On geodesic structures of weakly median graphs I. Decomposition and octahedral graphs
Marc Chastand, Norbert Polat

I.A.E., Université Jean Moulin (Lyon 3), 6 cours Albert Thomas, 69355 Lyon Cedex 08, France

Received 7 July 2003; received in revised form 28 September 2005; accepted 27 October 2005

Abstract
We prove that the non-trivial (finite or infinite) weakly median graphs which are undecomposable with respect to gated amalgamation and Cartesian multiplication are the 5-wheels, the subhyperoctahedra different from K_1, the path $K_{1,2}$ and the 4-cycle $K_{2,2}$, and the two-connected K_{4}- and $K_{1,1,3}$-free bridged graphs. These prime graphs are exactly the weakly median graphs which do not have any proper gated subgraphs other than singletons. For finite graphs, these results were already proved in [H.-J. Bandelt, V.C. Chepoi, The algebra of metric betweenness I: subdirect representation, retracts, and axiomatics of weakly median graphs, preprint, 2002]. A graph G is said to have the half-space copoint property (HSCP) if every non-trivial half-space of the geodesic convexity of G is a copoint at each of its neighbors. It turns out that any median graph has the HSCP. We characterize the weakly median graphs having the HSCP. We prove that the class of these graphs is closed under gated amalgamation and Cartesian multiplication, and we describe the prime and the finite regular elements of this class.

© 2006 Elsevier B.V. All rights reserved.

Keywords: Infinite graph; Weakly median graph; Octahedral graph; Geodesic convexity; Gated set; Cartesian product; Gated amalgam; Prime graph

1. Introduction

The study of infinite graphs frequently involves topological consideration, namely the topology generated by the same subbase used to generate the convex sets (see van de Vel [25] for a topic on the weak topology). For instance, by means of the geodesic convexity, Tardif establishes in [23] a very important compactness property in median graphs. This result was extended by Chastand [8] to the class of fiber-complemented graphs with a convexity coarser than the geodesic convexity, whose convex sets are called gated sets (see [15] and Section 3 below). However, these two convexities coincide for median graphs.

Such an extension is also present in our approach, but in a different direction which is essentially based on the geodesic convexity in weakly median graphs. We will show how the close link between the two structures, convexity and topology, can be explained by the Join Hull Commutativity Property of the geodesic convexity, several consequences of which are developed in this first part.
The class of weakly median graphs is closed under two classical operations in the context of median-like graphs (Cartesian multiplications and gated amalgamations) and a graph is prime if it is neither a proper Cartesian product nor a proper amalgam of non-trivial graphs. Since there is no condition of finiteness, the first main result brings some complements to a result of Bandelt and Chepoi [2] by considering the infinite case and by describing all the prime weakly median graphs.

In order to elaborate on the weak topology associated with the geodesic convexity, it is natural to examine the common subbase of both structures, which is the family of the copoints (that is, the maximal convex sets not containing a given vertex). It is easy to check that every copoint in a weakly median graph is a half-space, while the converse is not true in general, although it is so in any median graph. Thus, we investigate in Section 4 some description of the copoints of weakly median graphs; especially we introduce the half-space copoint property (HSCP) which holds if every non-trivial half-space is a copoint at each of its neighbors (median graphs are instances of such graphs). The characterization of the weakly median graphs with HSCP leads us to define the class of octahedral graphs and that of semi-octahedral graphs.

2. Preliminaries

The graphs we consider are undirected, without loops and multiple edges, and connected unless stated otherwise. A complete graph will be simply called a simplex. If \(x \in V(G) \), the set \(N_G(x) := \{ y \in V(G) : \langle x, y \rangle \in E(G) \} \) is the neighborhood of \(x \) in \(G \), and \(N_G[x] := N_G(x) \cup \{ x \} \). More generally, for a set \(X \) of vertices of a graph \(G \) we put \(N_G[X] := \bigcup_{x \in X} N_G[x] \) and \(N_G(X) := N_G[X] - X \), and any vertex in \(N_G(X) \) will be called a neighbor of \(X \). For \(A \subseteq V(G) \) we denote by \(G[A] \) the subgraph of \(G \) induced by \(A \), and we set \(G - A := G[V(G) - A] \). The component of \(G \) containing a vertex \(x \) is denoted by \(\mathcal{C}_G(x) \). If \(G \) and \(H \) are two graphs, we will say that \(G \) is \(H \)-free if it contains no induced subgraph isomorphic to \(H \).

A path \(P = (x_0, \ldots, x_n) \) is a graph with \(V(P) = \{x_0, \ldots, x_n\} \), \(x_i \neq x_j \) if \(i \neq j \), and \(E(P) = \{x_i, x_{i+1}\} : 0 \leq i < n \). A ray or one-way infinite path \((x_0, x_1, \ldots) \) and a double ray or two-way infinite path \((\ldots, x_{-1}, x_0, x_1, \ldots) \) are defined similarly. A path \(P = (x_0, \ldots, x_n) \) is called an \((x_0, x_n)\)-path, \(x_0 \) and \(x_n \) are its endvertices, while the other vertices are called its internal vertices, \(n = |E(P)| \) is the length of \(P \). If \(x \) and \(y \) are vertices of a path \(P \), then \(P[x, y] \) denotes the subpath of \(P \) joining \(x \) and \(y \). For \(A \subseteq V(G) \), an \((A, B)\)-path of \(G \) is an \((x, y)\)-path \(P \) of \(G \) such that \(V(P) \cap A = \{x\} \) and \(V(P) \cap B = \{y\} \); and an \((A, B)\)-linkage of \(G \) is a set of pairwise disjoint \((A, B)\)-paths of \(G \). If there exists an infinite \((A, B)\)-linkage in \(G \), then we say that \(A \) and \(B \) are infinitely linked in \(G \). By Menger’s theorem, \(A \) and \(B \) are infinitely linked in \(G \) if and only if they cannot be separated in \(G \) by removing finitely many vertices.

The usual distance in a graph \(G \) between two vertices \(x \) and \(y \), that is the length of an \((x, y)\)-geodesic (i.e., shortest \((x, y)\)-path) in \(G \), is denoted by \(d_G(x, y) \). A subgraph \(H \) of \(G \) is isometric in \(G \) if \(d_H(x, y) = d_G(x, y) \) for all vertices \(x \) and \(y \) of \(H \). The diameter of \(G \) is \(\text{diam}(G) := \sup \{d_G(x, y) : x, y \in V(G)\} \). If \(x \) is a vertex of \(G \) and \(r \) a non-negative integer, the set \(B_G(x, r) := \{y \in V(G) : d_G(x, y) \leq r\} \) is the ball of center \(x \) and radius \(r \) in \(G \), and the set \(S_G(x, r) := \{y \in V(G) : d_G(x, y) = r\} \) is the sphere of center \(x \) and radius \(r \) in \(G \). The interval \(I_G(x, y) \) of two vertices \(x \) and \(y \) of a graph \(G \) is the set of vertices of all \((x, y)\)-geodesics in \(G \).

