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Abstract

We obtain two-weighted L2 norm inequalities for oscillatory integral operators of convolution type on the
line whose phases are of finite type. The conditions imposed on the weights involve geometrically-defined
maximal functions, and the inequalities are best-possible in the sense that they imply the full Lp(R) →
Lq(R) mapping properties of the oscillatory integrals. Our results build on work of Carbery, Soria, Vargas
and the first author.
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1. Introduction

Weighted norm inequalities have been the subject of intense study in harmonic analysis in
recent decades. On an informal level, given a suitable operator T (which maps functions on Rm

to functions on Rn, say) and an exponent p ∈ [1,∞), such inequalities typically take the form
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∫
Rn

|Tf |pv �
∫

Rm

|f |pu, (1)

where the weights u and v are certain nonnegative functions on Rm and Rn respectively. In such
a context the general goal is to understand geometrically the pairs of weights u and v for which
(1) holds for all admissible inputs f . As may be expected, sufficient conditions on u,v are often
of the form Mv � u for some appropriate maximal operator M capturing certain geometric
characteristics of T . Under such circumstances a simple duality argument generally allows (1) to
transfer bounds on M to bounds on T . For example, if q, q̃ � p then

‖Tf ‖Lq(Rn) = sup
‖v‖(q/p)′=1

( ∫
Rn

|Tf |pv

)1/p

� sup
‖v‖(q/p)′=1

( ∫
Rn

|f |p Mv

)1/p

� sup
‖v‖(q/p)′=1

‖Mv‖1/p

L(̃q/p)′ (Rm)
‖f ‖Lq̃(Rm), (2)

and so ‖T ‖q̃→q � ‖M‖1/p

(q/p)′→(̃q/p)′ . Thus given such an operator T and an index p, it is of
particular interest to identify a corresponding geometrically defined maximal operator M which
is optimal in the sense that all “interesting” Lq → Lq̃ bounds for T may be obtained from those
of M in this way.1

This endeavour has been enormously successful for broad classes of important operators T

in euclidean harmonic analysis, such as maximal averaging operators, fractional integral op-
erators, Calderón–Zygmund singular integral operators and square functions. For example if
T is a standard Calderón–Zygmund singular integral operator, such as the Hilbert transform
on the line, Córdoba and Fefferman [9] showed that for any p, r > 1, there is a constant Cp,r

for which ∫
Rn

|Tf |pw � Cp,r

∫
Rn

|f |pMrw.

Here Mrw := (Mwr)1/r , where M denotes the Hardy–Littlewood maximal function on Rn.2

The modern description of such inequalities belongs to the theory of Ap weights, and may be
found in many sources; see for example [21,10,11].

It is pertinent at this stage to mention one further particular example of this perspective. Let
Iα denote the fractional integral operator of order α on R, defined via the Fourier transform by
Îαf (ξ) = |ξ |−αf̂ (ξ). In [17] Pérez showed that for any 0 < α < 1, there is a constant Cα for
which

1 One might interpret “interesting” here as those which generate the full mapping properties of T by duality consider-
ations and interpolation with elementary inequalities.

2 There are improvements of the above inequality due to Wilson [22] and Pérez [16]. We shall appeal to these in
Section 4.
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∫
R

|Iαf |2w � Cα

∫
R

|f |2M2αM2w, (3)

where now

Mαw(x) = sup
r>0

1

r1−α

∫
|x−y|<r

w(y)dy

is a certain fractional Hardy–Littlewood maximal function and M2 = M ◦ M denotes the com-
position of the Hardy–Littlewood maximal function M with itself.3 From the current perspective
the factors of M in the maximal operator MαM2 are of secondary importance since Mα and
MαM2 share the same Lp → Lq mapping properties provided 1 < p � ∞. This follows from
the Lp → Lp boundedness of M for 1 < p � ∞.

It is of course natural to seek such weighted inequalities for other classes of operators which
occupy a central place in harmonic analysis. Perhaps the most apparent context would be that
of oscillatory integral operators, and this has indeed received some notable attention in the lit-
erature. In particular, in the Proceedings of the 1978 Williamstown Conference on Harmonic
Analysis, Stein [20] raised the possibility that the disc multiplier operator or Bochner–Riesz mul-
tiplier operators may be controlled by Kakeya or Nikodym type maximal functions via weighted
L2 inequalities of the above general form. Although this question posed by Stein (which is
sometimes referred to as Stein’s Conjecture) remains largely unsolved in all dimensions, it has
generated a number of results of a similar nature (see for example [4,6,7,2,5,3,1,13]).

The aim of this paper is to establish a general result providing weighted norm inequalities of
the form (1) for oscillatory integral operators of convolution type on the line with phases of finite
type. Our approach builds on work of Carbery, Soria, Vargas and the first author [3].

2. Statement of results

Let � ∈ N satisfy � � 2 and x0 ∈ R be given. Suppose that φ : R → R is a smooth phase
function satisfying the finite type condition

φ(k)(x0) = 0 for 2 � k < �, and φ(�)(x0) 	= 0. (4)

As we shall clarify in Section 3, this condition ensures that φ is close to the model phase x 
→
a + bx + c(x − x0)

� in a neighbourhood of x0. Here a, b, c are real numbers.
For each λ > 0 define a convolution kernel Kλ : R → C by

Kλ(x) = eiλφ(x)ψ(x), (5)

where ψ is a smooth cutoff function supported in a small neighbourhood U of x0. Throughout
we shall suppose that U is sufficiently small so that φ(�) is bounded below by a positive constant
on U . We define the oscillatory integral operator Tλ by

3 In [17] a similar statement is proved in all dimensions and for exponents 1 < p < ∞.
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Tλf (x) = Kλ ∗ f (x) =
∫
R

eiλφ(x−y)ψ(x − y)f (y) dy.

Our main result is the following:

Theorem 2.1. There exists a constant C > 0 such that for all weight functions w and λ � 1,∫
R

∣∣Tλf (x)
∣∣2

w(x)dx � C

∫
R

∣∣f (x)
∣∣2

M2 M�,λM
4w(x − x0) dx (6)

where Mk denotes the k-fold composition of the Hardy–Littlewood maximal function M , and
M�,λ is given by

M�,λw(x) = sup
(y,r)∈Γ�,λ(x)

1

(λr)
1

�−1

∫
|y−y′|�r

w
(
y′)dy′

where Γ�,λ(x) is the region

{
(y, r): λ−1 < r � λ− 1

� , and |y − x| � (λr)−
1

�−1
}
.

