes even simpler form

S̄(d+1) =
∫

dd+1x
√−ḡ e

φ
2

{
R̄ − 2� + a2Ḡ

}
(6.1)

and for the case when n = 2, with simple toroidal reduction it becomes

S̄(d+1) =
∫

dd+1x
√−ḡ e

φ
2

{
R̄ − 2� + a2Ḡ + 1

2
ḡμν∂μφ∂νφ − 2a2Ḡ

μν∂μφ∂νφ

}
. (6.2)

Since these effective actions are obtained by dimensionally reducing the higher dimensional 
theories, any solution of the higher dimensional theories continues to solve the equations of 
motion obtained from the reduced action.

We have seen in section 3.1 that for a specific value for the Gauss–Bonnet coupling con-
stant a2, given in eq. (3.3), we obtain a Schrödinger solution in D = 5 dimensions with an 
unconstrained exponent z. Similarly, starting in D = 7 dimensions and for the sake of simplicity 
allowing only the Gauss–Bonnet term, that is, assuming a3 = 0, we can perform a toroidal com-
pactification over a 2 dimensional internal manifold and the resulting effective theory in D = 5
dimension comes with action given in eq. (6.2). The Schrödinger solution in D = 7 dimension, 
given in eq. (3.4) with a3 = 0, also becomes a solution to the dimensionally reduced effective 
theory eq. (6.2), with unconstrained dynamical exponent z for these particular values of the pa-
rameters � and a2. Therefore, from the view point of effective lower dimensional theories with 
the action motivated by the dimensional reductions from higher dimensional theories, we can 
take a phenomenological bottom-up approach to study various aspects of field theoretical sys-
tems with Schrödinger symmetries. In this regard, our study in this paper provides a template 
for studying non-relativistic field theories with arbitrary dynamical exponent via holography, in 
theories of gravity coupled to matter systems through non-trivial but specific values of couplings 
of the Galileon terms, as dictated by eq. (3.3) and eq. (3.4). For n ≤ 2 there is further simplifica-
tion because in that case neither the DGP term nor the Galileon type terms appear in the d + 1
dimensional theory as is evident from eq. (6.1) and eq. (6.2). Starting from these dimensionally 
reduced theories, one can then deform them appropriately by adding new terms to the action 
and engineer non-relativistic solutions with particular fixed values of the dynamical exponent z. 
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Analysis of these deformations leading to specific values of z relevant for application to, say, the 
condensed matter systems is beyond the scope of this investigation.

We also pointed that the co-dimension 1 subspace of the Lovelock theories on which 
Schrödinger and Lifshitz solutions exist also supports Chern–Simons formulation in odd space–
time dimensions and Born–Infeld formulation in even space–time dimensions. We cast our 
non-relativistic metric in the gauge connection form suitable for these formulations. At this 
point it is interesting to note that [22,24] these gauge connection formulations have natural 
super-symmetric extension. It would be interesting to explore super symmetric non-relativistic 
solutions in the Lovelock theories.

It is known that the Chern–Simons point in the coupling space of the Lovelock theories is 
maximally symmetric. However, most of the studies at this point are concentrated either on the 
AdS type solutions or on the black brane solutions. Neither of these solutions can shed direct light 
on the possible values of the dynamical exponent z that appears in the Schrödinger or Lifshitz 
solutions. Unconstrained dynamical exponent is related to the degeneracy of the configuration 
space [13,14], which was studied in the context of Chern–Simons formulation. We studied mod-
ification of the Gauss–Bonnet theory by doing general deformation using terms quadratic in 
curvature and found that the degeneracy of the configuration space in case of the Schrödinger 
solution is not confined to the Chern–Simons point but extends in the direction orthogonal to the 
Lovelock moduli space corresponding to deformation by the Ricci scalar squared term. Thus the 
unconstrained dynamical exponent is a result of the degeneracy and it has weak dependence on 
the special locus in the Lovelock moduli space in the case of the Schrödinger solutions.

