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1. INTRODUCTION

The purpose of this paper is to study the blow-up behavior of the ground
states of the following elliptic equation in R”,

Au—u+u?=0, xeR", (L.1)

where n=3, 1 <g< (n+2)/(n—2). This equation arises in many areas of
applied mathematics including nuclear physics, fluid mechanics, and
population genetics (see, e.g., [BL] and references therein) and has been
studied extensively in recent years. We also study the generalized equation

Au—K(x)u+u?=0, xeR", (1.2)

where K(x) is a non-negative C* function in R".
If a solution #(x) of (1.1) exists in the whole space R” satisfying

u(x)>0,  u(x)->0 as [x[-o0,

it is called a ground state. The existence and uniqueness of ground states
of (1.1) has been a very interesting topic of mathematicians for years. The
first existence result was proved by Nehari [Ne] for some special cases.
The general case n >3 and 1 <g < (n+ 2)/(n—2) was considered by Berger
[B] and the existence of ground states was proved in [B] by an idea of
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Nehari. From [GNNI1, GNN2] ground states of (1.1) must be radially
symmetric about some point (for simplicity, we always assume that the
point is the origin of R”). The uniqueness of ground states has been
studied by many authors, including Coffman [C] and McLeod and
Serrin [MS7], and was finally proved by Kwong [K1] for the full range
l<g<(@m+2)/(n—2) (for the same question concerning more general
equations, see [Z]). The non-existence of ground states when ¢>
(n+2)/(n—2) is well known (see, e.g., [NS]).

It is natural to consider the behavior of the ground state of (1.1) as
g— (n+2)/(n—2). As one can easily see, the L™ norm of the ground
state of (1.1) blows up as g —» (n+2)/(n—2). This is also true for (1.2)
under some condition on K which we shall specify later. In this paper we
give a description of the blow-up behavior of the ground state(s) of (1.1}
and (1.2).

We point out that blow-up problems for elliptic equations involving
critical exponents in bounded domains have been studied by, among
others, Atkinson and Peletier [AP2], Brezis and Peletier [BP ], Han [H],
and Rey [R]. Ideas developed by them are used in this paper.

Before we give our results, some notation is introduced. In this paper, we
always let e=p—g, where p=(n+2)/(n—2) is the critical exponent. The
following will be used throughout.

full p== "u|lL°°(R"): l”lq = [lu] LR

THEOREM 1. Let u, be the unique ground state of (1.1). Then

(i) lim,_ ¢ |Vu,|3/|u,|2. =S, where S is the best Sobolev constant
in R*, ie.,

2 2/n
S=nn(n—2) [———FI(_,Z))] ;

() |Vu(x)|* > S"*5(x) in the sense of distribution as &0, where
o(x) is the Dirac measure;

] 16n(n— 1
R
2
whenn=4, LHE?LL”____ i
-0 log “ua“L“‘
384
whenn=3, lim ¢ [u,]2e = 5.
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(iv) Nl = uo(x) = (1/n) 0,[n(n—2)1"? ' (|x]) in CF(R™N\{0}) as
e — 0, where , is the area of the unit sphere in R" and I',(|x —y|) is the

Sfundamental solution of —A+1 in R

Now we turn to Eq.(1.2). The existence of ground states of (1.2) has
been studied by many authors; see, e.g,, [DN], [L1, L2]. Before we state
the blow-up results, we recall a definition in [DN, p. 2957, which will play
an important role in our discussion.

Let 2, = {x=(x;, .. x,)eR" x;=0}, i=1, .., n, be the hyperplanes in
R". Let e, denote the unit vector pointing along the positive x,-axis. For
any p =0, define E(p, R") to be the set of all functions u on R” satisfying
u(ytte)<u(y+Q2i—1t)e;) for all t2zlzp or t<—1A<—p, yei,,
1<i<n

Throughout this paper we assume that K(x) satisfies the following
condition:

(K) Kis a non-negative, C' function in R*, K+3x-VK >0, #0 and
is bounded in R”, K(x)>= K, >0 for large |x|, and — K e E(p, R") for some
p=0.

Under the condition that —Ke E(p, R") and K(x)= K, at |x|= 40,
Ding and Ni [DN] proved the existence of a positive solution u of (1.2)
with ue En E(p, R"), where

E= {ueH‘(R”): ] = U !Vu|2+K(x)u2>l/2< oo}.

By slightly modifying their proof, we shall prove that (1.2) has a positive
solution u, € En E(p, R"), which is also a minimizer of the functional

2

I“\31+1’

I(u)= uceE u#0

(see Lemma 2.1 below). We shall call such a solution the ground state of
(1.2). In [DN1] the existence of a positive solution was proved by using the
Mountain Pass Lemma. It is not clear to us whether the solution they
obtained is a minimizer of 7,. So far no uniqueness result is available for
positive solutions of (1.2). In the following part of this paper, u, (some-
times denoted by ) is an arbitrary ground state of (1.2), not necessarily
the one obtained in Lemma 2.1. Also, whenever ¢ (=p—gq) is used, we
always assume that it is positive and small.

Since u, € E(p, R") for any fixed &£ >0, u, is bounded in R" and assumes
its maximum at some x,€ C(p) = {x=(x;, .., X,)ER™ |x,|<p,i=1, ., n}.
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THEOREM 2. Assume g, — 0 and x, ~ X,. Then

i) ——IYKS’—IS——»S as g, —0;

2
Ius, p+l-g

il) |Vu, |? > S™8(x—x,) in the sense of distribution as ¢, —» 0;
g 0 7

(iil) when n>4,

l6n(n—1)

/ 2 1
g lu 1742 (K(Xo) +3 %o -VK(xo)> -2

when n=3,

,  168xn3
& flugll 70 = —\/—T
J

as g, — 0, where I'y is the unique fundamental solution of —A+ K in R”;

(iv) liug |l 2o u, ()= (1/n) @, [n(n—2)1" Ig(x, xo) in Cr (R™\{Xo})
as g;— 0.