The remainder of this section consists of a number of remarks on the context and implications
of the above theorem, followed by an informal description of the ideas behind our proof.

First of all it should be noted that by translation-invariance it suffices to prove (6) with x0 = 0.
We will actually prove a uniform version of the above theorem under the following quantified

version of the hypothesis (4): Suppose that ε > 0 and (Bj )j∈N is a sequence of positive constants.
In addition to (4), suppose that

φ(k)(x0) = 0 for 2 � k < �, and φ(�)(x0) � ε, (7)

and that ∥∥φ(j)
∥∥∞ � Bj

for all j ∈ N. By the Mean Value Theorem, the neighbourhood U of x0 may be chosen, depending
only on ε and B�+1, such that φ(�) � ε/2 on U . As may be seen from the proof, the constant C

in Theorem 2.1 depends only on ε, � and finitely many of the Bj . As might be expected, such
uniform versions allow one to handle multivariable phases which satisfy the hypotheses of the
theorem in one scalar variable uniformly in the remaining variables. We do not elaborate on this.

By modulating the input f and output Tλf appropriately in (6), there is no loss of generality
in strengthening the hypothesis (4) to

φ(k)(x0) = 0 for 0 � k < �, and φ(�)(x0) 	= 0. (8)

Similarly, (7) may be replaced with

φ(k)(x0) = 0 for 0 � k < �, and φ(�)(x0) � ε. (9)
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Notice that if φ satisfies the hypotheses (8) (or (9)) and χ is a local diffeomorphism in a neigh-
bourhood of y0 ∈ R with χ(y0) = x0, then the phase function φ ◦ χ satisfies the hypotheses (8)
(or (9)) at the point y0.

The maximal function M�,λ resembles a fractional Hardy–Littlewood maximal operator cor-
responding to an “approach region”, somewhat reminiscent of (yet different from) the maximal
operators studied by Nagel and Stein in [15]. It should be pointed out that M�,λ actually behaves
rather differently from a fractional maximal operator, exhibiting a homogeneity more suitable for
Lp → Lp estimates; see the forthcoming Proposition 2.3 and the scaling identity (39) for further
clarification. We note that M�,λ is universal in the sense that it depends only on the parameters
� and λ, and is otherwise independent of the phase φ.

Since M�,λ involves a fractional average, (6) bears some resemblance to the two-weighted
inequality for the fractional integral (3) due to Pérez [17]. The root of this similarity lies in the
fact that the Fourier multipliers for the operators Tλ and Iα both exhibit “power-like” decay. We
remark that the factors of Hardy–Littlewood maximal function M are of secondary importance in
Theorem 2.1 since for 1 < p,q � ∞, M2 M�,λM

4 and M�,λ share the same Lp → Lq bounds
(up to absolute constants). Several of these factors of M do not appear to be essential and arise
for technical reasons.

The model phase functions satisfying (4) are of course φ(x) = (x − x0)
� for � � 2, although

there are others of particular interest. For example the phase function φ(x) = cosx (which clearly
satisfies our hypotheses with � = 2 and � = 3, depending on the point x0) arises naturally in the
context of weighted inequalities for the Fourier extension operator associated with the circle S1

in R2. The Fourier extension (or adjoint Fourier restriction) operator associated with S1 is the
map g 
→ ĝ dσ , where

ĝ dσ (ξ) =
∫
S1

g(x)eix·ξ dσ (x).

Here σ denotes arclength measure on S1 and g ∈ L1(S1); thus ĝ dσ is simply the Fourier trans-
form of the singular measure g dσ on R2. It should be noted that the adjoint of this map is the
restriction f 
→ f̂ |S1 , where again̂denotes the Fourier transform on R2. On parametrising S1,
invoking a suitable partition of unity and applying Theorem 2.1 with φ(x) = cosx for both
� = 2,3, one may deduce the following theorem of Carbery, Soria, Vargas and the first author.

Theorem 2.2. (See [3].) There exists a constant C > 0 such that for all Borel measures μ sup-
ported on S1 and R � 1,

∫
S1

∣∣ĝ dσ (Rx)
∣∣2

dμ(x) � C

R

∫
S1

∣∣g(ω)
∣∣2

M2MRM4(μ)(ω)dσ(ω),

where

MRμ(ω) = sup
T ‖ω

−1 −2/3

μ(T (α,α2R))

α
,

R �α�R
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and M is the Hardy–Littlewood maximal function on S1. Here T (α,β) denotes a rectangle in the
plane, of short side α and long side β .

Our proof of Theorem 2.1 builds on that of Theorem 2.2 and is a testament to the robustness
of the approach developed in [3].

The above application of Theorem 2.1 used the fact that the phase under consideration sat-
isfied hypothesis (4) for different values of � in different regions. A similar approach yields
two-weighted inequalities associated with polynomial phases for example. The maximal opera-
tors that feature are linear combinations of translates of the operators M�,λ, determined by the
local monomial structure of the polynomial. We do not pursue this matter further here, although
it is pertinent to note that the weighted bounds on Tλf provided by Theorem 2.1 grow with the
parameter �. It is straightforward to verify that if � � �′ then Γ�,λ(x) ⊆ Γ�′,λ(x) for x ∈ R. As a
consequence

M�,λw(x) � M�′,λw(x)

for all x.
Theorem 2.1 is sharp in the sense that the simple duality argument (2) when applied to (6) al-

lows the interesting Lp(R) → Lq(R) boundedness properties of the oscillatory integral operator
Tλ to be deduced from those of the controlling maximal function M�,λ. For � = 3 the bounds on
Tλ are already known and follow from work of Greenleaf and Seeger – [12]4. The central esti-
mates are the following, from which all others may be obtained by interpolation with elementary
estimates and duality.

Proposition 2.3. For � � 2, there exists a constant C > 0 such that

‖M�,λf ‖
( �

2 )′ � Cλ− 2
� ‖f ‖

( �
2 )′ (10)

holds for all f ∈ L( �
2 )′(R) and λ � 1.

Theorem 2.1 combined with Proposition 2.3 yields the following:

Corollary 2.4. For � � 2, there exists a constant C > 0 such that

‖Tλf ‖� � Cλ− 1
� ‖f ‖�, (11)

holds for all f ∈ L�(R) and λ � 1.

