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Conditions for the existence of a stationary solution for certain forms of bilinear difference 
equations are derived. 

? 
Y 

In [l] certain non-linear ‘superdiagonal’ time series models are discussed, of the 

form 

Here we assume 

cq-j=po= 1, C *jZj # 0, #Sl (2) 

and that the E (t) are .~ormally and independently distributed wi5l zero mean and 

variance a*. In [‘I] the question of the existence of a stationary solution to (1): in 

terms of the E(S), s s t, is discussed but not completely. In [2] the somewhat rnb:r 1: 

difficult question is discussed as to whether, given a stationary solution, the E:!) 

are the (non-linear) innovations, i.e., whether I = x(t) - g{x (t) 1 St- 1) where .;a1 

is the g-algebra determined by x(s), s s t. Thus it has to be determin<:d whe iler 

the c(t) are measurable, St. In [1, p. 411 it is said that a necessary and sulkient 

condition for the existence of a second order stationary solution to Jl) is, when 

p = 4 = 0, that 
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should have all solutions outside of the closed unit disc. This condition is derived 
from the equation 

s{x(tj”} = cr2 cc y$zqx(f - 1)2}+ iT2 

which is, however, incorrect. In any case ;he argument would be incomplete. 
However it is fairly easy to obtain a necessary and sufficient condition in this 
superdiagonal case. If x(f) is to be a stationary solution ol! the required form then 
successive substitutions using (1) show that this solution must be 

x(t) = f 2, d,(jl,. . . ,j,)~(f-j,) 9 m 0 ~(.f-$), 
r=l 

(3) 

where Z, is over @C~,<-*<~,<CQ except for r=l when O~jlc~. Indeed at 
any stage in this process of substitution there will be a single term, x(t - m) let us 
say, in any product, any other factors being a constant or an E( t -j). Moreover m 
will be larger than any such lag, j, for an ~(t -j). The form of (3) now follows. 

Because of the condition jr < j2 < l l l <jr the individual terms in (3) are easily 
seen to be orthogonal. Moreover if r # s it also follows that 

CML( j 1,~..,ili~(~-jl)~~~~(f--j,)} 
b 

x~~{d,(kl,...,k,)&(T--kl)o.*&(7--k,)}]=0 (4 

for any !, 7. 
We consider the necessary and sufficient condition for mean square convergence, 

i.e., 

fa”Er d,(j,, . . . , jJ*<m. 
1 

(5) 

Put 

il!(T)=C(YjZi, P(Z) =C PjZi9 Y(Zl, Z2j = cc Yk.[Zr;Zk, 

&(Zl, l l l 9 zr)=C, d,(jr,. . . , jJz$ l l * z!. 

Now substituting in (1) we see that 

&(z*) = -Ph)l~(Z*) 

and that 

cx(Znf2 l l ’ zr)&(zt, l l l , Zrj + Y(fP, Z_, l l l ZMPl(Z29 l 
l * 9 z,) = 0 

so that we obtain, in genera 

= (-)’ y(Z1, Z2Z3 ’ ’ l Zr)y(Z29 Z3 l l ’ Zr) l * ’ y(Zr-1, Zr,p(Zrj ._ 

a!(ZlZ2 l l l t,)Ct(Z2Z3 l l l z,) l l l a (Z,-lZrja(Zrj ’ 
(6) 
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It is evident that this gives the unique solution of (1) in the form (3). Now using 

(6) the left side of (5) is 

It follows easily that a simple sufficient condition for (5) is 

(7) 

since then (7) is dominated by a geometrically convergent series. The expression 

(6) may also be used to evaluate the spectral density of a stationary, mean square 

convergent, solution to (1). Because of (4) it is 

f. (c) r I,, 
1 
=w IWeiwl, . . . 9 ei”9i2 II doj* 

Fut 5(r) = c, d,(jl, . . . , jr)& -j,) l l l ~(t --jr). Then under (8) the series C t(r) 
converges almost surely, sinze g{I~(r)l} s [8{~(r)‘}]“’ and thus C %{lt(r)J) is domi- 

nated by a geometrically coirvergent series. Also 

N 

c drh, . . . , i,)e(r--j,) * * o &(f -jr) (9) 
l=jl<*--<lr=r 

converges almost surely as can be seen by rearranging (9), for example for r = 2, as 

N j2- 1 

C df --I’d C &(jl, hk 0 -4. 
j2=2 jl=l 

This shows that (9) is, for each fixed t, a square integrable martingale, with bounded 

mean square, with respect to a sequence of g-algebras GN where GN is generated 

by E(t-1), . . . , E(P-N). 

If the assumption that the model is superdiagonal is eliminated, when the last 

term in (1) becomes 

? i rkrd~--kM--0, 
k=O I=1 

then (6) still holds but, because 0 < jl c 0 9 l <jr in (3) no longer holds, then (7) is 

invalid. Thus it seems difficult in general to use (6) and to study convergence in 

general. However in certain special cases, not superdiagonal, a treatment is given 

in [3]. 

The discussion of the question as to whether I is measurable St seems 

intrinsically difficult. One might consider cases for which (7) is finite and express 

I in terms of the x(t -j) by a formula of the form of (3) but with the place ) of 

x(t) and E (b) reversed. Of course jl < j2 < e . . <jr will not hold. Then the coefficients 



224 E.J. Hannan / Bilinear time series models 

are generated by formulae of the form of 

(_l)‘Y(zz’ 23, l l l , zr, a) l ’ l Ik? %l)dZA 

PhZ2 l l l &I * ’ l mr-lZ,MZr) 

. 

However the lack of orthogonality makes this difficult to use. Again some special 
cases have been dealt with in [3]. 
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