1
j K+>x-VK) I (x, xo) d,
R 2 )

Remark 1.1. By saying that I, is a fundamental solution of —A4 + K{(x)
in R", we mean that for each ye R”,

—AFK('J )’)+K(X)FK(, J‘):é(—))’ XERM,

I (-, y) is classical at x#y, and I'x(x, y) =0 as |x| — o0. The existence
of a fundamental solution of —4 + K(x) in R” can be found in Miranda
[M, Theorem 20.I, p.68], where the boundedness of K(xj in R" is
required. However, we can easily obtain a fundamental solution of
— 4 + K(x) with K(x) just non-negative and locally Holder continuous by
using an argument in the Appendix of [KN], which is different from the
classical paramatrix method. The proof of this assertion is included in the
Appendix of this paper, for the convenience of the readers. The uniqueness
of the fundamental solution follows easily from [GS].

Remark 1.2. Theorem 2 does not cover the case n=4. However, we
believe in this case that

AL [ \
lojg e o 48 (K(x0)+ 3 Xo VK(xO)) (1.3)

as ¢, — 0. As we shall see in Section 4, the analysis in this case requires very
accurate estimates for u,, which seem to be difficult to obtain when we
cannot use ODE methods.
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Remark 1.3. The assertion of Theorem 2 says that {u,} blows up at
some point x,. In the simple case when p =0 (this is true if x - VK(x) = 0 for
all xe R"), x,=x,=0 for all & and {u,} itself blows up at the origin. There-
fore Theorem 1 is a special case of Theorem 2, except for (iii) when n=4.

The outline of this paper is as follows. In Section 2 we present some
preliminary results for Eq.(1.2). Section 3 is devoted to the proof of
Theorem 2. In Section 4 we complete the proof of Theorem 1, that is, prove
(iii) when n=4. The existence of a fundamental solution of —4 + K(x) in
R” is proved in the Appendix.

2. PRELIMINARY RESULTS

In this section we prove the existence of ground states of Eq. (1.2) and
some related results which will be used in the next section. Recall that we
always assume that K(x) satisfies condition (K) throughout this paper,
and by a ground state of (1.2) we mean a classical positive solution
ue En E(p, R") which is also a minimizer of the functional 7, defined in
Section 1.

LemMa 2.1. For each 1 <g<(n+2)/(n—2), (1.2) has a ground state.

Remark 2.2. For Lemma 2.1 we do not need the assumption made for
K+1ix-VKin (K).

Proof of Lemma 2.1. For each positive integer i let B,= {x e R™ |x| <i}
and

o; =inf{I (u): 0Zue HyB,)}
Set
S, =inf{I (u):0ZuecE}.

Then it is easy to see that o, S, as i > -+ 0.
It is standard that «; is assumed by a positive u, e H }(B;), which is also
a classical solution of the Dirichlet problem

Adu—K(x)u+u?=0, xeB,,
ulaBl=0.

From the above equation we see that

f (|Vu,.12+1<uf)dx=j ui* 1 dx.
B,

1
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Hence

(1—=2/(g+ 1)

o=1,(u)= [JB (IVa,|2 + Ku?) dx]

Since «; is bounded, then u/s, if we think of them as clements in E, are
bounded in E. Hence, after passing to a subsequence, {u,} converges
weakly to some u, in E, and u; —»u, a.e. in R" as i— +o0. It is routine
to see that u, € E is a non-negative solution of (1.2), therefore a classical
solution by a boot-strap argument.

Next, we prove that #,#Z0 (hence u,>0 by the strong maximum
principle) and u, € E(p, R"). From the assumption that K>0 and K> K
at infinity, it is not hard to see that there exists 1,>0 independent of i,
such that

J (|Vu,-I2+Kuf)dx>lof u? dx.
B, B,
Hence

AOJ ufdx<f u?* ! dx,
B, B,

H l

that is,

0| wu=t=2) dx.
B,

Since u,>0 in B;, we have max u,>4y“~". On the other hand, by
Lemma 3.22 of [DN], u;e E(p, B,) for all i such that C(p)< B,. From
this we have u, e E(p, R") and maxu;=u,(y;) for some y;e C(p). By
the standard boot-strap argument we see that [|u,]l c2-xc¢,) 15 uniformly
bounded in i Hence after passing to a subsequence u, = u, in C(C(p)) as
i — oo. Now we conclude that max u, > Ag/@ ",

It remains to prove that u, is a minimizer of /,. We observe that from
(1.2),

llatg 1 % .
‘sqs[q(uq)=|_q2—=nuq”f3‘(1 Har1y
glg+1

< lim inf [ju;]] 2E(1 —2/{g+1))
[— oo

=liminfa;,=S

. q°
i—

Therefore u, is a minimizer of I,. Q.E.D.
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The next lemma gives a uniform lower bound for the L= norm of an
arbitrary positive solution u € E of (1.2).

LemMma 2.3. There exists a positive constant o, depending only on n and
K(x) such that for 1 <q<(n+2)/(n—2), and for any positive solution ue E
of (1.2), we have

llall oo = .