As in the statement of Theorem 2.1, the constants C above depend only on ε, � and finitely
many of the Bj .

Theorem 2.1 (and thus Corollary 2.4) is only truly significant for � > 2. The case � = 2 of
Theorem 2.1 may be handled by elementary methods using the local nature of the operator Tλ,
Plancherel’s theorem and a simple stationary phase estimate on K̂λ. Notice that if φ(x) = x2,
then

4 This is only explicit for � = 3, although it is clear that their techniques extend to general � in this setting.
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eiφ ∗ f (x) =
∫
R

ei(x−y)2
f (y)dy = eix2

∫
R

e−2ixy
(
eiy2

f (y)
)
dy,

and so an inequality of the form∫
R

∣∣eiφ ∗ f (x)
∣∣2

v(x) dx � C

∫
R

∣∣f (x)
∣∣2

u(x)dx

is equivalent to ∫
R

∣∣f̂ (x)
∣∣2

v(x) dx � C

∫
R

∣∣f (x)
∣∣2

u(x)dx,

which is of course a weighted L2 inequality for the Fourier transform. Such inequalities are
known when u and v are certain power weights (Pitt’s inequality [18]), and generalisations
thereof involving rearrangement-invariant conditions on the weights [14].

In the situation where the phase φ is homogeneous (that is, when φ(x) = x� for some � � 2),
a scaling and limiting argument allows one to pass from the local inequality (6) to the global
inequality ∫

R

∣∣ei(·)� ∗ f (x)
∣∣2

dw(x) � C

∫
R

∣∣f (x)
∣∣2

M2 M̃�M
4w(x)dx, (12)

where the maximal function M̃� is given by

M̃�w(x) = sup
(y,r)∈Γ�(x)

1

r
1

�−1

∫
|y−y′|�r

w
(
y′)dy′,

and

Γ�(x) = {
(y, r): 0 < r � 1, and |y − x| � r− 1

�−1
}
.

Notice that (12) is only significant for � > 2, since M̃2w ≡ 2‖w‖∞.

The ideas behind the proof of Theorem 2.1. Our proof of Theorem 2.1 relies heavily on the
convolution structure of the operator Tλ, with the Fourier transform playing a central role. Our
strategy will involve decomposing the support of the Fourier transform of the input function f .
It is therefore appropriate that we begin with the following elementary observation, which is a
simple manifestation of the uncertainty principle.

Observation 2.5. Suppose f ∈ L1(R) is such that the support of f̂ is contained in a bounded
subset I ⊂ R, and choose Ψ ∈ S(R) such that Ψ̂ (ξ) = 1 for ξ ∈ I . Then∫

|Tλf |2w � ‖Ψ ‖1

∫
|Tλf |2|Ψ | ∗ w (13)
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and ∫
|Tλf |2w � ‖TλΨ ‖1

∫
|f |2|TλΨ | ∗ w. (14)

Observation 2.5 is a simple consequence of the identities

Tλf = Ψ ∗ (Tλf ) = (TλΨ ) ∗ f

combined with applications of the Cauchy–Schwarz inequality and Fubini’s theorem.
Since we wish to use (14) to prove (6), there are two questions that we must address:

(i) How do we decompose frequency space so that the resulting functions |TλΨ | have a clear
geometric interpretation?

(ii) How do we then find sufficient (almost) orthogonality on L2(w) to allow us to put the pieces
of the decomposition back together again?

The frequency decomposition that we employ comes in two stages. The first stage involves the
use of fairly classical Littlewood–Paley theory to reduce to the situation where the support of f̂

is contained in a dyadic interval. This is natural as the multiplier K̂λ(ξ) has power-like decay as
|ξ | → ∞. This Fourier support restriction allows us to mollify the weight function w via (13),
and accounts for the integration in the definition of the maximal operator M�,λ. Since we wish
to ultimately apply (14), it is necessary for us to decompose the support of f̂ further, this time
into intervals of equal length. A stationary phase argument then reveals that provided the scale of
this finer frequency decomposition is sufficiently small, the corresponding objects |TλΨ | have a
clear geometric interpretation (satisfying estimates similar to those of Ψ ), allowing us to appeal
to (14).

This analysis provides us with weighted norm inequalities for Tλ acting on functions f with
very particular Fourier supports. However, a decomposition of a general function f (with unre-
stricted Fourier support) into such functions will not in general exhibit any (almost) orthogonality
on L2(w). In order to overcome this obstacle we find an efficient way to dominate the weight w

by a further weight w′ which is sufficiently smooth for our decomposition to be almost orthog-
onal on L2(w′). The process by which we pass to this larger weight involves a local supremum,
and accounts for the presence of the approach region Γ�,λ in the definition of M�,λ.

This paper is organised as follows. In Section 3 we make some simple reductions and obser-
vations pertaining to the class of phase functions φ that we consider. In Section 4 we establish
the Littlewood–Paley theory that we shall need in the proof of Theorem 2.1. The proof of Theo-
rem 2.1 is provided in Sections 5, 6 and 7, and the proof of Proposition 2.3 in Section 8.

3. Properties of the phase

In this section we recall and further develop the properties of the phase φ introduced in Sec-
tion 2.

Let ε > 0 and let (Bj )
∞
j=0 be a sequence of positive real numbers. An elementary calculation

reveals that there is a constant Cε , depending on at most ε such that the pointwise inequality

M�,ελw � Cε M�,λw
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holds for all weight functions w. As a result we may assume without loss of generality that ε = 1
in (9).

Assuming, as we may, that x0 = 0, the hypothesis (9) on the phase φ becomes

φ(k)(0) = 0 for 0 � k < �, and φ(�)(0) � 1. (15)

For uniformity purposes we also assume that∥∥φ(j)
∥∥∞ � Bj (16)

for each j ∈ N0. By the mean value theorem we may of course choose a neighbourhood U of the
origin, depending only on B�+1, such that φ(�) � 1/2 on U , and insist that the cutoff function ψ

in (5) is supported in U .
Our final observation clarifies the sense in which x 
→ x� is a model for the phase function φ.

If 0 � k � � − 1, then by Taylor’s theorem, for each fixed x we have

φ(k)(x) = φ(k)(0) + xφ(k+1)(0) + · · · + x�−kφ(�)(yx,k)

= x�−kφ(�)(yx,k)

for some yx,k ∈ (0, x). Since 1/2 � |φ(�)| � B� on the support of ψ , we have

1

2
|x|�−k �

∣∣φ(k)(x)
∣∣ � B�|x|�−k (17)

for all x in the support of ψ and 0 � k � � − 1.