The Cartesian product of a family of graphs \((G_i)_{i \in I} \) is the graph denoted by \(\square_{i \in I} G_i \) (or simply by \(G_1 \square G_2 \) if \(|I| = 2 \)) with \(\prod_{i \in I} V(G_i) \) as vertex set and such that, for every vertices \(u \) and \(v \), \(\{u, v\} \) is an edge whenever there exists a unique \(j \in I \) with \(\{pr_j(u), pr_j(v)\} \in E(G_j) \) and \(pr_j(u) = pr_j(v) \) for every \(i \in J - \{j\} \) (where \(pr_i \) is the \(i \)th projection of \(\prod_{i \in I} V(G_i) \) onto \(V(G_i) \)). Connected components of a Cartesian product of connected graphs are called weak Cartesian products (see [18]). Clearly, the Cartesian product coincides with the weak Cartesian product provided that \(I \) is finite and the factors are connected.

If \(G \) and \(H \) are two graphs, a map \(f : V(G) \to V(H) \) is a contraction if \(f \) preserves or contracts the edges, i.e., if \(f(x) = f(y) \) or \(\{f(x), f(y)\} \in E(H) \) whenever \(\{x, y\} \in E(G) \). In particular, the projections of a Cartesian product are contractions. A contraction \(f \) from \(G \) onto an induced subgraph \(H \) of \(G \) is a retraction, and \(H \) is a retract of \(G \), if its restriction to \(V(H) \) is the identity.

We recall that a graph \(G \) is weakly modular if it satisfies the following two conditions:

Triangle condition: For any three vertices \(x_0, x_1, x_2 \) with \(1 = d_G(x_1, x_2) < d_G(x_0, x_1) = d_G(x_0, x_2) \), there exists a common neighbor \(u \) of \(x_1 \) and \(x_2 \) such that \(d_G(x_0, u) = d_G(x_0, x_1) - 1 \).

Quadrangle condition: For any four vertices \(x_0, x_1, x_2, x_3 \) with \(d_G(x_1, x_3) = d_G(x_2, x_3) = 1 \) and \(d_G(x_0, x_1) = d_G(x_0, x_2) = d_G(x_0, x_3) - 1 \), there exists a common neighbor \(u \) of \(x_1 \) and \(x_2 \) such that \(d_G(x_0, u) = d_G(x_0, x_1) - 1 \).
In this paper we will consider the median-like weakly modular graphs. A quasi-median of a triple (u_0, u_1, u_2) of vertices of a graph G is a triple (x_0, x_1, x_2) of vertices of G such that: $\{x_i, x_j\} \subseteq IG(u_i, u_j)$ for all $i, j \in \{0, 1, 2\}$ with $i \neq j$ and $d_G(x_0, x_1) = d_G(x_1, x_2) = d_G(x_2, x_0) = k$ where k is minimal with respect to these conditions. This non-negative integer k is called the size of the quasi-median. A quasi-median of size 1 is called a pseudo-median, and a quasi-median of size 0 is reduced to a single vertex which is called the median of the triple (u_0, u_1, u_2). Due to the minimality of its size a quasi-median (x_i, x_j) is maximal with the property that $IG(x_i, x_j) = 1274$.

A subgraph H of a weakly median (resp. pseudo-median, median) graph is called a weakly modular graph in which every triple of vertices has a unique quasi-median, or equivalently a weakly modular graph that does not contain any two vertices with an unconnected triple of common neighbors. A weakly modular graph in which every triple of vertices has a quasi-median of size 0 or 1 (resp. 0). A subgraph H of a weakly median graph is a weakly median graph in which every triple of vertices has a quasi-median of size 0 or 1 (resp. 0). A half-space H with $d_G(x_i, x_j) \cap IG(x_j, x_k) = \{x_i\}$ for every triple (i, j, k) of pairwise disjoint elements of $\{0, 1, 2\}$. According to Chepoi [11], a graph G is weakly modular if and only if, for every metric triangle (x_0, x_1, x_2) and every triple (i, j, k) of pairwise disjoint elements of $\{0, 1, 2\}$, all vertices in the interval $IG(x_j, x_k)$ are at the same distance $d_G(x_i, x_j)$ from x_i.

In a weakly modular graph every triple of vertices of a graph has a quasi-median. In particular, a weakly median graph is a weakly modular graph in which every triple of vertices has a unique quasi-median, or equivalently a weakly modular graph that does not contain any two vertices with an unconnected triple of common neighbors. A weakly median (resp. median) graph is a weakly median graph in which every triple of vertices has a quasi-median of size 0 or 1 (resp. 0).

A set A of vertices of a graph G is geodesically convex in G, for short convex, if it contains the interval $IG(x, y)$ for all $x, y \in A$. We will say that a subgraph of a graph G is convex if its vertex set is convex in G. The set of all convex subsets of $V(G)$ is the geodesic convexity on G. The convex hull $coG(A)$ of a set A of vertices of G is the smallest convex set of G containing A. A convex hull of a finite set is called a polytope. A copoint at a vertex x is a convex set C which is maximal with the property $x \notin C$. Each convex set is clearly the intersection of a family of copoints, that is the set of all copoints is an intersectional subbase of the convexity structure. A subset H of $V(G)$ is a half-space if H and $V(G) - H$ are convex. See van de Vel [25] for a detailed study of abstract convex structures.

We will now recall some properties of the geodesic convexity of weakly median graphs.

Proposition 2.1 (Chepoi [12]). Every interval of a weakly median graph is convex.

We recall that an abstract convex structure $(X, \%)$ is JHC (Join-hull commutativity) if, for any convex set $C \subseteq X$ and any $u \in X$, the convex hull of $\{u\} \cup C$ equals the union of the convex hull of $\{u, v\}$ for all $v \in C$.

Proposition 2.2 (Chepoi [12]). The geodesic structure of a weakly median graph is JHC.

It follows by the two preceding lemmas that:

Corollary 2.3. Let G be a weakly median graph, C a convex subset of $V(G)$ and $u \in V(G) - C$. Then $coG(\{u\} \cup C) = \bigcup_{c \in C} IG(u, c)$.

Corollary 2.4 (Polat [22, Corollary 5.7]). The polytopes of an interval-finite weakly median graph are the finite convex sets.

As a consequence of a more general result of Chepoi [13, Theorem 11], we have the following property:

Proposition 2.5. The geodesic convexity of a weakly median graph is S_4, i.e., if $C, D \subseteq V(G)$ are disjoint convex sets, then there is a half-space H with $C \subseteq H$ and $D \subseteq V(G) - H$.

3. Elementary weakly median graphs

An induced subgraph H of a graph G is called a gated subgraph of G if, for every x in $V(G)$, there exists a vertex y (the gate of x) in H such that $y \in IG(x, z)$ for every $z \in V(H)$ (see [15]). Obviously, every gated subgraph of a weakly median graph is a convex subgraph. Conversely, the following lemma characterizes convex subgraphs which are gated subgraphs (a subgraph H is A-closed if, for every triangle having two vertices in $V(H)$, the third vertex belongs to
V(H) as well). The \(\Delta \)-closure (resp. gated hull) of a subgraph (or a set of vertices) \(S \) of \(G \) is the smallest \(\Delta \)-closed induced (resp. gated) subgraph of \(G \) containing \(S \).

Lemma 3.1 (Bandelt and Chepoi [2, Lemma 1]). A convex subgraph of a weakly median graph is gated if and only if it is \(\Delta \)-closed.