Proof. Multiplying (1.2) by u and integrating on R”, we have
j (IVae|? + K(x)u?) dx=j |7+ dx.
Rﬂ RII
Take R >0 large enough that K(x)= K, >0 for |x| > R; then

w?dx + f |Vu|? dx
R"
2/2%
|| %" dx)

22%
wdx+S <f |u|*” dx)
Br

f (1Y + K(x)u?) dx > Kof

x| =R

>K |

Ixi=R R?

wdx+ S (J

>Kof

|x] =z R

>K0f u? dx+S|BR|2“/2*—“2’f W2 dx

Ixl =R Br

20{1'[ u? dx,

Rn

where S is the best Sobolev constant, 2* =2n/(n—2), and «, is a positive
constant depending only on # and K(x). Hence we have

o, fRn wdx < fR" (IVu|? + K(x)u?) dx

=| lul?*dx,
R’l

0>j (o, — a7 1) d.
R"

Thus [lu] = >a}? Y. By taking a suitable constant «,, we complete the
proof. Q.E.D.
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Remark 24. From the proof above we see that E is continuously
imbedded into H'(R"), that is,

et g1 < em, K) |1l s for uek. (2.1}

LemMma 2.5. Let S, be defined as in (2.1) for 1 <qg<(n+2)/(n—2), and
let p=(n+2)/(n—2). Then

lim S,=S.
qg—=p

Proof. First, it is easy to see that

sup §,<w.
l<qg<p

In fact, for any ue Cy(B,), u>0, inf, _ _, |u]|,, >0, we have

lll % luell
T ul?, | inf

g+1 1<q<p{Mq+1

Now we choose a w, e E such that |w,|,., =1 and !|wq|&25: S, From (2.1)
we have

Iwola <lwoli s < eln, K) w,ll p<e(n, K)S 2.
By the Holder inequality we have

1= qulgi} < lwq|§n72)(p*q)/2 . !qui;p++11)(l —(n—2)(p—g)4)

(n—2)p—q)/2 —2)(p—q)4 , + 1)1 —(n—2)(p—q)4
<c(n, K)" Xp—a) S}In Wp—q) ‘i“'q|§,p+1)( (n—2)p—q)/4)

From this and the fact that sup, ., , S, < oo, we infer that

lim inf [w,|,, ;= 1.

q—>p

Combining this with the fact that
S 1V“‘q|2 < ”“" IIZE . Sq
!wap+1 iwap+ 1 ]qu;+1

we have

S<liminf §S,.

qg—=>p

Now it remains to prove

lim sup S, < S. (2.2}

q—>p
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This can be proved by using the result in Lemma 1.1 of [BN]. Set
e=p—gq. For n>4, define a radial function w, as
w(r) = p(r)(e +12) """,
where r=|x|, p e CF(B,), 9 20, and ¢ =1 in B,,,. Then one has as ¢ > 0,
Vw3 =K, e~ =22+ 0(1),

stI;+ 1 = KZS;("_Z)/Z + 0(8)’

‘W ‘2__ {K3E—(n_4)/2+ 0(1)=
gl2 —

nz
K; |log | + O(1), n

5
4,

Il

where K;’s are positive constants with K,/K, =S (see [BN]). By a simple
estimate we see that as ¢ >0,

|w8|ﬁ+1—a = IWEI;_'_I + 0(8_("-2)/2),
O(e~ =92, nzs
Kw? dx =
fm e 4% {O(Ilog el), n=4.
For n=3, let
wo(r) = o(r)(e+r*)~ 17
where g e CP(B;), ¢(0)=1, ¢'(0)=0, ¢(1)=0. We have from [BN] that
Vw3 =Kie™ 2+ 0(1),
stlé = Kzg w1z + 0(81/2)5
lwe|3=0(1).
It is easy to check that

IWel§_o=Iwelg+o(e"2),

j K(x)w? dx = O(1).
.

Hence for n>3 we have

s < [Vw,| 3+ | o K(x) W2 dx
p—e~s |W ,2
elp+1—¢

& omy=sto1), as 50
K,

Thus (2.2) is verified and the proof is completed. QE.D.
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From Lemma 2.5 we immediately have the following

COROLLARY 2.6.

f (IVau,|* + K(x)u2) dx — ™2,
Rn

J ul*dx > S"?  as q-p,

where u, is an arbitrary minimizer of I, and a solution of (1.2).

The following lemma concerns the local properties of subsolutions of the
equation

Au+a(x)u?=0
and is useful in our analysis. Set B(Q, r)={xe R™ |x—Q|<r}.

LEMMA 2.7. Suppose ue H| (R") is a non-negative subsolution of

—du=a(x)u? with 1 <q<(n+2)/(n—2). Let 2* =2n/(n—2). Then there
exists a 6,>0, depending only on n, such that if

j laut =" dx < 8,
B(Q,2r)

then
Il Lesrepo, ) < c(m)r =22 Jlul L2Y(B(Q,2r))
Furthermore, if there exists 0 <d <1 such that
au?~te L"2=9(B(Q, 2r)),

then

1/2*
*
u? dx) ,

where C depends only on n, 8, and r° |lau? ™ *|| pwe-5 (B(Q, 2r)).

1
sup u<C (—,; f
B(Q.r) rYBQ,2r)

Remark 2.8. The first part of this lemma is basically covered by
Lemma 6 in [H]. The second part can be proved by thinking of u as a sub-
solution of a linear equation and then using the well-known property of
subsolutions (see [ T]).



88 PAN AND WANG

3. PROOF OF THEOREM 2

This section is devoted to the proof of Theorem 2. Keep in mind that we
always assume that K(x) satisfies condition (K), u, is a ground state of (1.2).
The first lemma in this section concludes that {u,} blows up as ¢ — 0.

LemMa 3.1, | lu|»— o0 as e 0.