Notation. Throughout this paper we shall write A � B if there exists a constant c, possibly
depending on finitely many of the Bj , such that A � cB . In particular, this constant will always
be independent of λ, the function f and weight function w.

4. Some weighted Littlewood–Paley theory

In this section we collect together the weighted inequalities for Littlewood–Paley square func-
tions that we will appeal to in our proof of Theorem 2.1. Some of these results, although very
classical in nature, do not appear to be readily available in the literature, and hence may be of
some independent interest.

4.1. Weighted inequalities for a dyadic square function

Let Q : R → R be a smooth function whose Fourier transform vanishes outside [−3,− 3
4 ] ∪

[ 3
4 ,3], and such that ∑

k∈Z

Q̂
(
2−kx

) = 1

for all x 	= 0. For each k ∈ Z let the operator �k be given by

�̂kf (ξ) = Q̂
(
2−kξ

)
f̂ (ξ),
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and define the square function S by

Sf (x) =
(∑

k

∣∣�kf (x)
∣∣2

)1/2

.

Proposition 4.1. For each weight w on R,∫
R

(Sf )2w �
∫
R

|f |2Mw (18)

and ∫
R

|f |2w �
∫
R

(Sf )2M3w, (19)

where M denotes the Hardy–Littlewood maximal function.

Proof. The forward inequality (18) is a straightforward consequence of a more general result of
Wilson [23].

The reverse inequality (19) may be reduced to a well-known weighted inequality for
Calderón–Zygmund singular integrals due to Wilson [22] and Pérez [16] as follows. For each
j = 0,1,2,3 let

Tj =
∑

k∈4Z+{j}
�k,

so that f = T0f + T1f + T2f + T3f .
Let ε = (εk) be a random sequence with εk ∈ {−1,1} for each j ∈ Z, and define

T ε
j =

∑
k∈4Z+{j}

εk�k

for each j = 0,1,2,3.
Now let Q′ : R → R be a smooth function such that Q̂′ is equal to 1 on the support of Q̂ and

vanishing outside [−4,− 1
2 ] ∪ [ 1

2 ,4], and define the operator �′
k by

�̂′
kf (ξ) = Q̂′(2−kξ

)
f̂ (ξ).

Observe that if we set

Sε
j =

∑
k∈4Z+{j}

εk�
′
k,

then

SεT ε = Tj ,
j j
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since for each j = 0,1,2,3, the supports of Q̂ and Q̂′ ensure that �′
k′�k = 0 whenever k′ and k

are distinct in 4Z + {j}. Hence

∫
R

|f |2w �
3∑

j=0

∫
R

|Tjf |2w =
3∑

j=0

∫
R

∣∣Sε
j T ε

j f
∣∣2

w.

It is well known that the operator Sε
j is a standard Calderón–Zygmund singular integral oper-

ator uniformly in the sequence ε, and so by [22] and [16] we have that for each 1 < p < ∞,∫
R

∣∣Sε
j f

∣∣pw �
∫
R

|f |pM [p]+1w

uniformly in ε and j = 0,1,2,3. Thus in particular

∫
R

|f |2w �
3∑

j=0

∫
R

∣∣T ε
j f

∣∣2
M3w

uniformly in ε. Inequality (19) now follows on taking expectations and using Khinchine’s in-
equality. �

We remark that the above proof also yields the weighted Lp inequality∫
R

|f |pw �
∫
R

(Sf )pM [p]+1w (20)

for all 1 < p < ∞. It would be interesting to determine whether the power [p]+ 1 of the Hardy–
Littlewood maximal operator may be reduced here.

4.2. Weighted inequalities for an “equally-spaced” square function

The following result concerns a square function adapted to an equally-spaced frequency de-
composition. Very similar results may be found in several places in the literature, including [8,
19] and [3]. We refer the reader to [3] for a variant on the circle, whose proof readily adapts to
the current setting.

Proposition 4.2. For L > 0, let WL be a function on R with supp ŴL ⊂ {x ∈ R: |x| � 2L}, such
that ∑

k∈Z

ŴL(x − kL) = 1

for all x ∈ R. Suppose further that for each N ∈ N,

∣∣WL(x)
∣∣ � L

N
(1 + L|x|)
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for all x ∈ R. For a function f on R and k ∈ Z, define fk by f̂k(ξ) = f̂ (ξ)ŴL(ξ − kL). Then for
any weight function w on R, ∫

R

∑
k∈Z

|fk|2w �
∫
R

|f |2|WL| ∗ w.

5. An initial Littlewood–Paley reduction

In this section we use the dyadic Littlewood–Paley theory from the previous section to reduce
the proof of Theorem 2.1 to a weighted inequality for functions f with restricted Fourier support.
The nature of the frequency restrictions is motivated by the following estimates relating to the
Fourier transform of Kλ.

Lemma 5.1.

sup
y∈R

∣∣∣∣∣
y∫

−∞
Kλ(x)e−ixξ dx

∣∣∣∣∣ �
{

λ− 1
� , |ξ | � λ

1
� ,

λ
− 1

2(�−1) |ξ |− �−2
2(�−1) , |ξ | > λ

1
� .

(21)

Moreover, for each k,N ∈ N,

∣∣∣∣( d

dξ

)k

K̂λ(ξ)

∣∣∣∣ � |ξ |−N (22)

for all |ξ | � 2B1λ. The implicit constants above depend on k, N , � and finitely many of the Bj .

Proof. The two estimates (21) follow from corresponding estimates on the integral∫
I

ei(λφ(x)−xξ) dx

that are uniform in I , where I is an interval contained in the support of ψ . This shall be achieved
by routine applications of van der Corput’s lemma.

Writing h(x) = λφ(x) − xξ we see that h(�)(x) = λφ(�)(x) � λ/2 for all x ∈ I and so∣∣∣∣ ∫
I

ei(λφ(x)−xξ) dx

∣∣∣∣ � λ− 1
�

for all ξ ∈ R, with implicit constant depending only on �.