The study of gated subgraphs is particularly suitable in the context of median-like classes of graphs, in conjunction with two operations: the Cartesian multiplications and the gated amalgamations. Following Mulder [20], a graph \(G \) is the **gated amalgam** of two graphs \(G_1 \) and \(G_2 \) if \(G_1 \) and \(G_2 \) are isomorphic to two intersecting gated subgraphs of \(G \) whose union is \(G \).

A graph with at least two vertices is called a **prime** graph if it is neither a proper Cartesian product nor a proper gated amalgam of non-trivial graphs (i.e., distinct from singletons). Furthermore a graph with at least two vertices is called an **elementary** graph (see [8]) if it does not have any proper gated subgraphs other than singletons. As a consequence of a result of Chastand [7], a weakly median graph is elementary if and only if it is \(\Delta \)-closed, and thus is a proper non-trivial gated subgraph of \(G \).

We recall that a **n-wheel** \((n \geq 3) \) is a cycle of length \(n \) with a “central” vertex adjacent to all vertices of the cycle, that a **hyperoctahedron** is a (finite or infinite) simplex of cardinality at least 6 minus a perfect matching (i.e., a multipartite subhyperoctahedron of the form \(K_{2,2,2,...} \)), that a **subhyperoctahedron** is an induced subgraph of a hyperoctahedron (i.e., a multipartite graph of the form \(K_{i_1,i_2,...} \) with \(1 \leq i_j \leq 2 \)), and finally that a graph is bridged if it contains no isometric cycle of length greater than 3. Note that bridged graphs are weakly modular. Moreover, as a consequence of a result of Chepoi [11, Theorem 7], one can easily prove that the \(\Delta \)-closure of an edge of a bridged graph \(G \) is a gated subgraph of \(G \). In [16] Farber and Jamison gave a useful property of a bridged graph.

Lemma 3.2 (Farber and Jamison [16, Theorem 6.4]). If \(x \) is not a cutvertex of a bridged graph \(G \), then \(G[N_G(x)] \) is connected.

Proposition 3.3. A two-connected bridged graph is an elementary graph which is the \(\Delta \)-closure of any of its edges.

Proof. Let \(G \) be a two-connected bridged graph, and let \(X \) be the \(\Delta \)-closure of one of its edges. Suppose that it is a proper subgraph of \(G \). Since \(G \) is connected there are two vertices \(x \in V(X) \) and \(y \in V(G - X) \) which are adjacent. Because \(X \) is the \(\Delta \)-closure of an edge, it follows that \(x \) is adjacent to another vertex \(z \) of \(X \). Moreover \(x \) is not a cutvertex since \(G \) is two-connected. Hence, by Lemma 3.2, \(N_G(x) \) induces a connected subgraph of \(G \). Therefore, every neighbor of \(X \), and in particular \(y \), belongs to the \(\Delta \)-closure of the edge \(\{x, z\} \), contrary to the fact that \(y \notin V(X) \). Consequently \(X = G \). \(\square \)

Bandelt and Chepoi established in [2] a characterization of the finite prime weakly median graphs. We will now extend this result by characterizing all prime weakly median graphs.

Theorem 3.4. A non-trivial weakly median graph is prime if and only if it is elementary. These graphs are: the 5-wheels, the subhyperoctahedra different from \(K_1 \), the path \(K_{1,2} \) and the 4-cycle \(K_{2,2} \), and the two-connected \(K_{4-} \) and \(K_{1,1,3} \)-free bridged graphs. The latter bridged graphs are exactly the graphs which can be realized as two-connected countable plane graphs such that all inner faces are triangles, all inner vertices have degrees greater than 5, and at most finitely many vertices lie on the interior of each region of the plane bounded by a cycle.

Proof. The proof will be partly similar to that of [2, Theorem 1] and we will need to refer to several auxiliary lemmas of these authors.

(1) Suppose that a weakly median graph \(G \) is not prime. If it is a gated amalgam of non-trivial weakly median graphs, then it is clearly not elementary. If \(G = G_1 \square G_2 \) where \(G_1 \) and \(G_2 \) are non-trivial weakly median graphs, then, for any \(x \in V(G_2) \), the graph \(G_1 \square [x] \) is convex and \(\Delta \)-closed, and thus is a proper non-trivial gated subgraph of \(G \), which proves that \(G \) is not elementary. Therefore, an elementary weakly median graph is prime. The converse was proved by Bandelt and Chepoi [3, Lemma 6].

(2a) We will now prove that all graphs listed in the theorem are elementary. This is clear for 5-wheels by [2, Lemma 3] and for two-connected \(K_{4-} \) and \(K_{1,1,3} \)-free bridged graphs by Proposition 3.3. Now if a subhyperoctahedra is different...
from $K_{1,2}$ and from $K_{2,2}$, then it contains an induced 4-wheel $K_{1,2,2}$ or it is a simplex. Hence it is elementary either by [2, Lemma 3] or by the fact that a simplex is clearly elementary since a gated subgraph is Δ-closed.

(2b) Conversely assume that G is neither a singleton nor any of the elementary graphs listed in Theorem 3.4. Then, by [2, Lemma 6], G is not a two-connected bridged graph. We have to show that G has a proper gated subgraph with at least two vertices. If G includes an induced 4- or 5-wheel, then, by [2, Lemmas 2 and 3], it has a proper gated subgraph which is a subhyperoctahedron or a 5-wheel. Suppose that G contains no induced 4- or 5-wheels. If G still contains some triangle, then, by [2, Lemma 5], it has a proper gated subgraph which is bridged and two-connected. If G contains no triangle, then, by [2, Lemmas 2 and 4], there are no odd cycles at all, whence G is a median and, thus any edge of G induces a proper gated subgraph. Therefore in every case, G is not elementary.

(3) We will now prove the last part of Theorem 3.4. Let G be a two-connected K_4- and $K_{1,1,3}$-free bridged graph.

(3a) We will first briefly recall some concepts of infinite combinatorics by limiting ourselves to the case of the ordinal ω_1. A club in ω_1 is a closed unbounded subset X of ω_1, that is, for every $\alpha < \omega_1$, $X - \alpha \neq \emptyset$ and sup($X \cap \alpha$) $\in X$ whenever $X \cap \alpha \neq \emptyset$. A stationary subset of ω_1 is a set S which has a non-empty intersection with every club in ω_1. A function $f : A \rightarrow \omega_1$ where $A \subseteq \omega_1$ is regressive if $f(\alpha) < \alpha$ for every $\alpha \in A$. By a theorem of Fodor [17], if f is a regressive function on a stationary subset S of ω_1, then $f^{-1}(z)$ is stationary for some $z < \omega_1$.

(3b) We will show that G is countable. Suppose that G is uncountable. We will construct a sequence $(x_\beta)_{\beta < \omega_1}$ of vertices of G as follows. Let x_0, x_1 be two adjacent vertices of G. By Proposition 3.3, G is the Δ-closure of the edge $\{x_0, x_1\}$. Let x be an ordinal such that $1 \leq x < \omega_1$. Suppose that x_β has already been constructed for every $\beta < x$ in such a way that $G_{x_\beta} := G[\{x_\beta : \beta < x\}]$ is an induced connected subgraph of G. Since G is the Δ-closure of $\{x_0, x_1\}$ and because $G \neq G_2$, there is a common neighbor $x \in V(G - G_2)$ of two adjacent vertices of G_2. Put $x_\beta := x.