Proof. Suppose the assertion is not true. Then there exists a sequence
g,~ 0 such that [lu, [ .~ is bounded. Combining this with the fact that ||u,|
is bounded (by Corollary 2.6), we have, after passing to a subsequence,

U, — tg weakly in E,
(R").

u, >y inCp,
Then u, is a bounded non-negative classical solution of the equation
Au— K(x)Yu+u? =0, xeR"

In fact u,#£0, because u, € E(p, R") and |ju,| ;» > %y >0 by Lemma 2.3.

Now we prove that this is impossible by using the Pohozaev identity.
First we prove that u, and Vi, decay exponentially at co. Indeed, by the
second part of Lemma 2.7 with 6 =%, we have

n 1/2*
sup uy<C ( J ul’ dx) , (3.1)
B(Q.1) B(Q,2)

where C depends only on # and |u,| ;. Since u, € E, uye L**(R"). So we have
f wldx—0 as |Q] - co. (32)
B(0.2)

Together, (3.1) and (3.2) imply that #y(x) — 0 as |x| — oc. From this fact
and the proof of Proposition 4.1 in [GNN2] we have

uo(x), [Vuo(x)| =o(e=#"™) as |x| - oo, (3.3)

for some a> 0.
On the other hand, applying the Pohozaev identity (see, e.g., [DN]), we
have

1 2 g duy |Viuo)?
fl<K+2)g.VK) usdx= — aBl[(x,Vuo) > —(x,v) 5
) Ku} uf*\ n-—2 ﬁuo]
”"”’”( 2 +p+1> 2 %y |
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where B,={xeR™ |x|<i} and v is the outer normal vector on 08,
Letting i — + o, by the decay rate of u, and |Vu,| in (3.3) we infer

J (K+1x-VK) ug dx=0.
R 2

Since K(x)+4x-VK(x)>0 and #0 in R” it follows that u,=0, which
contradicts the fact that 1, Z0. Q.ED.

Now we make a standard rescaling of u, as follows. Since u, € E(p, R").
we can assume that u,(x,) = |u.] .~ for some x,e C(p). Let u,>0 be such
that

—2/(p—1—¢)

I al UAPES

Define v,(x) = p2» =1~ 2y, (x, + g, x). Then 0 <wv,(x)< 1. v,(0)=1, and
Av,— u K(x,+ p,x)v,+v27°=0, xeR™

From Lemma 3.1, u, — 0 as ¢ — 0. By the interior elliptic estimates we have

Hven c%X(B) < Mz <0

for each i>0. Therefore by a standard diagomnalization argument, there
exists a sequence ¢ — 0 such that v, > U, in C m(R"), where U, is the
classical positive solution of the equation

Au+u? =0, xeR”,

and U,(0)=||U,|| .» = 1. By the uniqueness result in [CGS] we know that

Uuy—1+—3ﬁm>mvw2 (3.4)
e n(n—2) ’ )
and hence

v,— U, in CL(R") as &¢—0.

It is well known that U, is a minimizer of the functional

_[Vui3

TS

(%) in H'R"), IU,)=S.

From this and the equation of U,, it is easy to sce that

VU, 13= U, |3 = 5"
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Hence we have

§"2 = |VU,|2 < lim inf [Vv,|2
e—~0

< lim sup |Vy,|3
g0

<lim sup f [IVo,|” + u2K(x, + p.x)vl] dx
& R"

= lim sup 2~ 2¥/@—e1=2) f (IVu,* + K(x)u?) dx
e—0 R

< lim f (IVu,) + K(x)u?) dx
e—=0Jpn

— Sn/2

The last equality comes from Corollary2.6. Thus lim,_ ,|Vo,|3=
IVU,|3=8"? and p®—1 as ¢ — 0. Therefore we have

LemmA 3.2. Vo, — VU, in L*(R"), v,— U, in L*(R"), |Vv,|2 > S, and
pi—1ase—-0. ’

CoroLLARY 3.3. If x, — x, as ¢;— 0, then
IVu, |> = ™2 5(- — x,)
in the sense of distribution.

Proof of Corollary 3.3. For any ¢ e C(R"),

lim | |Vu,|* o dx

g —0JRn

= lim U Vo, |2 (3) @(x,, + 1t ¥) a’y] py o2 )
Rn

g —0

=tim [ Vo[> () 0(x,+m, y) dy
g —>0JpRn

=lim | VUL (3) (v, + by ) dy

g —0
=o(xo) [ IVU,* dy
.

= 0(x,)S™. QED.
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We shall need the following lemma to obtain a uniform decay rate
estimate for u, at co.

LEMMA 34. [ zul dx— 0 uniformly wr.i e as R— o

Proof. Suppose the assertion is not true. Then there exist two sequences
g;— &g and R, — oo such that

J ui* dx>=d {3.5)
|x] =R,

for some 6>0 and j=1,2, ... We shall prove that this is impossible by
considering the following two cases.

Case 1. &,>0. Since |ju,| z is bounded, passing to a subsequence of
{usj} if necessary, we may assume that u, —u, weakly in E. By the
standard elliptic regularity argument, u, —~i,, in C ZE*(R"), after passing
to a subsequence again. Hence #, is a classical solution of (1.2) with
g = p—¢&,. Using Lemma 2.3 we can prove as before that i, is a positive
solution. Observe that

Sy a0 <Dy afeg) = | 3120+ 1)

<l1m 1nf fu, | 3 ¥+ =%) =lim inf S,

-

Jo@w
<lmsup S, .<S,_,.
£—gQ
Hence we have
SP‘50=IP*£0(ﬁ80)= _hm Sp—ej hm I —aj( e,)-
- W jo

In particular, {u, | z— |#,l s as j— oo, and therefore u, — i, in E and
hence in L**(R") as Jj— 0. But this is contrary to (3.5).

