SHORT COMMUNICATION

A NOTE ON BILINEAR TIME SERIES MODELS

E.J. HANNAN
Department of Statistics, Australian National University, (nberra, A.C.T. 2600, Australia

Received 27 March 1980
Revised 25 July 1980

Conditions for the existence of a stationary solution for certain forms of bilinear difference equations are derived.

```
Bilinear time series
mean square convergence
spectrum
```

In [1] certain non-linear 'superdiagonal' time series models are discussed, of the form

$$
\begin{equation*}
\sum_{0}^{p} \alpha_{j} x(t-j)+\sum_{j=0}^{Q} \beta_{j} \varepsilon(t-j)+\sum_{1=k<l=2}^{Q P} \gamma_{k l} \varepsilon(t-k) x(t-l)=0 . \tag{1}
\end{equation*}
$$

Here we assume

$$
\begin{equation*}
\alpha_{0}=\beta_{0}=1, \quad \sum \alpha_{i} z^{i} \neq 0, \quad|z| \leqslant 1 \tag{2}
\end{equation*}
$$

and that the $\varepsilon(t)$ are ormally and independently distributed witio zero mean and variance σ^{2}. In [1] the question of the existence of a stationary solution to (1), in terms of the $\varepsilon(s), s \leqslant t$, is discussed but not completely. In [2] the somewhat mos: difficult question is discussed as to whether, given a stationary solution, the $\varepsilon(t)$ are the (non-linear) innovations, i.e., whether $\varepsilon(t)=x(t)-\mathscr{E}\left\{x(t) \mid \mathscr{F}_{t-1}\right\}$ wherc \mathscr{F}_{t} is the σ-algebra determined by $x(s), s \leqslant t$. Thus it has to be determined whe aer the $\varepsilon(t)$ are measurable, \mathscr{F}_{i}. In [1, p. 41] it is said that a necessary and suficient condition for the existence of a second order stationary solution to (1) is, when $p=q=0$, that

$$
\sigma^{2} \sum_{k<l} \gamma_{k l}^{2} z^{\prime}=1
$$

should have all solutions outside of the closed unit disc. This condition is derived from the equation

$$
\mathscr{E}\left\{x(t)^{2}\right\}=\sigma^{2} \sum \sum \gamma_{k l}^{2} \mathscr{E}\left\{x(t-l)^{2}\right\}+\sigma^{2}
$$

which is, however, incorrect. In any case the argument would be incomplete. However it is fairly easy to obtain a necessary and sufficient condition in this superdiagonal case. If $x(t)$ is to be a stationary solution of the required form then successive substitutions using (1) show that this solution must be

$$
\begin{equation*}
x(t)=\sum_{r=1}^{\infty} \Sigma_{r} \mathrm{~d}_{r}\left(j_{1}, \ldots, j_{r}\right) \varepsilon\left(t-j_{1}\right) \cdots \varepsilon\left(t-j_{r}\right) \tag{3}
\end{equation*}
$$

where Σ_{r} is over $0<j_{1}<\cdots<j_{r}<\infty$ except for $r=1$ when $0 \leqslant j_{1}<\infty$. Indeed at any stage in this process of substitution there will be a single term, $x(t-m)$ let us say, in any product, any other factors being a constant or an $\varepsilon(t-j)$. Moreover m will be larger than any such lag, j, for an $\varepsilon(t-j)$. The form of (3) now follows.