For the second estimate, let I ′ = {x ∈ I : |x| � |ξ/λ| 1
�−1 }, with suitably small implicit constant

depending on B�. By (17), |h′(x)| � |ξ | for all x ∈ I ′, and so∣∣∣∣ ∫
′

ei(λφ(x)−xξ) dx

∣∣∣∣ � |ξ |−1.
I
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For x ∈ I\I ′ we have |h′′(x)| � λ
1

�−1 ξ
�−2
�−1 , so that∣∣∣∣ ∫

I\I ′
ei(λφ(x)−xξ) dx

∣∣∣∣ � λ
− 1

2(�−1) |ξ |− �−2
2(�−1) .

Now, if λ1/� � |ξ | we have |ξ |−1 � λ
− 1

2(�−1) |ξ |− �−2
2(�−1) , and so the second estimate in (21) is

complete.
In order to establish (22) observe that if |ξ | � 2B1λ then the phase h has no stationary points

and moreover |h′(x)| � |ξ | uniformly in x. Inequality (22) now follows by repeated integration
by parts. �

Given Lemma 5.1 it is natural to define the sets (Ap)∞p=0 by

A0 = {
ξ ∈ R: |ξ | � λ1/�

}
and

Ap = {
ξ ∈ R: 2p−3λ1/� < |ξ | � 2p+1λ1/�

}
for p � 1. By construction the sets Ap cover R with bounded multiplicity.

Proposition 5.2. If the support of f̂ is contained in Ap then for all weight functions w and λ � 1,∫
R

∣∣Tλf (x)
∣∣2

w(x)dx �
∫
R

∣∣f (x)
∣∣2

MM�,λMw(x)dx (23)

uniformly in p, where M�,λ is as in the statement of Theorem 2.1.

Before we come to the proof of Proposition 5.2 we show how it implies Theorem 2.1.
Suppose f : R → C has unrestricted Fourier support and observe that for each k ∈ Z the

Fourier transform of �kf is supported in Ap for some p. Thus, by Proposition 4.1, Proposi-
tion 5.2, followed by Proposition 4.1 again,∫

R

∣∣Tλf (x)
∣∣2

w(x)dx �
∫
R

∣∣STλf (x)
∣∣2

M3w(x)dx

=
∫
R

∑
k∈Z

|�kTλf |2M3w(x)dx

=
∫
R

∑
k∈Z

|Tλ�jf |2M3w(x)dx

�
∫ ∑

k∈Z

|�jf |2MM�,λM
4w(x)dx
R
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=
∫
R

(Sf )2MM�,λM
4w(x)dx

�
∫
R

|f |2M2 M�,λM
4w(x)dx,

which is the conclusion of Theorem 2.1.
It thus remains to prove Proposition 5.2. By the definition of the sets Ap and Lemma 5.1 we

have that

∣∣K̂λ(ξ)
∣∣ � λ− 1

� 2− p(�−2)
2(�−1)

for all ξ ∈ Ap with 1 � 2p < 4B1λ
(�−1)/�, and for each N ∈ N,∣∣K̂λ(ξ)

∣∣ � |ξ |−N (24)

for all ξ ∈ Ap with 2p � 4B1λ
(�−1)/�. We therefore divide the proof of Proposition 5.2 into two

cases. Section 6 is devoted to the more interesting case 1 � 2p < 4B1λ
(�−1)/�, while Section 7

handles the “error terms” corresponding to the case 2p � 4B1λ
(�−1)/�.

6. The proof of Proposition 5.2 for 1 � 2p < 4B1λ
(�−1)/�

Suppose that the function f has frequencies support in Ap for some p with 1 < 2p <

4B1λ
(�−1)/�; we shall deal with the case p = 0 separately. Now, if we choose a nonnegative

Φ ∈ S(R) such that Φ̂(ξ) = 1 whenever |ξ | � 1, and define Φ2pλ1/� ∈ S(R) by Φ̂2pλ1/� (ξ) =
Φ̂(2−pλ−1/�ξ), then Φ̂2pλ1/� (ξ) = 1 for all ξ ∈ Ap . Hence by (13) of Observation 2.5,∫

R

∣∣Tλf (x)
∣∣2

w(x)dx �
∫
R

∣∣Tλf (x)
∣∣2

w1(x) dx, (25)

where w1 := Φ2pλ1/� ∗ w.
For general p we have no clear geometric control of the function |TλΦ2pλ1/� |, and so are not in

a position to meaningfully apply (14) of Observation 2.5 at this stage. We proceed by performing
a further frequency decomposition of the function f at a scale 0 < L � 2pλ1/� to be specified
later.

Let W ∈ S(R) be such that Ŵ is supported in [−2,2] and∑
k∈Z

Ŵ (ξ − k) = 1

for all ξ ∈ R. Define WL ∈ S(R) by ŴL(ξ) = Ŵ (ξ/L), and WL,k ∈ S(R) by ŴL,k(ξ) =
ŴL(ξ − kL), so that ∑

ŴL,k(ξ) = 1

k∈Z
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for all ξ ∈ R. Hence if fk = WL,k ∗ f then

f =
∑
k∈Z

fk,

and so by the linearity of Tλ,

Tλf =
∑
k∈Z

Tλfk. (26)

We note that since supp f̂ ⊆ Ap , the only nonzero contributions to the above sum occur when
|k| ∼ 2pλ1/�/L.

Unfortunately the decomposition (26) does not in general exhibit any (almost) orthogonality
on L2(w1) as the Fourier support of w1 is too large. We thus seek an efficient way of dominating
w1 by a further weight which does have a sufficiently small Fourier support. This we achieve in
two stages; the first involving a local supremum, and the second a carefully considered mollifi-
cation. For each x ∈ R let

w2(x) = sup

|x′−x|�(4B1)
− 1

�−1 /L

w1
(
x′).

The factor of 4B1 appearing in the definition of w2 is included for technical reasons that will
become clear later.

Let Θ ∈ S(R) be a nonnegative function whose Fourier transform is nonnegative and sup-
ported in [−1,1]. Now let

w3 = ΘL ∗ w2

where ΘL ∈ S(R) is defined by Θ̂L(ξ) = Θ̂(ξ/L). By construction w3 has Fourier support in
[−L,L].

Lemma 6.1. w1 � w2 � w3.