Case 2. &,=0. From (3.5) we have

.
5<J uy dx=u;’1f 2 (o, + ) dy
x| = R, [x5j+ ,ugjyl =R
— ‘u'el,~ 2/(p—1-—g))-2* U?,* () dy

=X5+l‘st’| =R,

=yl o=2 | 02 (y) dv

\y= (l/ﬂej)(Rj - lxsjl)

-0 as j— oo.
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because u:—1, (1/u,)(R,— |x,|)— oo, and v, - U, in L**(R"). Again we
reach a contradiction. Q.E.D.

Now we are ready to give a decay rate estimate for u, and [Vu,| uniform
in &

LeEmMMA 3.5. There exist positive constants C, R, and a, independent of e,
such that

us(x)a lvus(x), < Ce—alxl for IXI 2R

Proof. We shall prove that u,(x)— 0 uniformly w.r.t. ¢ as x| — oo.
Then the result desired follows from the proof of Proposition4.1 in
[GNN2].

By Lemma 3.4 and the Holder inequality, there exists R, > 0 independent
of ¢ such that

[ urtryrax<s,  for Q1= Ro,
B(Q.4)

where 6, is as in Lemma 2.7. By virtue of the first part of Lemma 2.7, we
have that |lu,[| Le2(s(g,2)) is uniformly bounded w.r.t. ¢ and Qe R” with
|Q| = R,. Since 1(2*)* > (n/2)(p — 1 —¢), by the second part of Lemma 2.7,
we have

1/2*
sup u8<C<f ugz*dx) ,
B(Q,1) B(Q.,2)

where C is independent of ¢ and Qe R" with |Q|> R,. Now letting
|Q] —» oo and again using Lemma 3.4 we have u,(x) — 0 uniformly w.r.t. ¢
as x| — co. This completes the proof. Q.E.D.

The following lemma will play a key role in our analysis.
LEMMA 3.6. There exists a positive constant c, independent of &, such that
v(x)<eU (x), for xeR" (3.6)

Proof. Let w,(x) be the Kelvin transform of v,, ie., W, (x)=
|x]>~"v(x/|x]?). From (3.4) we see that (3.6) is equivalent to the assertion

wi(x)<e¢e for xeR", (3.7)

where ¢ is independent of ¢. Since v,(y)<1 for ye R", (3.7) is true for |x|
bounded away from zero. Therefore it suffices to prove that {w.} is
bounded uniformly w.r.t. ¢ in a neighborhood of x =0.
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By direct calculation, we see that w, satisfies the equation

2 — X ~
A, —p? |x] 4 K(W) W, + |x

—in—2)e ﬂ-}g — 0’
where g = p —e. Hence
—Aw, < a(x) we, a(x)=|x| "~ 2e,

We shall use Lemma 2.7 to obtain the desired upper bound for w,. First,
we estimate the integral

l,

where B(ro)= {xeR" |x|<re} and ro<! is to be chosen later, and
without loss of generality we assume p2<ry. In the following we shall
denote by c¢s constants independent of ¢ and ry< 1.

For I,, we observe that

(a(x)w? 1)y dx=j +j =1, +1,,

(r0) <l Yul<ixlgn

12 gue—n(n—Z)a , ﬂ,iq—lj-(n/Z) dx
Wi<ixl<ro

5 e n(q—1)/(2-2%) . . o
< ’8( [ w2 ) | B(ry)| a2 20
B(rg)

. n(g—1)(2-2%)
<01<J 2 dx) . (3.8)
B(rg}

The last inequality is by the fact u® — 1 as ¢ —» 0. From Lemma 3.2, v, —» U,
in L*(R"), hence w,— U, in L*"(R"), where U,(x)=|x|>""U,(x/|x|?) is
the Kelvin transform of U,. Thus by (3.8) we can choose a small r,>0
such that

[2< 50, (3'9)

Nl

where J, is as in Lemma 2.7.
To estimate I, we observe that from Lemma 3.5,

, R
po(x) = p @ Du(p,x) e Ve for x| =~
&

Hence

Wo(X) < cuuZ =1 |x|2 7 g/l for |x|<==.
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So

Ilsf 2

fx] < py

| x| —en(n 2)/2(czﬂ2/(q~ 1) IXIZ—H e*ﬂﬂa/lxl)(nﬂ)w* D dx
g

Scapr | xTT et gy

x| <

=Ca.u;nj

2n
<_”_E> ¢ —bUs/Ixl) gy
el <2 \ | X]

<cusm | dx

] < 12
n/2 6
<05‘u <csrg <—2— (3.10)

if ry is small, where & is independent of &.
Now (3.9) and (3.10) together imply that

f (a(x) %2~ 1Y dx < Bo.
B(ro)

Hence by Lemma 2.7 we have

[ ‘T’e”L(Z“)Z/Z(B(rO/z)) < C(")ro—z/z* ”‘T’s”LZ*(B(m))-

The right-hand side of above inequality is bounded uniformly in &, and so
is the left-hand side.

Since 1(2*)?> 1(g— 1)n, we can choose an 0 <& < 1 such that $(2*)* >
n{(q —1)/(2—3). For this J, we estimate the integral

[ t@mrtyeoa={ 4 I+ 1.
B(ro/2) IIISH <

pi<|xl <ro/2

By slightly modifying the previous estimates for I; and I, and using the
bound for the L% norm of W, mentioned in the above paragraph, we
can prove that I} and I3, and hence | g, (aw?~')"?~? dx, are bounded
uniformly in small &. Now the second part of Lemma 2.7 implies the desired
upper bound for w,. QED.