Because of the condition $j_{1}<j_{2}<\cdots<j_{r}$ the individual terms in (3) are easily seen to be orthogonal. Moreover if $r \neq s$ it also follows that

$$
\begin{align*}
& \mathscr{E}\left[\Sigma_{r}\left\{\mathrm{~d}_{r}\left(j_{1}, \ldots, j_{r}\right) \varepsilon\left(t-j_{1}\right) \cdots \varepsilon\left(t-j_{r}\right)\right\}\right. \\
& \left.\quad \times \Sigma_{s}\left\{\mathrm{~d}_{s}\left(k_{1}, \ldots, k_{s}\right) \varepsilon\left(\tau-k_{1}\right) \cdots \varepsilon\left(\tau-k_{s}\right)\right\}\right]=0 \tag{4}
\end{align*}
$$

for any t, τ.
We consider the necessary and sufficient condition for mean square convergence, i.e.,

$$
\begin{equation*}
\sum_{1}^{\infty} \sigma^{2 r} \Sigma_{r} \mathbf{d}_{r}\left(j_{1}, \ldots, j_{r}\right)^{2}<\infty \tag{5}
\end{equation*}
$$

Put

$$
\begin{aligned}
& \alpha(z)=\sum \alpha_{i} z^{j}, \quad \beta(z)=\sum \beta_{i} z^{j}, \quad \gamma\left(z_{1}, z_{2}\right)=\sum \sum \gamma_{k,} z_{1}^{k} z_{2}^{l}, \\
& \delta_{r}\left(z_{1}, \ldots, z_{r}\right)=\Sigma_{r} \mathrm{~d}_{r}\left(j_{1}, \ldots, j_{r}\right) z_{1}^{i_{1}} \cdots z_{r}^{j_{r} .}
\end{aligned}
$$

Now substituting in (1) we see that

$$
\delta_{1}\left(z_{1}\right)=-\beta\left(z_{1}\right) / \alpha\left(z_{1}\right)
$$

and that

$$
\alpha\left(z_{1} z_{2} \cdots z_{r}\right) \delta_{r}\left(z_{1}, \ldots, z_{r}\right)+\gamma\left(z_{1}, z_{2} \cdots z_{r}\right) \delta_{r-1}\left(z_{2}, \ldots, z_{r}\right)=0
$$

so that we obtain, in general,

$$
\begin{align*}
& \delta_{r}\left(z_{1}, \ldots, z_{r}\right)= \\
& \quad=(-)^{r} \frac{\gamma\left(z_{1}, z_{2} z_{3} \cdots z_{r}\right) \gamma\left(z_{2}, z_{3} \cdots z_{r}\right) \cdots \gamma\left(z_{r-1}, z_{r}\right) \beta\left(z_{r}\right)}{\alpha\left(z_{1} z_{2} \cdots z_{r}\right) \alpha\left(z_{2} z_{3} \cdots z_{r}\right) \cdots \alpha\left(z_{r-1} z_{r}\right) \alpha\left(z_{r}\right)} . \tag{6}
\end{align*}
$$

It is evident that this gives the unique solution of (1) in the form (3). Now using (6) the left side of (5) is

$$
\begin{equation*}
\sum_{r=1}^{\infty}\left(\frac{\sigma^{2}}{2 \pi}\right)^{r} \int_{-\pi}^{\pi} \cdots \int\left|\delta_{r}\left(\mathrm{e}^{\mathrm{i} \omega_{1}}, \mathrm{e}^{\mathrm{i} \omega_{2}}, \ldots, \mathrm{e}^{\mathrm{i} \omega_{r}}\right)\right|^{2} \prod_{1}^{r} \mathrm{~d} \omega_{j} \tag{7}
\end{equation*}
$$

It follows easily that a simple sufficient condition for (5) is

$$
\begin{equation*}
\frac{\sigma^{2}}{2 \pi} \int_{-\pi}^{\pi}\left|\frac{\gamma\left(\mathrm{e}^{\mathrm{i} \omega}, \mathrm{e}^{\mathrm{i} \phi}\right)}{\alpha\left(\mathrm{e}^{\mathrm{i}(\omega+\phi)}\right)}\right|^{2} \mathrm{~d} \omega \leqslant c<1, \quad \phi \in[-\pi, \pi] \tag{8}
\end{equation*}
$$

since then (7) is dominated by a geometrically convergent series. The expression (6) may also be used to evaluate the spectral density of a stationary, mean square convergent, solution to (1). Because of (4) it is

$$
\sum_{r=0}^{\infty}\left(\frac{\sigma^{2}}{2 \pi}\right)^{r} \int_{\Sigma \omega_{l}=\omega}\left|\delta_{r}\left(\mathrm{e}^{\mathrm{i} \omega_{1}}, \ldots, \mathrm{e}^{\mathrm{i} \omega_{r}}\right)\right|^{2} \Pi \mathrm{~d} \omega_{j} .
$$