By the construction there are two functions $f, g : \omega_1 \rightarrow \omega_1$ such that, for every $\alpha < \omega_1$, $f(\alpha) < g(\alpha) < \alpha$ and the vertices $x_\beta, x_{g(\alpha)}$ and $x_{f(\alpha)}$ are pairwise adjacent. Then f is regressive, and thus, by Fodor’s theorem, there exists $\gamma < \omega_1$ such that $f^{-1}(\gamma)$ is stationary. Now the restriction of g to $f^{-1}(\gamma)$ is also regressive, and thus, by Fodor’s theorem, there exists $\delta < \omega_1$ such that $g^{-1}(\delta)$ is a stationary (hence infinite) subset of $f^{-1}(\gamma)$. Therefore, for every $\alpha \in g^{-1}(\delta)$, the vertices $x_\beta, x_{\gamma}, x_{\delta}$ are pairwise adjacent, contrary to the fact that G is K_4- and $K_{1,1,3}$-free.

(3c) We will show that G can be realized as a two-connected countable plane graph such that all inner faces are triangles, all inner vertices have a degree greater than 5, and at most finitely many vertices lie on the interior of each region of the plane bounded by a cycle. We are done if G is finite by [2, Theorem 1]. Assume that G is infinite, and thus countably infinite by (3b).

Claim 1. The neighborhood of any vertex of G induces either a (finite or infinite) path or a cycle of length greater than 5.

Let $x \in V(G)$. Since G is two-connected, x is not a cutvertex. Hence, $G[NG(x)]$ is connected by Lemma 3.2. The claim follows from the fact that two adjacent vertices of G have at most two common neighbors since G is K_4- and $K_{1,1,3}$-free.

Now, we will use a characterization of bridged graphs by breadth-first search (BFS). We first recall what we call a BFS-order. Let G be a connected graph. A well-order \leq on $V(G)$ is called a BFS-order if there exists a family $(A_x)_{x \in V(G)}$ of subsets of $V(G)$ such that, for every $x \in V(G)$:

(i) $x \in A_x$;
(ii) if $x \leq y$, then A_x is an initial segment of A_y with respect to the induced order;
(iii) $A_x = A_x \cup NG(x)$ where $A_x := \{x\}$ if x is the least element of $(V(G), \leq)$, and otherwise $A_x := \bigcup_{y < x} A_y$.

The vertex x will be called the father of each element of $A_x - A_{x}$, We will denote by ϕ, and call father function, the self-map of $V(G)$ such that $\phi(u) = u$ if u is the smallest element of $(V(G), \leq)$, and $\phi(x)$ is the father of x for every $x \in V(G - u)$.

We will also say that a vertex x of a graph G is dominated by another vertex y in G if $NG(x) \subseteq NG(y)$. In [10], Chastand et al. proved that a connected graph G is bridged if and only if the father function of any BFS-order \leq on $V(G)$ is such that every vertex x of G is dominated by its father in the subgraph of G induced by the set $\{y \in V(G) : y \leq x\}$.
We will construct a planar embedding σ of G such that the drawing $\sigma(G)$ of G has the required properties. Let \leq be a BFS-order on $V(G)$, and let ϕ be its father function. Let $(x_n)_{n<\omega}$ be the sequence of vertices of G defined as follows:

- x_0 is the smallest element of $(V(G), \leq)$
- $x_{n+1} := \min\{z \in V(G) : z > y \text{ for every } y \in \phi^{-1}(\phi(x_n))\}$.

For $n \geq 1$ put $G_n := G[x \in V(G) : x < x_n]$. We will construct a sequence $\sigma_1, \sigma_2, \ldots$ such that, for every positive integer n, σ_n is a planar embedding of G_n with the following properties:

- $\sigma_n \subset \sigma_{n+1}$, i.e., σ_n is the restriction of σ_{n+1} to $V(G_n)$.
- $\sigma_n(G_n)$ is a two-connected countable plane graph such that all inner faces are triangles, all inner vertices have a degree greater than 5, there are at most finitely many vertices lying on the interior of each region of the plane bounded by a cycle, and for each $x < x_n$, if $x_n \leq y$ for some $y \in \phi^{-1}(x)$, then $\sigma_n(x)$ lies on the boundary of an outer face of $\sigma_n(G_n)$.

The construction of σ_1 is obvious. Suppose that σ_n has already been constructed for some $n \geq 1$. Note that, since $n \geq 1$, $x_0, \ldots, x_{n-1} \in N_G(\phi(x_n))$.

Claim 2. Let $y \in N_G(\phi(x_n))$ with $x_n \leq y$. If y is adjacent to some $z < x_n$ with $z \neq \phi(x_n)$, then $z \in N_G(\phi(x_n))$.

This is due to the fact that $\phi(x_n)$ is a cutvertex because G is two-connected by hypothesis.

Claim 3. Let (y_0, y_1, y_2) be a subpath of $G[N_G(\phi(x_n))]$ with $x_n \leq y_0$ and $x_n \leq y_2$. Then $x_n \leq y_1$.

Suppose that $y_1 < x_n$. We distinguish two cases. If $d_G(x_0, y_1) = d_G(x_0, x_n)$, then $\phi(y_1) < \phi(x_n)$. Since G is a bridged graph, the ball $B_G(x_0, d_G(x_0, \phi(x_n)))$ is convex, and thus $\phi(x_n)$ and $\phi(y_1)$ must be adjacent because y_1 is a common neighbor of these two vertices which does not belong to the preceding ball. If $d_G(x_0, y_1) = d_G(x_0, \phi(x_n))$, then $\phi(x_n) < y_1$. Hence $\phi(x_n)$ and $\phi(y_1)$ are adjacent because $\phi(y_1)$ dominates y_1 in $G[x \in V(G) : x \leq y_1]$ by [10, Theorem 4.3]. Therefore, in both cases, the fact that $\phi(x_n)$ and $\phi(y_1)$ are adjacent implies that $N_G(\phi(x_n))$ does not induce a path or a cycle, contrary to Claim 1.

Claim 4. There exists $y \in N_G(\phi(x_n))$ such that $y < x_n$.

This is due to the fact that $\phi(x_n)$ is not a cutvertex because G is two-connected by hypothesis.

It follows from all these claims that the set $\phi^{-1}(\phi(x_n))$ induces a path or a ray.

Then we can easily extend σ_n to a planar embedding σ_{n+1} of G_{n+1} such that, for every $y \in \phi^{-1}(\phi(x_n))$, $\sigma_{n+1}(y)$ lies on the outer face of $\sigma_n(G_n)$ whose boundary contains $\sigma_n(\phi(x_n))$, which is possible by the induction hypothesis, and in such a way that $\sigma_{n+1}(y)$ lies on the boundary of an outer face of $\sigma_{n+1}(G_{n+1})$.

Clearly, by the construction and by the induction hypothesis, all inner faces of the plane graph $\sigma_{n+1}(G_{n+1})$ are triangles and, for each $x < x_{n+1}$, if $x_{n+1} \leq y$ for some $y \in \phi^{-1}(x)$, then $\sigma_{n+1}(x)$ lies on the boundary of an outer face of $\sigma_{n+1}(G_{n+1})$. Now, if $\sigma_{n+1}(G_{n+1})$ has an inner vertex which is not an inner vertex of $\sigma_n(G_n)$, then this vertex is x_n, and thus $G[N_G(x_n)]$ is a cycle which is of length greater than 5 because G is bridged. Hence, x_n has a degree greater than 5. Finally, let $C = (y_0, \ldots, y_k, y_0)$ be a cycle of $\sigma_{n+1}(G_{n+1})$ which is not a cycle of $\sigma_n(G_n)$.