In the following, we set
wo(x) = [, oo () = p; ¥ ® 1D ().
Then w, satisfies
Aw, — K(x)w,+ uZw?=¢=0, xeR" (3.11)



BLOW-UP BEHAVIOR OF ELLIPTIC EQUATIONS

95

LEMMA 3.7. There exist positive constants & R, and a independent of ¢

such that
w(x) < ce 4l for |x|=R,
w(x)<Clx—x,)>"" for xeR"
where x.€ C(p) such that u,(x,)= llu,ll .-

Proof. From Lemma 3.6 we have

—e(n—2)Y(4—e(n—2))

w(x) < e (B2 +x—x,

l2)—(nAl),v’2

(3.12)
(3.13)

The inequality (3.13) follows. Since x,€ C(p), {|x,|} is bounded, w,(x) -0
uniformly in ¢ as |x| — ooc. Now (3.12) follows from (3.11) and the proof of

Proposition 4.1 in [GNN21].

LEmMMA 3.8. Suppose x, — x, as &;— 0. Then

1 : 5
ij H;wﬂ[n(n - 2)]:1/2 FK('v xO) in Cfoc(Rn - {XO})>

where I'y(x, y) is the fundamental solution of — 4+ K.

QED.

Proof. From Lemma 3.7, we see that {w,} is uniformly bounded in any
compact subset of R™\{x,}. By the elliptic regularity argument we can

extract a subsequence {&,} of {¢;} such that
we =G in CR(R™\{x}).

We shall prove that
1 n
G =; w,[a(n—2)]" Tg(-, xo).

Then by the uniqueness of G, we see that

M}ej -G in Clzoc(Rn\\{xo} )

(3.14)

Since {w,} is bounded in any compact subset of R™\{x,} and u,—0,

from (3.11) we have
—AG+ K(x)G=0 in R\ {x,}.
Also, (3.13) implies that

G(x)<C|x—xo2™"  for x#x,.

505,99, 1-7

(3.15)
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For any ¢ e CF(R"), by (3.14) we have

f G(—d+K)p dx= umj Wy (~ 4+ K)o dx.
R Rn

jm oo

But
JRn w,(—4+ K)o dx
=f ¢p(—4+K)w, dx
R’l
=] o use ey dx - (by (3.10))
R'l
___ﬂs—sj(n~2)2/(4—aj(n—2)) JR” (D(Xe, +I"8, }’) Usp;fsj(y) dy
. (p(xo)f U(x)dx  (by Lemma 3.6)
Rll
1 n/2
= 9(x0) = @, [n(n —2)1"
Thus
1 ”
—AG+K(x)G= - w,[n(n—2)]1" 8(- — xq).
By [GS]

1
G=;wn[l’l(i’l——2)]"/2 FK(" x0)+ &

where g is a regular solution of
~du+ K(x)u=90 in R

Since both G(x) and Ik (x, x4) — 0 as |x| - o0, g(x)— 0 as |x| - cc. Now
by the maximum principle we have g=0. Q.E.D.

Lemma 3.9. Suppose x, — xq as &;— 0. Then Jor n>4 we have

Len(n—1)

. 2 1
8}12) e, lu, n=2) (K(xo) + 7% -VK(xo)> 7;:2—);‘
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Proof. For simplicity we denote ¢; by &. Applying the Pohozaev identity
to (1.5) on a ball B,, we get

n n—2 1
- p+l—e Z . 2
L.[(p-!—l—s 3 >ue <K+2x VK)uS]dx

ou |Vu,)? (1 uP*1=e\ -2 Ju
= x. Vi _(x £ Ku? £ ca
LB,[(“ u) 3y~ V) TRV (5 u£+p+1—s)+ 7 e av]

Using Lemma 3.5 and letting / — oo, we have
n n—2 1
- prl—e -x-V Zldx=0,
jRn[(o+1—s 2 >ua (K+2x K)u{l X

that is,

g(n—2)? pal

—— ad
2(2n~e(n—-2))JRn “ o

=J (K+£x-VK) u? dx
r\ 2

= 2~ o= DA sln=2) j
Rﬂ

1
[K(xa +uy)+ 3 (x,+p. ¥)

-VK(x, +uay)] v2(y) dy. (3.16)

Using Lemma 3.6 and the fact U, e L*(R") when n>4, by the Lebesgue
Dominated Convergence Theorem we have

- 1 .
JR" [K(xe +HeY) 5 (% + 1. ) - VK(x, + 1, y)J vo{y) dy

1
—»(K(xo)%—zxo-VK(xo))j Ui(y)dy as ¢—0. (3.A7)
R'l

’

Note that

n—1

j‘Rn Ui(y)dy=w, Jm ! dr

o (L+r%/n(n—2))"~?
n—1

=w,[n(n—2)]" fo mz—;i dr

n[n(n— 2)]’1/2 j (l + S‘)2~1z s 1+ n/2 ds

t\-)l)—‘
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— o, [n(n—2)]"- 2(n— I)f(n/2

-2 F(n)
_ I(n/2)
=4 n/2 -9 {(n—2)2 _ .
(0™ (n—=2)"=22 (1= 1)
By Corollary 2.6, we have, as ¢ — 0,
o I
.[R” ul*l=edx » "% = [nn(n —2)7"? ——IE’(l:j)
Together, (3.16)-(3.19) give
) N 1 16n(n—1)
31_{% ep, = [K(xo) +5xo'VK(xo):l =27

which is what we seek.

LemMMA 3.10. Suppose n=73 and X, = Xqg as &;— 0. Then

768
lim & [lu, |2, = ”j <K+ x- VK) 2 (x, xo) dx.
s_,—)()

Proof. Using the Pohozaev identity as before, we have

° 1
ut=ed K+ - x-VK)u?dx
2(6—8) X = JR3< +2)~ )us X

Therefore

& “us“2L°° 6— 1 2
—_— tdx= —x-VK | w?dx.
26—2) Rsua x La K+2\’ VK| w?dx
Recall from Lemma 3.8 with n =3,

We, = /3 03 (-, x0) in CL.(RM\{x,}).