Another point worth mentioning is that we do not find hyper-scaling violating solutions any-
where in the Lovelock moduli space, nor do we find black brane solutions with either Schrödinger 
or Lifshitz type scaling. This in turn means it is harder to turn on temperature in these geometries, 
however, these shortcomings can be remedied by deforming away from the Lovelock moduli 
space.
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Appendix A

A.1. Explicit form of terms in the equation of motion

In this appendix we write down the explicit forms of G(1)
μν , G(2)

μν and G(3)
μν appearing in the 

equation of motion eq. (2.8). These terms come from the Einstein term, curvature squared and 
cubic terms respectively in the Lovelock action, eq. (2.1). The term G(1)

μν = Rμν − 1
2gμνR is the 

standard Einstein tensor coming from L0. The term G(2)
μν , coming from L1 is given by

G(2)
μν = 2(RμσκτRν

σκτ − 2Rμρνσ Rρσ − 2RμρRρ
ν + RRμν) − 1

2
gμνL2, (A.1)

and, the third term, G(3)
μν , comes from the cubic term L2 of the Lovelock action,
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G(3)
μν = 3R2Rμν − 12RμρRρ

ν − 12RμνRαβRαβ + 24RμαRαβRνβ − 24Rα
μRβσ Rαβσν

+ 3RμνR
αβσκRαβσκ − 12RμαRνβσκRαβσκ − 12RRμσνκRσκ

+ 6RRμαβσ Rν
αβσ + 24RμανβRα

σ Rβσ + 24Rμαβσ Rβ
ν Rασ

+ 24RμανβRασβκRσκ − 12Rμαβσ Rκαβσ Rκν − 12Rμαβσ RακRνκ
βσ

+ 24Rμ
αβσ Rκ

βRσκνα − 12RμανβRα
σκρRβσκρ

− 6Rμ
αβσ Rβσ

κρRκραν − 24Rμα
βσ RβρνλRσ

λαρ − 1

2
gμνL3 .

(A.2)

A.2. AdS and Lifshitz solutions in Lovelock gravity

Here we will list AdS and Lifshitz solutions to the Lovelock theories in various dimensions. 
These results are presented here so that we can compare them with the Schrödinger solutions in 
the main text. The metric ansatz for the AdS solution is

ds2 = L2
AdS

(
−u2dt2 + du2

u2
+ u2

D−2∑
i=1

dx2
i

)
, (A.3)

where LAdS is the AdS radius. The higher derivative terms modify the AdS solution by changing 
the relation between the AdS radius and the cosmological constant term in the Lagrangian. This 
modification depends on the dimensions and on the number of Lovelock terms that are turned on. 
The AdS solution in general D dimensions for Lovelock Lagrangians up to cubic in curvature 
invariants gives

� = − (D − 1)(D − 2)

2L2
AdS

[
1 − (D − 3)(D − 4)a2

L2
AdS

− (D − 3)(D − 4)(D − 5)(D − 6)a3

L4
AdS

]
.

(A.4)

The equations of motion in D = 5, namely eq. (2.8) with a3 = 0 gives rise to one condition 
between the variables �, LAdS and a2,

� = 1

L2
AdS

(
−6 + 12

a2

L2
AdS

)
=⇒ 1

L2
AdS

= 1

4a2

(
1 ±

√
1 + 4a2�

3

)
. (A.5)

In the Gauss–Bonnet theory there are two branches of AdS solutions corresponding to two signs 
of the square-root in eq. (A.5). These two branches merge when a2� = −3/4. The Lifshitz and 
Schrödinger solutions exist precisely at these values of the couplings.

In D = 7 the Lagrangian has three parameters, �, a2 and a3. The equation of motion, eq. (2.8), 
is solved by the AdS metric ansatz provided the following condition is satisfied,

� = 1

L2
AdS

(
−15 + 180

a2

L2
AdS

− 360
a3

L4
AdS

)
. (A.6)

This condition can be inverted to write LAdS in term of the couplings in the Lagrangian.
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We will now consider Lifshitz solutions to the Lovelock equations of motion. We consider the 
metric ansatz for the Lifshitz space–time as follows7

ds2 = L2
Lif

(
−dt2

r2z
+ dr2 + ∑D−2

i=1 dx2
i

r2

)
. (A.7)

The parameter z in eq. (A.7), which in principle can take any real value, is called the Lifshitz 
exponent. Asymptotic symmetries are non-relativistic whenever z �= 1. The parameter LLif is 
Lifshitz radius. The Lifshitz solutions are parametrized by the set of parameters {z, LLif}.