Proof. The first inequality is trivial and so we focus on the second. Observe that since Θ̂ is
nonnegative Θ(0) > 0 and so by continuity there exists an absolute constant 0 < c � 1 such that
Θ(x) � 1 whenever |x| � c. Thus ΘL(x) � L whenever |x| � c/L. Consequently

w3(x) = ΘL ∗ w2(x) � L

∫
|x′|�c/L

w2
(
x − x′)dx′

� L

∫
|x′|�c̃/L

w2
(
x − x′)dx′

where c̃ = min{c, (4B1)
−1/(�−1)}. By the definition of w2 and elementary considerations, either

w2
(
x − x′) � w2(x) for all − (4B1)

− 1
�−1 /L � x′ � 0,
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or

w2
(
x − x′) � w2(x) for all 0 � x′ � (4B1)

− 1
�−1 /L,

and so w3(x) � w2(x) with implicit constant depending only on B1 and �. �
We now see that the decomposition (26) is almost orthogonal in the smaller L2(w3). By (25),

Lemma 6.1, (26) and Parseval’s identity we have∫
R

|Tλf |2w �
∫
R

|Tλf |2w3

=
∫
R

∣∣∣∣∑
k∈Z

Tλfk

∣∣∣∣2

w3

=
∫
R

∑
k,k′∈R

TλfkTλfk′w3

=
∫
R

∑
k,k′∈R

T̂λfk ∗ ̂̃
Tλfk′ŵ3.

Since supp f̂k ⊂ [(k − 2)L, (k + 2)L] we have

supp T̂λfk ∗ ̂̃
Tλfk′ ⊆ [(

k − k′ − 4
)
L,

(
k − k′ + 4

)
L

]
,

and so

T̂λfk ∗ ̂̃
Tλfk′ŵ3 ≡ 0

whenever |k − k′| � 6. Thus by the Cauchy–Schwarz inequality we have∫
R

|Tλf |2w �
∫
R

∑
k,k′∈R: |k−k′|<6

TλfkTλfk′w3

�
∫
R

∑
k∈Z

|Tλfk|2w3. (27)

Now let Ψ ∈ S(R) be such that

Ψ̂ (ξ) =
{

1 if |ξ | � 2,

0 if |ξ | � 4,

and define ΨL,ΨL,k ∈ S(R) as we did WL and WL,k previously. Since Ψ̂L,k(ξ) = 1 when ξ ∈
supp f̂k , by (27) followed by (14) of Observation 2.5 we have
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∫
R

|Tλf |2w �
∫
R

∑
k∈Z

|Tλfk|2w3 �
∑
k∈Z

‖TλΨ�,λ‖1

∫
R

|f |2|TλΨ�,λ| ∗ w3. (28)

Our next lemma tells us that provided the scale L is small enough, the functions |TλΨL,k| satisfy
estimates similar to those of ΨL uniformly in k.

Lemma 6.2. If L = 2−p/(�−1)λ1/� and |k| ∼ 2pλ1/�/L then

∣∣TλΨL,k(x)
∣∣ � λ− 1

� 2− p(�−2)
2(�−1) HL(x)

where for each N ∈ N, the function HL satisfies

HL(x) � L

(1 + L|x|)N

for all x ∈ R. The implicit constants depend on at most �, and finitely many of the Bj .

Proof. For k ∈ Z and y ∈ R let hk(y) = φ(y) − λ−1kLy and observe that

TλΨL,k(x) = eikLx

∫
R

eiλhk(y)ψ(y)ΨL(x − y)dy.

Now, y0 is a stationary point of the phase hk precisely when φ′(y0) = λ−1kL. However, since
|k| ∼ 2pλ1/�/L and L = 2pλ1/� we have

λ−1|k|L ∼ 1/L�−1, (29)

and since |φ′(y)| ∼ |y|�−1 (by (17)), we have |y0| ∼ 1/L. As usual the implicit constants depend
only on � and finitely many of the Bj . We note that since φ(�) 	= 0, there are at most � − 1 such
stationary points y0 in the support of ψ .

Let (ηj )
∞
j=0 be a smooth partition of unity on R with suppηj ⊂ {x ∈ R: 2j−1 � |x| � 2j+1}

for j � 1 and suppη0 ⊂ {x ∈ R: |x| � 2}. For uniformity purposes we suppose that (ηj ) is
constructed in the standard way from a fixed smooth bump function and taking differences. De-
fine (ηL,j )

∞
j=0 by ηL,j (x) = ηj (Lx). Clearly (ηL,j )

∞
j=0 forms a partition of unity on R with

suppηL,j ⊂ {x ∈ R: |x| ∼ 2j /L} for j � 1 and suppηL,0 ⊂ {x ∈ R: |x| � 1/L}. We may thus
write

TλΨL,k =
∞∑

j=0

Tλ(ΨL,kηL,j ).

We now write∣∣TλΨL,k(x)
∣∣ �

∑
j

∣∣Tλ(ΨL,kηL,j )(x)
∣∣ +

∑
j

∣∣Tλ(ΨL,kηL,j )(x)
∣∣, (30)
j : 2 �cL|x| j : 2 <cL|x|
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where c is a positive constant depending on B� to be chosen later. We shall prove the required
bounds for each of the sums in (30) separately.

Fix x and suppose that 2j � cL|x|, then integrating by parts we have

∣∣Tλ(ΨL,kηL,j )(x)
∣∣ =

∣∣∣∣∣
∫
R

d

dy

( y∫
−∞

ei(λφ(z)−kLz)ψ(z) dz

)
ΨL,k(x − y)ηL,j (x − y)dy

∣∣∣∣∣
�

∫
R

∣∣∣∣∣
y∫

−∞
ei(λφ(z)−kLz)ψ(z) dz

∣∣∣∣∣
∣∣∣∣ d

dy

(
ΨL,k(x − y)ηL,j (x − y)

)∣∣∣∣dy.

By Lemma 5.1, we have the estimate

∣∣∣∣∣
y∫

−∞
ei(λφ(z)−kLz)ψ(z) dz

∣∣∣∣∣ � λ− 1
� 2− p(�−2)

2(�−1) ,

uniformly in k ∼ 2pλ1/�/L and y, and so

∣∣Tλ(ΨL,kηL,j )(x)
∣∣ � λ− 1

� 2− p(�−2)
2(�−1) 2−NjL

for any N ∈ N. Thus

∑
j : 2j �cL|x|

∣∣Tλ(ΨL,kηL,j )(x)
∣∣ � λ− 1

� 2− p(�−2)
2(�−1) L

∑
j : 2j �cL|x|

2−Nj

∼ λ− 1
� 2− p(�−2)

2(�−1)
L

(1 + L|x|)N

similarly uniformly.
We now suppose that 2j < cL|x|. Then

∣∣Tλ(ΨL,kηL,j )(x)
∣∣ � λ−N

∫
R

∣∣(D∗
k

)N (
ψ(y)ΨL(x − y)ηL,j (x − y)

)∣∣dy (31)

for any N ∈ N, where the differential operator D∗
k is given by

D∗
k g(y) = d

dy

(
g(y)

h′
k(y)

)
.