Then there is at least one vertex of C which belongs to $\phi^{-1}(\phi(x_n))$. Suppose that $y_0 \neq \phi^{-1}(\phi(x_n))$, and let $i < k$ be the greatest integer such that $y_i \in \phi^{-1}(\phi(x_n))$. Since $\phi(x_n)$ dominates y_0 and y_i in $\sigma_{n+1}(G_{n+1})$, it follows that $y_1, y_{i-1}, y_{i+1}, y_k \in N_G[\phi(x_n)]$ (with $y_{i-1} := y_k$ if $i = 0$). Because $\phi^{-1}(\phi(x_n))$ induces a path or a ray, there is an induced (y_0, y_i)-path P whose vertices belong to $\phi^{-1}(\phi(x_n))$. This path P is or is not equal to (y_0, \ldots, y_i). If $P \neq (y_0, \ldots, y_j)$ and j is the smallest integer such that $0 < j < i$ and $y_j \notin V(P)$, then $y_j = \phi(x_n)$. Moreover, because $\sigma_{n+1}(G_{n+1})$ is a plane graph by construction, it follows that $y_k \in V(P)$ for every $k \neq j$ with $0 \leq k < i$, and then $(y_0, \ldots, y_i) = P[y_0, y_{j-1} \cup \langle y_j-1, \phi(x_n), y_{j+1} \rangle \cup P[y_{j+1}, y_i]$. The cycle $C := P \cup (y_i, \ldots, y_k, y_0)$, which can be equal to C if $i = 0$, i.e., if y_0 is the only vertex of C in $\phi^{-1}(\phi(x_n))$, is such that the interior of the region of the plane bounded by C' contains the one bounded by C. The path (y_{j+1}, \ldots, y_k) (with $y_{i+1} := y_0$ if $i = k$) together with the two edges $(\phi(x_n), y_{i+1})$ and $(\phi(x_n), y_k)$ form a cycle C''. Clearly the vertices lying on the interior of the region of the plane bounded by C' are the vertices which lie on the interior of the region of the plane bounded by C'' plus possibly the vertex $\phi(x_n)$. From the induction hypothesis, it follows that there are only finitely many such vertices.
Then \(\sigma := \bigcup_{n \geq 1} \sigma_n \) is a planar embedding of \(G \) which has the required properties.

(3d) Conversely let \(G \) be a two-connected countable plane graph such that all inner faces are triangles, all inner vertices have a degree greater than 5 and at most finitely many vertices lie on the interior of each region of the plane bounded by a cycle. Consider any triangle of \(G \). Together with its interior in the plane it constitutes a finite plane graph \(H \) to which [2, Lemma 7] applies. Following Bandelt and Chepoi in the proof of [2, Theorem 1], we infer that each vertex of the boundary triangle must have degree 2 in \(H \), that is, \(H \) includes no inner vertex. Hence, all triangles of \(G \) constitute inner faces (and vice versa). In particular, \(G \) is \(K_{4^+} \) and \(K_{1,1,3}\)-free. It remains to show that \(G \) is bridged. Let \(C \) be a cycle of \(G \) of length greater than 3. Then \(C \) together with its interior in the plane constitutes a finite plane graph \(H \) such that all inner faces are inner faces of \(G \) and thus are triangles, and all inner vertices have the same degrees in \(H \) as in \(G \) and thus have a degree greater than 5. Then, by [2, Theorem 1], \(H \) is a bridged graph. Hence \(C \) is not isometric in \(H \), and a fortiori not in \(G \). □

Theorem 3.4 will enable us to confirm the correctness of two results of Chastand [9, Proposition 2.2.1 and Corollary 3.4.1.4] which, in error, were stated for any (finite or infinite) weakly median graph while they were proved only for finite ones.

A self-contraction \(f \) of a graph \(G \) is a mooring onto a vertex \(u \) of \(G \) if \(f(u) = u \) and \(\{x, f(x)\} \) is an edge of \(G[I_G(x, u)] \) for every vertex \(x \neq u \); a graph is moorable if, for every vertex \(u \in V(G) \), there exists a mooring of \(G \) onto \(u \) (or, equivalently, \(G \) has a geodesic 1-combing with respect to all base points, as defined by Chepoi in [14]). Now, by [10, Proposition 4.4] every bridged graph is moorable, and it is straightforward to check that a 5-wheel and every subhyperoctahedron are moorable since they are graphs with diameter 2. Thus, every elementary weakly median graph is moorable.

Consequently, by Theorems 3.2.1 and 3.3.1 in Chastand [9], every (finite or infinite) weakly median graph is a retract of a (weak) Cartesian product of elementary weakly median graphs. By [8, Theorem 6.1, Corollary 6.2], every factor of this Cartesian product is isomorphic to some elementary gated subgraph of \(G \), as a representative of a parallelism relation between the elementary gated subgraphs.

Theorem 3.5. Every weakly median graph \(G \) is a retract of a Cartesian product of elementary weakly median graphs and each factor of this product is isomorphic to some elementary gated subgraph of \(G \).

4. Octahedral weakly median graphs

Because every singleton is convex, it follows from Proposition 2.5 that every copoint in a weakly median graph is a half-space. If the converse is true for median graphs, it is generally not so for any weakly median graph. In this section we will study the weakly median graphs for which half-spaces are copoints. First we will give a characterization of the half-spaces in a weakly median graph which are copoints.

For \(A \subseteq V(G) \) and \(x \in V(G) - A \) we define the threshold of \(A \) for \(x \) as the set

\[
A(x) := \{a \in A : d_G(a, x) = d_G(A, x)\}.
\]

Lemma 4.1. Let \(A \) be a convex set of vertices of a weakly median graph \(G \), and \(x \in V(G) - A \). Then:

(i) \(A(x) \) is convex.

(ii) \(I_G(a, x) \cap A(x) \neq \emptyset \) for every \(a \in A \).

Proof.

(i) Let \(a, b \in A(x) \). By the definition of \(A(x) \) and the fact that \(A \) is convex, it follows that the quasi-median of \((x, a, b) \) is of the form \((x', a, b)\). Hence, because a quasi-median is a metric triangle, it follows that \(d_G(x, y) = d_G(x, a) = d_G(x, A) \) for every \(y \in I_G(a, b) \), which proves that \(I_G(a, b) \subseteq A(x) \).

(ii) Let \(a \in A \) and \(b \in A(x) \). We are done if \(b \in I_G(a, x) \). Suppose that \(b \notin I_G(a, x) \). Then the size of the quasi-median \((x', a', b')\) of \((x, a, b)\) is at least 1. By the convexity of \(A \), \(a' \) and \(b' \) belongs to \(A \), and then \(b' = b \) because \(b \in A(x) \). Therefore, since \(d_G(x, a') = d_G(x, b) \), it follows that \(a' \in A(x) \cap I_G(a, x) \). □

In particular, if \(H \) is a gated subgraph of a graph \(G \), then the threshold of \(V(H) \) for any vertex of \(G \) is a singleton.
Lemma 4.2. Let G be a weakly median graph, A a convex subset of $V(G)$ and $u \in N_G(A)$. Then $co_G(A \cup \{u\}) \subseteq N_G[A]$.