Fut $\xi(r)=\Sigma_{r} \mathrm{~d}_{r}\left(j_{1}, \ldots, j_{r}\right) \varepsilon\left(t-j_{1}\right) \cdots \varepsilon\left(t-j_{r}\right)$. Then under (8) the series $\sum \xi(r)$ converges almost surely, sin:e $\mathscr{E}\{|\xi(r)|\} \leqslant\left[\mathscr{E}\left\{\xi(r)^{2}\right\}\right]^{1 / 2}$ and thus $\sum \mathscr{E}\{|\xi(r)|\}$ is dominated by a geometrically convergent series. Also

$$
\begin{equation*}
\sum_{1=j_{1}<\cdots<j_{r}=r}^{N} \mathrm{~d}_{r}\left(j_{1}, \ldots, j_{r}\right) \varepsilon\left(t-j_{1}\right) \cdots \varepsilon\left(t-j_{r}\right) \tag{9}
\end{equation*}
$$

converges almost surely as can be seen by rearranging (9), for example for $r=2$, as

$$
\sum_{j_{2}=2}^{N} \varepsilon\left(t-j_{2}\right) \sum_{j_{1}=1}^{i_{2}-1} \mathrm{~d}_{2}\left(j_{1}, j_{2}\right) \varepsilon\left(t-j_{1}\right) .
$$

This shows that (9) is, for each fixed t, a square integrable martingale, with bounded mean square, with respect to a sequence of σ-algebras G_{N} where G_{N} is generated by $\varepsilon(t-1), \ldots, \varepsilon(t-N)$.

If the assumption that the model is superdiagonal is eliminated, when the last term in (1) becomes

$$
\sum_{k=0}^{O} \sum_{l=1}^{P} \gamma_{k \mid} \varepsilon(t-k) x(t-l),
$$

then (6) still holds but, because $0<j_{1}<\cdots<j_{r}$ in (3) no longer holds, then (7) is invalid. Thus it seems difficult in general to use (6) and to study convergence in general. However in certain special cases, not superdiagonal, a treatment is given in [3].

The discussion of the question as to whether $\varepsilon(t)$ is measurable \mathscr{F}_{t} seems intrinsically difficult. One might consider cases for which (7) is finite and express $\varepsilon(t)$ in terms of the $x(t-j)$ by a formula of the form of (3) but with the place; of $x(t)$ and $\varepsilon(t)$ reversed. Of course $j_{1}<j_{2}<\cdots<j_{r}$ will not hold. Then the coefficients
are generated by formulae of the form of

$$
(-1)^{r} \frac{\gamma\left(z_{2}, z_{3}, \ldots, z_{r}, z_{1}\right) \cdots \gamma\left(z_{r}, z_{r-1}\right) \alpha\left(z_{r}\right)}{\beta\left(z_{1} z_{2} \cdots z_{r}\right) \cdots \beta\left(z_{r-1} z_{r}\right) \beta\left(z_{r}\right)} .
$$

However the lack of orthogonality makes this difficult to use. Again some special cases have been dealt with in [3].

References

[1] C.W.J. Granger and A.P. Andersen, An Introduction to Bilinear Time Series Models (Vandenhoeck and Ruprecht, Göttingen, 1978).
[2] C.W.J. Grariger and A.P. Andersen, On the invertibility of time series models, Stochastic Process. Appl. 8 (19"8) 87-92.
[3] T.D. Phan and L.T. Tran, Quelques résultats sur les modèles bilinéaires de séries chronologique, C.R. Acad. Sci. Paris 290, Série A (1980) 335-338.