An elementary induction argument shows that |(D∗
k )Ng| is bounded by a sum of terms (the

number of which depending only on N ) of the form

|g(r)|
|h′

k|n
�−1∏∣∣φ(j)

∣∣mj , (32)

j=2
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uniformly in k, where the indices mj , n and r satisfy

(� − 1)n −
�−1∑
j=2

mj(� − j) + r � �N,

N � n � 2N and 0 � r � N . Here only low derivatives of φ feature since we have used the
bound ‖φ(j)‖∞ � Bj for j � �.

Now, provided the constant c > 0 in (30) is chosen sufficiently small (depending on at
most B�) then |y| ∼ |x| and by (29),∣∣h′

k(y)
∣∣ = ∣∣φ′(y) − λ−1kL

∣∣ ∼ |y|�−1 ∼ |x|�−1

on the support of the integrand in (31). Recalling also that |φ(j)(y)| ∼ |y|�−j for all 2 � j �
� − 1, the expression (32) is therefore comparable to

|g(r)(y)||y|
∑�−1

j=2 mj (�−j)

|y|(�−1)n
�

∣∣g(r)(y)
∣∣|x|r−�N

for all y in the support of the integrand in (31). Hence for 2j < cL|x| and any M ∈ N,

∣∣Tλ(ΨL,kηL,j )(x)
∣∣ � λ−N |x|r−�N

N∑
r=0

∫
R

∣∣∣∣( d

dy

)r(
ψ(y)ΨL(x − y)ηL,j (x − y)

)∣∣∣∣dy

� λ−N |x|r−�N
N∑

r=0

Lr+12−jM2j /L

= 2−(M−1)j
(
λ− 1

� L
)�(N−1/2)

λ− 1
� 2− p(�−2)

2(�−1)

N∑
r=0

L

(L|x|)�N−r

� 2−(M−1)j λ− 1
� 2− p(�−2)

2(�−1)
L

(1 + L|x|)N ,

since λ−1/�L = 2−p/(�−1) � 1. Thus

∑
j : 2j <cL|x|

∣∣Tλ(ΨL,kηL,j )(x)
∣∣ � λ− 1

� 2− p(�−2)
2(�−1)

L

(1 + L|x|)N ,

completing the proof of the lemma. �
If we let w4 = λ− 2

� 2− p(�−2)
�−1 HL ∗ w3, then by (28) and Lemma 6.2 we conclude that∫ ∣∣Tλf (x)

∣∣2
w(x)dx �

∫ ∑
k

∣∣fk(x)
∣∣2

w4(x) dx.
R R
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Now on applying Lemma 4.2, our weighted estimate for Tλ becomes∫
R

∣∣Tλf (x)
∣∣2

w(x)dx �
∫
R

∣∣f (x)
∣∣2

w5(x) dx (33)

where w5 = |WL| ∗ w4.
In order to complete the proof of Proposition 5.2 for supp f̂ ⊆ Ap it remains to show that

w5(x) � MM�,λMw(x). (34)

Since w5 = λ− 2
� 2− p(�−2)

�−1 |WL| ∗ HL ∗ ΘL ∗ w2, we have

w5 � λ− 2
� 2− p(�−2)

�−1 Mw2,

where M denotes the Hardy–Littlewood maximal function.
By translation-invariance it thus suffices to show that

λ− 2
� 2− p(�−2)

�−1 w2(0) � M�,λMw(0)

with implicit constant uniform in p. Now,

w2(0) = sup

|y|�(4B1)
− 1

�−1 /L

Φ2pλ1/� ∗ w(y),

and so on setting r = 2−pλ−1/� we obtain

λ− 2
� 2− p(�−2)

�−1 w2(0) � r
�−2
�−1 λ− 1

�−1 sup

|y|�(4B1λr)
− 1

�−1

Φ1/r ∗ w(y).

For each N ∈ N we may estimate

r
�−2
�−1 λ− 1

�−1 Φ1/r ∗ w(y)

� (λr)−
1

�−1

∫
R

w(x)

(1 + |x − y|/r)N
dx

∼ (λr)−
1

�−1

∫
|x−y|�r

w(x)dx +
∞∑

k=1

2−kN (λr)−
1

�−1

∫
|x−y|∼2kr

w(x)dx. (35)

If for s > 0 we define the averaging operator As by

Asw(y) = 1

2s

∫
w(x)dx,
|x−y|�s
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then we may write

(λr)−
1

�−1

∫
|x−y|∼2kr

w(x)dx = (λr)−
1

�−1 2krA2krw(y)

� 2k(λr)−
1

�−1

∫
|y−y′|�r

A2k+1rw
(
y′)dy′

� 2k(λr)−
1

�−1

∫
|y−y′|�r

Mw
(
y′)dy′,

since A2krw(y) � A2k+1rw(y′) if |y − y′| � r . Hence by (35) we have

r
�−2
�−1 λ− 1

�−1 Φ1/r ∗ w(y) � (λr)−
1

�−1

∫
|x−y|�r

w(x)dx + (λr)−
1

�−1

∫
|y−y′|�r

Mw
(
y′)dy′. (36)

Note that since r = 2−pλ−1/� and 1 � 2p � 4B1λ
(�−1)/� we have that (4B1λ)−1 � r �

λ−1/(�−1). It will be convenient to consider separately the two cases λ−1 � r � λ−1/(�−1) and
(4B1λ)−1 � r � λ−1.5

If λ−1 � r � λ−1/(�−1), then (y, r) ∈ Γ�,λ(0) and so the first and second terms in the right
hand side of (36) are dominated by M�,λ(w)(0) and M�,λ(Mw)(0) respectively.