Proof. By Corollary 2.3, $co_G(A \cup \{u\}) = \bigcup_{v \in A} I_G(u, a)$. Let $a \in A$ and let (x_0, \ldots, x_n) be a (u, a)-geodesic with $x_0 = u$ and $x_n = a$. Suppose that $x_j \notin N_G[A]$ for some j with $0 \leq j \leq n$. Then there exists i with $0 \leq i < n$ such $x_i \in N_G(A)$ and $d_G(x_i, A) = 2$. By Lemma 4.1, $I_G(x_i, A) \cap A^{(x_i)} = \emptyset$. Let $b \in I_G(x_i, A) \cap A^{(x_i)}$. Then $d_G(a, b) = d_G(a, x_i) - 1$. Therefore, by the quadrangle condition, there is a vertex $y \in N_G(b) \cap N_G(x_i+1) \cap B_G(a, d_G(a, x_i) - 2)$. By the convexity of A, the vertex $y \in A$, which implies that $d_G(x_i+1, A) = 1$, contrary to the choice of x_i. □

Proposition 4.3. A half-space A in a weakly median graph G is a copoint at a vertex u if and only if $u \in N_G(A)$ and $A^{(u)} - A^{(u)} \neq \emptyset$ for every $x \in N_G(u) \cap N_G(A)$.

Proof. (a) Suppose that A is a copoint at a vertex u. We are done if $N_G(A) = \{u\}$. Suppose that $N_G(A) \neq \{u\}$. Since A is a maximal convex set which does not contain u, it follows that $u \in co_G(A \cup \{x\})$ for any vertex $x \in V(G) - (A \cup \{u\})$, and in particular for any $x \in N_G(A) - \{u\}$. By Lemma 4.2, this implies that $u \in N_G(A)$. Let $x \in N_G(u) \cap N_G(A)$. By Corollary 2.3, there is a $y \in A$ such that $u \in I_G(x, y)$. Then, by Lemma 4.1(ii), there is a $y' \in A \cap N_G(u) \cap I_G(u, y)$. Hence $u \in I_G(x, y')$, and thus $y' \notin A^{(u)}$.

(b) Conversely, suppose that $u \in N_G(A)$ and $A^{(u)} - A^{(u)} \neq \emptyset$ for every $x \in N_G(u) \cap N_G(A)$. Assume that A is not a copoint at u. Then there exists a vertex $b \in N_G(A) - \{u\}$ such that $u \notin co_G(A \cup \{b\}) = B$. By Lemma 4.1(ii), $I_G(u, b) \cap B^{(u)} = \emptyset$. Hence, since $I_G(u, b) \cap A = \emptyset$ by the convexity of $V(G) - A$, it follows that $I_G(u, b) \cap B^{(u)} \subseteq V(G) - A$. Let $x \in I_G(u, b) \cap B^{(u)}$. Then $u \notin co_G(A \cup \{x\})$. This implies that x is adjacent to every element of $A^{(u)}$, contrary to the hypothesis. □

By the preceding two results, a convex set C in a weakly median graph G is a copoint at each of its neighbors if and only if $co_G(C \cup \{x\}) = N_G[C]$ for every $x \in N_G(C)$. In fact, if C has more than one neighbor, then it suffices that this property is satisfied for two distinct neighbor of C.

We will say that a graph G has the HSCP if every non-trivial half-space (that is a half-space which is different from \emptyset and from $V(G)$) in this graph is a copoint at each of its neighbors.

Since a median graph is a bipartite weakly median graph, it follows that if A is a convex set of a median graph G, then $|A^{(u)}| = 1$ for each $u \in N_G(A)$ and $A^{(u)} \cap A^{(v)} = \emptyset$ for all distinct $u, v \in N_G(A)$. Therefore, Proposition 4.3 implies immediately that median graphs have the HSCP.

The HSCP is not a characteristic property of median graphs as is shown by the example of the octahedron $K_{2,2,2}$ (Fig. 1). This graph is a non-weakly median graph. Its non-trivial half-spaces are the triples of its adjacent vertices. Hence, by Proposition 4.3, each of these sets is a copoint at each of its neighbors.

Definition 4.4. We will say that a graph G is semi-octahedral if, for every triple $\{u_0, u_1, u_2\}$ of pairwise adjacent vertices of G, the set $N_G(u_i) \cap N_G(u_j) - N_G[u_k]$ is non-empty for each triple (i, j, k) of distinct elements of $\{0, 1, 2\}$ (Fig. 2). If moreover every edge of G is contained in a triangle, then we will say that G is octahedral.

In other words a graph G is octahedral if and only if any two adjacent vertices of G have two non-adjacent common neighbors. In particular, the octahedron is an octahedral weakly median graph and it is clearly the smallest of them. The icosahedron is also an octahedral graph, but it is not weakly modular. Due to the absence of triangles, every
bipartite graph, and thus every median graph, is semi-octahedral. Note that the only simplicial vertices (i.e., vertices whose neighborhoods induce simplices) of a connected semi-octahedral graph are the vertices of degree 1.

Theorem 4.5. Let G be a weakly median graph. The following assertions are equivalent:

(i) G is semi-octahedral.

(ii) G is HSCP.

(iii) $co_G(A \cup \{u\}) = N_G[A]$ for every non-trivial half-space A in G and each $u \in N_G(A)$.

Proof. (i) \Rightarrow (ii): Suppose that G has not the HSCP. Then there is a non-trivial half-space A in G which is not a copoint at some vertex $u \in N_G(A)$. By Proposition 4.3, there exists $v \in N_G(u) \cap N_G(A)$ such that $A^{(u)} \subseteq A^{(v)}$. Let $w \in A^{(u)}$. Then the vertices u, v, w are pairwise adjacent. Let $x \in N_G(u) \cap N_G(w) - \{v\}$. If $x \in A^{(u)}$ and thus $x \in A^{(v)}$. If $x \notin A$, then x and v are adjacent by the compactness of $V(G) - A$ and the fact that (v, w, x) is a (v, x)-path with $w \in A$. Whence, $x \in N_G(v)$ in both cases. Therefore, $N_G(u) \cap N_G(w) \subseteq N_G[v]$, which proves that G is not semi-octahedral.

(ii) \Rightarrow (i): Suppose that there are three pairwise adjacent vertices u, v, w such that $N_G(u) \cap N_G(w) \subseteq N_G[v]$. Since $\{v, w\}$ is convex, there exists a copoint A at u which contains the set $\{v, w\}$. Then $B := V(G) - A$ is a non-trivial half-space. Let $x \in B^{(v)}$. Then either x and v coincide or are adjacent. Hence $x \in B^{(u)}$ by the hypothesis, and thus B is not a copoint at v by Proposition 4.3. Therefore, G has not the HSCP.

(ii) \Rightarrow (iii): Suppose that G is HSCP, and let A be a non-trivial half-space in G and $u \in N_G(A)$. Then A is a copoint at u. Hence, by Lemma 4.2, $N_G[A] \subseteq co_G(A \cup \{u\}) \subseteq N_G[A]$. Therefore, $co_G(A \cup \{u\}) = N_G[A]$.