From this and Lemma 3.7, it is easily seen that

" 1
limJ K+=-x-VK)w?dx
B 2 K

g —0

1
=3w§f 3(K+§x-VK) I'2 (x, x,) dx < + o0.
R

(3.18)

(3.19)

QED.

(3.20)

(3.21)
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This, (3.21), and Corollary 2.6 imply

768 1
lim & ||u8||im=——n3j <K+—x-VK) I (x, x,) dx.
g0 R3

V3 2
(Note that for n=3, $%*= (3n)** (I'(3)/I(3)) =12 \/3 n.) Q.ED.
Remark 3.11. When n=3 and K=1 we have

o\ 2
I(x, y)= (5) =y e,

In this case (3.20) becomes

. 7687 ¢ =« PP
611_1)‘})8l|l‘||iw= \/5 szz‘x_XOI 2 g 2lx =l gy
7687* 384
= n a)3.f e_zrdi‘—'—Fﬂ:‘S.
4./3 Y \/3

Remark 3.12. Part (i) of Theorem 2 follows from Corollary 2.6; (ii)
comes from Corollary 3.3; (iii) is the same as Lemmas 3.9 and 3.10; and
(iv) is nothing but Lemma 3.8.

4. COMPLETION OF THE PROOF FOR THEOREM 1

As we mentioned in Section 1, Theorem 1 follows from Theorem 2 except
for (iii) of Theorem 1 when n=4. Therefore to complete the proof for
Theorem 1, we need only prove the following:

LemMA 4.1.  Assume n=4 and u, is the unique ground state of (1.1) with
u(0)=|lu,ll p=. Then

& llulze _

20 log il =

Denote |u,l| ;» by o,. Then

1
pe= o T or) = — ).

L

From Lemmas 3.1 and 3.2 we have

&

-1 as &—0.

g > CO, o4
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By the mean value theorem we have
laf—1| < cglog o, |pi—1| < celog oy, (4.1)

where ¢ is independent of &. Let

1 r\2 , —(n—2)2
o) =0 | 1) 1= |

LEmMMA 4.2. For n=3 and r >0, we have

u(r) < @,(r), (4.2)

I4
(xs

r2 ai:’ 1—e
R e T

&

Proof. We shall prove this lemma by the method in [AP1]. Define
WO =ulr),  t=(m-2y"2rP",
Then
Y+t (yFme—y)=0, for >0,

lim y(r)=a,,  y(0)=0,
t—

where k=2(n—1)/(n—2). Since u,(r) <0 for r>0, we have y'(¢)>0 for
t>0. As in [AP1] we have

(VI =5y = —2(k—1) t* =2~ kH(1), (4.4)
where
1 N2 1 ’ 1—k prp—e
H(O) =3 1(y") =o'+ 57— 1707 =)

We claim that H(z) >0 for ¢ > 0. First, since y'(t) = —ul(r)t~*? and k> 2,
we see that H(t)— 0 as £ — + oo. Second, by the fact that u,(r) and ul(r)
decay exponentially at r= + o0 (see Lemma 3.5), we have H(¢)—>0 as
t — 0. Now we see that to prove the claim, it suffices to show that H'(z) has
only one zero on (0, + c0). This can be seen from the formula

H'(t)=

=1 =Ry () y(e)[2(k—2)—ey? 1 7o(1)]

and the fact that y'(z) > 0 for > 0. The proof of the claim is completed.
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From (4.4) and the claim proved above, we have (y'r*~!3*~%) <0, and
hence

yrtk—lylfk> hm y'(l) tk» 1y(t)1—k

= lm (—ul(r)t ") 5 ty(e)t K
t— oo
—(n—2
= tim T2y 0
t— o r
=—(n—2)al % lim udr)
t—oc F

Sk )
n
1
= Ml ),
So
ylyl—k> 1 tl—kdzuk(apflfe__l).
k—1 e e

Integrating over (£, c0) we get
1 — (k- 2)
y(t)<z(t)EocE[1+%—_—~112‘k(<x‘6’“‘5~1)] , (4.5}
which gives (4.2).
It is easy to see that
2"+t R P (aP t—,)2P =0
Z(CO)= Xes

aP— -

Z(t)=a,— JE}TL— rc (s —1) s7*z(5)? ds.

and
y(ty=oa,— Jm (s—1)s " p(s)?*ds+ Jr (s—1) s *p(s) ds.

From the integral equations of z and y above, (4.5), and the fact that
(1) <0, one easily obtains

P A P (O
M= ) —as[z(,)g(ag_s_%)—1]+(k_1)(k_2),

which gives (4.3). Q.E.D.
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Now we are ready to give

Proof of Lemma 4.1. First we observe that for fixed O<a< L, if
u(ro) < (1—a®)*=1=9 then wu,(r)<u,(ro)e “"~" for r>r,. This fact
follows from the proof of Proposition 4.1 of [GNN2]. Using this fact and
Lemma 3.8 we have

u(r)<u(l)e r="2gca e  for r>1.