The Lifshitz solution in D dimensional cubic Lovelock theory exists if [14,29] (see also [30])

� = − (D − 1)(D − 2)

4L2
Lif

(
1 − (D − 3)(D − 4)(D − 5)(D − 6)a3

L4
Lif

)
,

a2 = L2
Lif

2(D − 3)(D − 4)
+ 3(D − 5)(D − 6)

2L2
Lif

a3 .

(A.8)

In D = 5, the Lifshitz solution exists whenever following relations are valid,

� = − 3

L2
Lif

and a2 = L2
Lif

4
. (A.9)

Notice that these relations do not contain z, i.e., if (A.9) is satisfied then the Lifshitz solution 
exists with arbitrary dynamical exponent z. If we eliminate LLif in eq. (A.9) then the Lifshitz 
solution exists only if a2� = −3/4.

In D = 7 the Lifshitz solution has two conditions which relates three coupling parameters 
appearing in the Lagrangian:

� = − 15

2L2
Lif

(
1 − 24

a3

L4
Lif

)
and a2 = L2

Lif

24
+ 3

a3

L2
Lif

, (A.10)

as in five dimensions, we do not get any condition on z. These values of � and a2 are also related 
to the locus in the parameter space at which three AdS branches merge.

A.3. Spin connections, and FAB for Schrödinger solutions

In this appendix we will follow the discussion of section 5.1 and 5.2 to compute the spin 
connection 1-form ωab by solving the torsion-free condition T a = dea + ωa

b ∧ eb = 0. Using the 
connection we will then compute the corresponding curvature 2-form Rab and finally the AdS 
curvature 2-form FAB defined in eq. (5.9) for the Schrödinger solutions discussed earlier.

For Schrödinger solutions in D = 5 we consider the vielbeins as given in eq. (5.18) and 
compute the spin connections explicitly by solving the torsion free condition,

7 The general Lifshitz metric has gtt = −L2
Lif/r

2(D−2)(z−1)
D−2−θ

+2 and grr = L2
Lif r

2θ
D−2−θ

−2 where θ is the hyper-scaling 
violating exponent [26–28]. These solutions for non-zero θ do not exist in Lovelock theories.
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ω12 = −ω21 = z

rz
dt − rz−2dξ, ω13 = −ω31 = −z − 1

r
dr,

ω23 = −ω32 = −z − 1

rz
dt + rz−2dξ, ω24 = −ω42 = 1

r
dx, ω25 = −ω52 = 1

r
dy.

(A.11)

The curvature 2-forms, Rab, can be calculated and the non-vanishing components are

R12 = L2
sch

[
z2 + (z − 1)2

rz+1
dt ∧ dr + rz−3dr ∧ dξ

]
, R13 = L2

sch

r2
dt ∧ dξ,

R23 = −L2
sch

[
2z(z − 1)

rz+1
dt ∧ dr + rz−3dr ∧ dξ

]
, R24 = −L2

sch

r2
dr ∧ dx,

R14 = L2
sch

[ z

rz+1
dt ∧ dx − rz−3dξ ∧ dx

]
, R25 = −L2

sch

r2
dr ∧ dy,

R15 = L2
sch

[ z

rz+1
dt ∧ dy − rz−3dξ ∧ dy

]
, R35 = L2

sch

[
z − 1

rz+1
dt ∧ dy − rz−3dξ ∧ dy

]
,

R34 = L2
sch

[
z − 1

rz+1
dt ∧ dx − rz−3dξ ∧ dx

]
, R45 = −L2

sch

r2
dx2 ∧ dx3.

(A.12)

Finally we compute the AdS curvature FAB defined in eq. (5.9), note A, B = 1, · · · , 6 and 
a, b = 1, · · · , 5

F 12 = L2
sch

2z(z − 1)

r1+z
dt ∧ dr, F 13 = −L2

sch
z(z − 2)

r2
dt ∧ dξ, F 14 = L2

sch
z − 1

r1+z
dt ∧ dx,

F 15 = L2
sch

z − 1

r1+z
dt ∧ dy, F 34 = L2

sch
z − 1

r1+z
dt ∧ dx, F 35 = L2

sch
z − 1

r1+z
dt ∧ dy,

F 23 = −L2
sch

2z(z − 1)

r1+z
dt ∧ dr.

(A.13)

All the other components, such as, F 24, F 25, F 45, Fa6 = T a , F 6b = −T b , are evaluated to be 
zero.
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