(iii) \Rightarrow (ii) is obvious. □

Corollary 4.6. For every non-trivial half-space A in a semi-octahedral weakly median graph G we have the following two equivalent properties:

(i) $N_G[A]$ is convex.

(ii) $N_G(A) \cup N_G(V(G) - A)$ is convex.

Proof. (i) is a consequence of Theorem 4.5.

(i) \Rightarrow (ii): Suppose that $N_G[A]$ is convex. The set $V(G) - A$ is also a half-space. Therefore, $N_G[V(G) - A]$ is convex by (i). Hence $N_G(A) \cup N_G(V(G) - A) = N_G[A] \cap N_G[V(G) - A]$ is convex too.

(ii) \Rightarrow (i): Suppose that $N_G[A]$ is not convex. Due to the connectedness of $N_G[A]$ and [11, Theorem 7], it follows that there exist two vertices x, y at distance 2 in the subgraph of G induced by $N_G[A]$ and a common neighbor u of these two vertices which does not belong to $N_G[A]$. Then x, y must belong to $N_G(A)$. Hence, their distance in the subgraph of G induced by $N_G(A) \cup N_G(V(G) - A)$ is also 2 and $u \notin N_G(A) \cup N_G(V(G) - A)$, which proves that $N_G(A) \cup N_G(V(G) - A)$ is not convex by [11, Theorem 7]. □

Lemma 4.7. A Cartesian product of two graphs G_1 and G_2 is octahedral (resp. semi-octahedral) if and only if G_1 and G_2 are octahedral (resp. semi-octahedral).

This is clear because, in a Cartesian product, a triangle always has a triangle as a projection onto one of the factors of the product.
An isometric subgraph of an octahedral (resp. semi-octahedral) weakly median graph G (which is obviously a weakly median subgraph of G) is octahedral (resp. semi-octahedral) if it is Δ-closed. Consequently, each gated subgraph of G is an octahedral (resp. semi-octahedral) weakly median subgraph of G. Because every gated subgraph is Δ-closed, it follows that if a graph G is a gated amalgam of two weakly median graphs G_1 and G_2, then each triangle of G is a triangle of G_1 or of G_2. Whence the following result:

Lemma 4.8. A gated amalgam of two weakly median graphs G_1 and G_2 is octahedral (resp. semi-octahedral) if and only if G_1 and G_2 are octahedral (resp. semi-octahedral).

Theorem 4.9. The non-trivial elementary octahedral (resp. semi-octahedral) weakly median graphs are the hyperoctahedra and the octahedral two-connected K_{4}- and $K_{1,1,3}$-free bridged graphs (resp. K_{2}, the hyperoctahedra and the octahedral two-connected K_{4}- and $K_{1,1,3}$-free bridged graphs). The latter bridged graphs are exactly the graphs which can be realized as countably infinite two-connected plane graphs such that all inner faces are triangles, all inner vertices have degrees greater than 5, at most finitely many vertices lie on the interior of each region of the plane bounded by a cycle, and no edge lies on the boundary of an outer face.

Proof. An elementary octahedral or semi-octahedral weakly median graph must be an elementary weakly median graph. Therefore, we have to check among the elementary weakly median graphs (Theorem 3.4) which are octahedral and which are semi-octahedral. Obviously a n-wheel is not semi-octahedral.

(a) K_{2} is semi-octahedral, and every semi-octahedral elementary subhyperoctahedron with at least three vertices is octahedral since every edge is contained in a triangle.

Let $G := K_{i_{1},i_{2},...}$ with $1 \leq i_{j} \leq 2$ for every j be an elementary octahedral subhyperoctahedron. We can assume that G has at least six vertices because the smallest octahedral weakly median graph is the octahedron which has six vertices. Suppose that G contains a universal vertex u_{1}. Clearly u_{1} belongs to some triangle $\{u_{1},u_{2},u_{3}\}$. Since u_{1} is adjacent to all vertices of G, $NG[u_{1}] = V(G)$, and thus $NG[u_{2}] \cap NG[u_{3}] - NG[u_{1}]$ is empty. Hence the graph is not octahedral. Therefore, all i_{j}’s are equal to 2. Let u_{1},u_{2},u_{3} be any three pairwise adjacent vertices of G which are not adjacent to u_{1}', u_{2}', u_{3}', respectively. For each triple (i,j,k) of distinct elements of $\{0,1,2\}$, $NG[u_{i}] \cap NG[u_{j}] - NG[u_{k}] = \emptyset$. Thus, the finite elementary octahedral subhyperoctahedra are the hyperoctahedra $K_{2,2,2,2,2,...}$ with at least six vertices.

(b) We will now prove that a finite two-connected K_{4}- and $K_{1,1,3}$-free bridged graph is not semi-octahedral. Let G be such a graph. Since G is a finite bridged graph, by a result of Anstee and Farber [1, Theorem 2.1], there exists a vertex x of G which is dominated by one of its neighbors y. Because G is two-connected and K_{4}- and $K_{1,1,3}$-free, the degree of x is 2 or 3. If x has degree 3, then the two neighbors of x distinct from y cannot be adjacent since G is K_{4}-free. Therefore in both cases, if $u \in NG_{-y}(x)$, then y is the only common neighbor of x and u, which proves that G is not semi-octahedral.

Therefore, by Theorem 3.4, an octahedral two-connected K_{4}- and $K_{1,1,3}$-free bridged graph can be realized as a countably infinite two-connected plane graph such that all inner faces are triangles, all inner vertices have degrees greater than 5, and at most finitely many vertices lie on the interior of each region of the plane bounded by a cycle. Suppose that an edge e lies on the boundary of an outer face. Since G is octahedral, e must be an edge of two distinct triangles. Hence, because e lies on the boundary of an outer face, the vertex of one of the triangles which is not incident with e must lie on the interior of the region of the plane bounded by the other triangle, contrary to the fact that all triangles of the drawing of G constitute inner faces (see part (3d) of the proof of Theorem 3.4).

Conversely, let G be a countably infinite two-connected plane graph such that all inner faces are triangles, all inner vertices have degrees greater than 5, at most finitely many vertices lie on the interior of each region of the plane bounded by a cycle, and no edge lies on the boundary of an outer face. By Theorem 3.4, G is a two-connected K_{4}- and $K_{1,1,3}$-free bridged graph. Let x,y be two adjacent vertices of G. By hypothesis, the edge $\{x,y\}$ does not lie on the boundary of an outer face. Hence this edge lies on the boundary of two inner faces, that is, of two triangles whose vertices are $\{u,x,y\}$ and $\{v,u,x,y\}$, respectively. The vertices u,v cannot be adjacent, since otherwise one of the vertices x,y would lie on the interior of the region of the plane bounded by the triangle induced by u,v and the other vertex, contrary to the fact that all triangles of G constitute inner faces. This proves that G is octahedral. \square
Theorem 4.10. Every non-trivial finite octahedral (resp. semi-octahedral) weakly median graph is obtained by successive gated amalgamation from Cartesian products of hyperoctahedra (resp. K_2 and hyperoctahedra).