If (4B1λ)−1 � r � λ−1 then by taking r ′ = λ−1 we have

(λr)−
1

�−1

∫
|x−y|�r

w(x)dx � (4B1)
1

�−1
(
λr ′)− 1

�−1

∫
|x−y|�r ′

w(x)dx (37)

and

(λr)−
1

�−1

∫
|y−y′|�r

Mw
(
y′)dy′ � (4B1)

1
�−1

(
λr ′)− 1

�−1

∫
|y−y′|�r ′

Mw
(
y′)dy′. (38)

Furthermore, since |y| � (4B1λr)−1/(�−1) an elementary calculation reveals that (y, r ′) ∈
Γ�,λ(0), and consequently (37) and (38) are dominated by constant multiples of M�,λ(w)(0)

and M�,λ(Mw)(0) respectively. In each case we obtain the bound

r
�−2
�−1 λ− 1

�−1 Φ1/r ∗ w(y) � M�,λ(Mw)(0),

as claimed, with implicit constant depending on (at most) B1 and �.
This completes the proof of Proposition 5.2 for 1 < 2p < 4B1λ

(�−1)/�, leaving only the case
p = 0 to consider. To deal with this we observe that when p = 1, the second frequency de-
composition (26) is effectively vacuous since L = 2−p/(�−1)λ1/� ∼ 2pλ1/�. Given this, it is

5 By making B1 larger if necessary, we may of course assume that 4B1 � 1.
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straightforward to verify that our analysis in the case p = 1 is equally effective in the case p = 0.
We leave this to the reader.

7. The proof of Proposition 5.2 for 2p � 4B1λ
(�−1)/�

Suppose that the Fourier support of f is contained in Ap for some p with 2p � 4B1λ
(�−1)/�.

As we shall see, the rapid decay in (24) means that such terms may be viewed as error terms in
the sense that (23) holds with M�,λ replaced with a much smaller operator.

Now, let Φ2pλ1/� be constructed in the usual way by dilating a fixed Schwartz function such
that Φ̂2pλ1/� (ξ) = 1 for ξ ∈ Ap . By (14) of Observation 2.5, we have∫

R

|Tλf |2w � ‖TλΦ2pλ1/�‖1

∫
R

|f |2|TλΦ2pλ1/� | ∗ w.

Now, for each k ∈ N, repeated integration by parts gives

∣∣TλΦ2pλ1/� (x)
∣∣ =

∣∣∣∣∫
R

eixξ K̂λ(ξ)Ψ̂2pλ1/� (ξ) dξ

∣∣∣∣
� |x|−k

∫
R

∣∣∣∣( d

dξ

)k(
K̂λ(ξ)Φ̂2pλ1/� (ξ)

)∣∣∣∣dξ.

Using Lemma 5.1 and the fact that |ξ | ∼ 2pλ1/� � λ for ξ ∈ supp Φ̂2pλ1/� we conclude that for
each k,N ∈ N,

∣∣TλΦ2pλ1/� (x)
∣∣ � λ−N λ

(1 + λ|x|)k .

By repeating the analysis that leads to (34) it is now straightforward to verify that

‖TλΦ2pλ1/�‖1|TλΦ2pλ1/� | ∗ w � M�,λMw(0),

uniformly in all parameters. This completes the proof of Proposition 5.2.

8. The proof of Proposition 2.3

Since our proof will use a Hardy space estimate and complex interpolation, we begin by
bounding M�,λ by a more “regular” maximal operator. For x ∈ R let

Γ̃�,λ(x) = {
(y, r): 0 < r � λ− 1

� and |y − x| � (λr)−
1

�−1
}
,

and observe that Γ�,λ(x) ⊆ Γ̃�,λ(x). Let P be a nonnegative smooth bump function supported
in [−2,2] and positive on [−1,1], and for each r > 0, let Pr(x) = 1

r
P (x

r
). Then for any weight

function w,

M�,λw(x) � M̃�,λw(x) := sup˜ r(λr)−
1

�−1
∣∣Pr ∗ w(y)

∣∣.

(y,r)∈Γ�,λ(x)
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Thus in order to prove Proposition 2.3 it suffices to show that

‖M̃�,λ‖( �
2 )′→( �

2 )′ � λ− 2
� ,

which, thanks to the scale-invariance property

λ2/�M̃�,λw
(
λ−1/�x

) = M̃�,1
(
w

(
λ−1/�·))(x), (39)

is equivalent to

‖M̃�,1‖( �
2 )′→( �

2 )′ � 1. (40)

In order to prove (40) we define

Mβ
� φ(x) = sup

(y,r)∈Γ̃�,1(x)

r
�β

�−1
∣∣Pr ∗ φ(y)

∣∣
with Pr as above. By Stein’s method of analytic interpolation (see [21]), inequality (40) may be
obtained from the estimates ∥∥M0

�φ
∥∥∞ � ‖φ‖∞

and ∥∥M1
�φ

∥∥
L1 � ‖φ‖H 1 . (41)

The first estimate is elementary, and the second may be verified by testing on atoms. Let a be an
H 1-atom with support interval I (by translation invariance we may suppose that I is centred at
the origin). In order to establish (41) it suffices to prove that∥∥M1

�a
∥∥

L1 � 1 (42)

uniformly in a. For an atom a as described above, we have the standard pointwise bound

r
�

�−1
∣∣Pr ∗ a(x)

∣∣ �

⎧⎪⎨⎪⎩
r

�
�−1 /|I |, if r � |I | and |x| � 5|I |/2,

|I |/r2− �
�−1 , if r � |I | and |x| � 5r/2,

0, otherwise.

(43)

In order to establish (42) we distinguish two cases.

Case 1. |I | � 1. From the definition of Γ̃�,1(x) and (43) it is straightforward to verify that

M1
�a(x) �

{ |I |−1, if |x| � 4|I |,
|I |−1|x|−�, if |x| > 4|I |

uniformly in a. The desired bound (41) in the case |I | � 1 follows immediately.
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Case 2. |I | < 1. Using (43) it is easily verified that M1
�a(x) � |I | 1

�−1 uniformly in a and x, and
so ∫

|x|�4|I |− 1
�−1

∣∣M1
�a(x)

∣∣dx � 1

uniformly in I (and thus a). Arguing as in Case 1 we have that M1
�a(x) � |I |−1|x|−� uniformly

in a and |x| � 4|I |− 1
�−1 , yielding∫

|x|�4|I |− 1
�−1

∣∣M1
�a(x)

∣∣dx � |I |−1
∫

|x|�4|I |− 1
�−1

|x|−� dx ∼ 1

uniformly in I (and thus a). This completes the proof of (42), and thus Proposition 2.3.
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