From this we have
[ wdr<ea? (4.6)
Ix] =1
The following will be used frequently in the remaining part of this proof,
L/r\? -1
po=0; ' % and @ (r)=a, [1 +g (—) (1 —,uff):l when n=4.
U,
By virtue of (4.2), we have
j udx<cyu, % loga,. (4.7)
Ly < ix] < 1
Observe that for any fixed N >0,

J u?dx<o?|B (O, E) <cso, ’N*4 (4.8)
Ix| < N/ory %,
Now (4.6)—(4.8) imply that
j u dx<cso; *loga,. (4.9)
R4

By the Pohozaev identity and Corollary 2.6 we have

. 1
J u> dx =~ S%+ O(e). (4.10)
R 4
From (4.9) and (4.10) we have
e<csn; 2 loga,. (4.11)
By (4.3) we have
ol . o
e <ot b ] @)

For 1/o,<r<'1 we have from the definition of ¢, that

ai>eAry=al[1+ 4, 2] "= ctatu® > ciu.
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This and (4.1) yield
lpi(r)— 1] <cgeloga,. (4.13)
Now observe that for 1/x, <r<1

™ W

o 1
e @ =T [ — 0L + 9 )]

3
2 g

o —a

1
< e _1 epy—1 —~2+2
o e 1+ 10 = 11+ 0]
<coeloga, < c oo %(log o)™
(The last two inequalities follow from (4.1), (4.13), and (4.11).) Combining
this with (4.12) and (4.1), we have for 1/o, <r<1,

3
o —
S ) <) + o, (log &, )
€ €

@o(r) <ug(r)+cyor; '(log o).
This and (4.2) yield
lp2(r) —u2(r)] S cjo; '(log ) (@,(r) +u,(r))
<cpo, '(log 2,)? @ (r). (4.14)
Now for any fixed N> 1,

1 J- 1/loga,

Tog o Jn ra2u(r)— ol o(r)) dr

1/loga, 3
<cpalogo, JN r’o.(r)dr
fote

1/log o
<o, loga, ( o, u’r 2 dr
Y Njag
1 N2
<eploga, | ———— (=) |»0 a 0.
iz g“[aogay (oc)]"’ P
Therefore
1 1/logo; 3 5
s JN,% P (o u(r)) dr

at  plioge, 1/r\? =2
=—= I1+-{— —u? > d) 1
b () 0] s

L

=64+o0 <%) + o((log a,) ~¥?) + o(1).
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This and (4.8) give that

lim 1 J«l/logag

1
3 2 g — A 1y
t—ologa, (o ur))” dr==6 +0< )

N

0

Letting N — o0 we get

lim 1

1/logo, 3 5
fim o L (o, u,(r))? dr = 64. (4.15)

From (4.2) we have

[ P
Lo r
log aﬁ I/IOg‘xs, 8us g

<— [ Py
log o, ipogae

Ci4

log o,
Combining this with (4.6) and (4.15), we have

<

loglog o, — 0 as &¢—0.

2

[ u?dx =64, = 1287
log o, J e

This and (4.10) imply

o

2
fim —2e_ — 48,
e—0 log ae

(Note that when n=4, S§*=3272) Q.E.D.

APPENDIX

In this appendix we prove the existence of a fundamental solution
(defined in Section 1) of —4 + K(x) in R", under the assumption that KX is
a locally Hélder continuous function in R" and K(x)>0. We believe this
is also true for more general second order elliptic operators, but we do not
intend to pursue those. The authors thank Professor Wei-Ming Ni for his
suggestion of using the argument in [KN].

Let Bp={xe R™ |x|<R}. For any feC(0B,), consider the following
Dirichlet problem in the exterior domain:

—Aw+ K(x)w =0, x| >1,

; Al
W|aBI=f» 1lmix|———>w W(X)=0. ( )
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Problem (A1) is solvable by the method of sub- and super-solutions. In
fact, let I'y(x) be a suitable multiple of the standard fundamental solution
of —4 such that I'y|;5 = 1. Then take | f{ 1x(ss,) L o(X) as a super-solution
and — | fll zx@am,) To(x) as a sub-solution. The solution w, obtained above
satisfies

IWf(x)I < Hf”L”‘(@B;) I'o(x). (A2)

By the maximum principle this solution is unique.
We consider the following Dirichlet problem in a ball Bg:

—Az+ K(x)z=0, xe By,
‘ (A3)
Z‘BBR = Wf‘aBR,
where R>1 is to be chosen. The unique solution of (A3) is denoted by z,.
By the maximum principle again we have
1z reomy < MWl Loomey S WU eany 1ol L2@m- (Ad)

Since Iy(x)—>0 as |x] > o, we can choose R large enough that
(7ol z=(ame < 3- Then we can define a linear operator 4 from C(0B,) to
C(0B,) by

AfzzflaBla feC(éB,),

where z, is determined by (Al) and (A3) for this R. From (A4) we have
A4l < 3.
For R chosen above we consider the problem

—Az, + K(x)z, = 8(x), x € By,
(AS)

21153R=0;

ie., z, is the Green function of —4 + K(x) in By with the Dirichlet condi-
tion on 0B, with pole at x =0. The existence of z, is a well-known fact.

Set g=z,|s5. Since ||A| <3, there exists an feC(éB,) such that
(I—A)f =g, that is,

f—zf‘asl=z1|aB,~ (A6)
Let w,=z,4z,. From (Al), (A3), and (A5),
(—A4+K(x))wy=(—4+K(x))wp=0 in {l<|x|<R},

”’1]331 =f= WflaBp

WllaBR = ZflaBR = Wfl 2Br-
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Therefore w; =w,in {1 <|x| <R}. Now we define I'x(x, 0) as

Zf(x)+zl(x)7 1f I-xl SR:
we(x), if |x]>1.

T'e(x,0) ={

We see that I'g(x, 0) is well-defined and satisfies

— AT (%, 0)+ K(x) I'p(x, 0) = d(x),

I'e(x,0)-0 as [x|— oo.

In the same way, for any y € R” we can find I'r(x, y) such that

~AIﬂK(: y)+K()FK(: y)=5(_y)’

I(x,y)—0 as |x|— oo.

Thus we are done. Q.E.D.

Note added in proof. 'We were informed by Zhenchao Han that he obtained a proof of (1.3).
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