This is an immediate consequence of Lemmas 4.7 and 4.8, Theorem 4.9 and [2, Theorem 1]. We can note that, if any finite prime semi-octahedral weakly median graphs and more generally any gated amalgam of these graphs are pseudo-median, this is, however, not the case for the infinite ones (take for example the triangular grid, that is, the tiling of the plane into equilateral triangles of equal size), and for Cartesian products of (even finite) hyperoctahedra (see [4]).

We will recall some elementary properties of the Cartesian product of graphs. If $G = G_1 \square G_2$, then, for all $x, y \in V(G)$ (see [18]):

$$d_G(x, y) = d_{G_1}(pr_1(x), pr_1(y)) + d_{G_2}(pr_2(x), pr_2(y)),$$

hence

$$\text{diam}(G) = \text{diam}(G_1) + \text{diam}(G_2).$$

Moreover, $pr_i(I_G(x, y)) = I_{G_i}(pr_i(x), pr_i(y))$ for $i = 1, 2$. Therefore, if a subset C of $V(G)$ is convex in G, then $pr_i(C)$ is convex in G_i for $i = 1, 2$. Conversely, if C_i is a convex set in G_i for some $i \in \{1, 2\}$, then $pr_i^{-1}(C_i)$ is convex in G. Consequently, if H_i is a half-space in G_i for some $i \in \{1, 2\}$, then $pr_i^{-1}(H_i)$ is a half-space in G.

Lemma 4.11. For each vertex x of a Cartesian product of n prime finite semi-octahedral weakly median graphs, there exists a unique vertex y of G, called the antipode of x in G, such that $d_G(x, y) = \text{diam}(G)$ and $I_G(x, y) = V(G)$.

The proof by induction on n is straightforward and is left to the reader.

Theorem 4.12. Let G be a finite semi-octahedral weakly median graph. The following assertions are equivalent:

(i) G is a Cartesian product of prime semi-octahedral weakly median graphs.

(ii) G is regular.

(iii) The non-trivial half-spaces in G are non-comparable with respect to inclusion (i.e., if H_1 and H_2 are half-spaces in G with $H_1 \subseteq H_2$, then $H_1 = H_2$).

We recall that the depth of a convex structure is the largest possible length of a chain of non-trivial half-spaces (see [5]). In the following, by the depth of a graph we will mean the depth of its geodesic convexity. Condition (iii) of the preceding theorem is then equivalent to the following condition:

(iii') G has depth 1.

Proof. (i) \Leftrightarrow (ii) is a consequence of Theorem 4.9 and of a result of Brešar [6, Theorem 3.2].

(i) \Rightarrow (iii): Assume that G is a Cartesian product of n prime semi-octahedral weakly median graphs. We will prove by induction on n that G satisfies (iii). Let $n = 1$. Then G is a prime semi-octahedral weakly median graph, that is K_2 or a hyperoctahedron. The result is trivial if $G = K_2$. Suppose that G is a hyperoctahedron $K_{2,2,...,2}$ of order $2k$. If x, y are two non-adjacent vertices of G, then $co_G(x, y) = V(G)$. Hence, the non-trivial half-spaces of G are the vertex sets of two complementary simplices in G of order k. Let $n \geq 1$. Suppose that the result holds for any Cartesian product of n prime semi-octahedral weakly median graphs, and let G be a Cartesian product of $n + 1$ prime semi-octahedral weakly median graphs. Then $G = G_1 \square G_2$ where G_1 is prime and G_2 is a Cartesian product of n prime semi-octahedral weakly median graphs. Let H be a non-trivial half-space in G.

Claim. There exists $i \in \{1, 2\}$ such that $pr_i(H) \cap pr_i(V(G) - H) = \emptyset$ and thus $pr_i(H)$ is a non-trivial half-space in G_i, while $pr_{3-i}(H) = pr_{3-i}(V(G) - H) = V(G_{3-i})$.

Let $i \in \{1, 2\}$. Then $pr_i(H)$ and $pr_i(V(G) - H)$ are non-empty convex sets in G_i. Clearly $V(G_i) - pr_i(H) \subseteq pr_i(V(G) - H)$ and $V(G_i) - pr_i(V(G) - H) \subseteq pr_i(H)$. Suppose that $pr_1(H)$ is not a non-trivial half-space. Then
Therefore, graphs, quasi-median graphs and pseudo-median graphs, any retract of a (semi-)octahedral weakly median graph is (semi-)octahedral weakly median graphs, but, contrary to the other particular weakly median graphs such as median graphs, quasi-median graphs and pseudo-median graphs, any retract of a (semi-)octahedral weakly median graph is not a non-trivial half-space in G. Let H and H' be two non-trivial half-spaces in G with $H \subseteq H'$. By the preceding claim we can assume that $pr_2(H)$ is a non-trivial half-space in G, so $pr_1(H) = pr_1(V(G) - H) = V(G_1)$. Therefore, since $pr_1(H) \subseteq pr_1(H')$, it follows that $pr_1(H') = pr_1(V(G) - H') = V(G_1)$, and thus that $pr_2(H')$ is a non-trivial half-space in G. By the induction hypothesis $pr_2(H) = pr_2(H')$. Then $pr_2^{-1}(pr_2(H))$ and $pr_2^{-1}(pr_2(V(G) - pr_2(H)))$ are complementary half-spaces of G which contains H' and $V(G) - H$, respectively. It follows that $H' = pr_2^{-1}(pr_2(H)) = H$.

(iii) \Rightarrow (i): Suppose that G is not a Cartesian product of prime weakly median graphs. By Theorem 4.10, G is a proper gated amalgam of two weakly median graphs G_1 and G_2. Let $x_1 \in V(G_1 - G_2)$ and $x_2 \in V(G_2 - G_1)$. For $i = 0, 1$ let C_i be a copoint at x_i in G containing $V(G_1 \cap G_2)$. These copoints are non-trivial half-spaces in G. Then $V(G) - C_2$ is also a non-trivial half-space in G with $V(G) - C_2 \subseteq V(G_2 - G_1) \subset V(G_2) \subset C_1$. Therefore, G does not satisfy (iii).

We obtain immediately:

Corollary 4.13. Let G be a finite median graph. The following assertions are equivalent:

(i) G is a hypercube.

(ii) G is regular.

(iii) The non-trivial half-spaces in G are non-comparable with respect to inclusion.

The equivalence (i) \leftrightarrow (ii) was already proved by Mulder [21, Corollary 4], and the equivalence (i) \leftrightarrow (iii) by Isbell [19] and van de Vel [24].

Note that Theorem 4.12 does not hold if we consider any finite weakly median graph. In fact even a prime weakly median graph can have a depth greater than 1. More precisely, for every $n \geq 1$ there exists a prime weakly median graph whose depth is n. For example, the n-deltoid (see Fig. 3), which is a two-connected K_{4^n} and $K_{1,1,3}$-free bridged graph, has depth n.

By Theorem 3.5, every (semi-)octahedral weakly median graph is a retract of a Cartesian product of elementary (semi-)octahedral weakly median graphs, but, contrary to the other particular weakly median graphs such as median graphs, quasi-median graphs and pseudo-median graphs, any retract of a (semi-)octahedral weakly median graph is
not necessarily (semi-)octahedral because any triangle of a (semi-)octahedral weakly median graph is a retract of this graph, and K_3 is not semi-octahedral.

References