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1. INTRODUCTION 

The purpose of this paper is to study the blow-up behavior of the ground 
states of the following elliptic equation in R”, 

du-u+uq=o, XER”, (1.1) 

where n 2 3, 1 < q < (fz + 2)/(n - 2). This equation arises in many areas of 
applied mathematics including nuclear physics, fluid mechanics, and 
population genetics (see, e.g., [BL] and references therein) and has been 
studied extensively in recent years. We also study the generalized equation 

.4u-K(x)u+uq=o, XER”, (1.2) 

where K(s) is a non-negative C1 function in R”. 
If a solution U(X) of (1.1) exists in the whole space R” satisfying 

u(x) > 0, u(x) + 0 as 151 --t co, 

it is called a ground state. The existence and uniqueness of ground states 
of (1.1) has been a very interesting topic of mathematicians for years. The 
first existence result was proved by Nehari [Ne] for some special cases. 
The general case n B 3 and 1 < q < (n + 2)/(n - 2) was considered by Berger 
[B] and the existence of ground states was proved in [B] by an idea of 
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Nehari. From [GNNl, GNN2] ground states of (1.1 j must be radially 
symmetric about some point (for simplicity, we always assume that the 
point is the origin of R”). The uniqueness of ground states has been 
studied by many authors, including Coffman [C] and McLeod and 
Serrin [MS], and was finally proved by Kwong [K] for the full range 
1 < 4 < (n + 2)/(n - 2) (for the same question concerning more general 
equations, see [Z]). The non-existence of ground states when q > 
(n + 2)/(n-2) is well known (see, e.g., [NS]). 

It is natural to consider the behavior of the ground state of (1.1) as 
q -+ (n+2)/(n-2). As one can easily see, the L” norm of the ground 
state of (1.1) blows up as q -+ (n + 2)/(n- 2). This is also true for (1.2) 
under some condition on K which we shall specify later. In this paper we 
give a description of the blow-up behavior of the ground state(s) of (1.1) 
and (1.2). 

We point out that blow-up problems for elliptic equations involving 
critical exponents in bounded domains have been studied by, among 
others, Atkinson and Peletier [AP2], Brezis and Peletier [BP], Han [H]: 
and Rey [R]. Ideas developed by them are used in this paper. 

Before we give our results, some notation is introduced. In this paper, we 
always let E = p - q, where p = (n + 2)/(n - 2) is the critical exponent. The 
following will be used throughout. 

THEOREM 1. Let u, be the unique ground state of (1.1). Then 

(i) lim E’O Iwz/I~eI;+l-E=~, 1 IV zere S is the best Sobolev constant 
in R”, i.e., 

T(n/2) 2!n. 
S=m(n-2) - [ 1 T(n) ’ 

(ii) lVu,(x)12 -+ S”12 6(,x) in the sense qf distribution as E --+ 0, where 
6(x) is the Dirac measure; 

(iii) when n > 4, 3/(n 2.) _ 16n(n - 1) lim E ll~EllLm - - cn _ 2j3 t E’O 

when n = 4, ’ E llu,llLm 
20 log I(uEl(p 

= 48, 

when n = 3, lim E Ilu,ll&=~r?; 
E’O 4 

sos/95/1-6 
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(iv) ll~cllLm u @)--f (l/n) o,[H(n-2)-J”” r,(jxl) in C:,,@“\(O)) as 
E + 0, where co,, is the area of the unit sphere in R” and r,( Ix - yI ) is the 
fundamental solution of -A + 1 in R”. 

Now we turn to Eq. (1.2). The existence of ground states of (1.2) has 
been studied by many authors; see, e.g., [DN], [Ll, L2]. Before we state 
the blow-up results, we recall a definition in [DN, p. 2951, which will play 
an important role in our discussion. 

Let .Zi = {x = (xi, . . . , x,) E R”: xi = 01, i = 1, . . . . n, be the hyperplanes in 
R”. Let e, denote the unit vector pointing along the positive x,-axis. For 
any p > 0, define E(p, R”) to be the set of all functions u on R” satisfying 
u(y+te,)<u(y+(21-t)e,) for all t>Agp or t< -3L6 --p, yEC,, 
l<i<n. 

Throughout this paper we assume that K(x) satisfies the following 
condition: 

(K) K is a non-negative, C’ function in R”, K+ 4x . VK> 0, $0 and 
is bounded in R”, K(x) 2 K,, > 0 for large 1x1, and -K E E(p, R”) for some 
p 30. 

Under the condition that - KEE(~, R”) and K(x) k K. at 1x1 = + co, 
Ding and Ni [DN] proved the existence of a positive solution u of (1.2) 
with u E En E(p, R”), where 

E= u~fl’(R”): IluljE= s,. ,VuI’+K(x)u2)Iu<~). 

By slightly modifying their proof, we shall prove that (1.2) has a positive 
solution uq E En E(p, R”), which is also a minimizer of the functional 

(see Lemma 2.1 below). We shall call such a solution the ground state of 
(1.2). In [DN] the existence of a positive solution was proved by using the 
Mountain Pass Lemma. It is not clear to us whether the solution they 
obtained is a minimizer of 1,. So far no uniqueness result is available for 
positive solutions of (1.2). In the following part of this paper, uq (some- 
times denoted by u,) is an arbitrary ground state of (1.2), not necessarily 
the one obtained in Lemma 2.1. Also, whenever E ( = p -4) is used, we 
always assume that it is positive and small. 

Since u, E E(p, RI’) for any fixed E > 0, u, is bounded in R” and assumes 
its maximum at some x, E C(p) = (x = (x1, . . . . .x,~) E R”: Ix,1 < p, i = 1, . . . . n >. 
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THBOREM 2. Assume E] + 0 and x,, --+ x0. Then 

(ii) IVuJ2 -+ S+ 6(x-x0) in the sense of distribution as E/ -+ 0; 
(iii) &en 17 > 4, 

&/ IIu&J~~--2’ -+ K(x,)+;x,~VK(x,) . > 
16rz(12 - 1). 
(n-2)3 ’ 

when n = 3, 

K+;xVK T:(x, x,)dx, 

as E, -+ 0, where rK is the unique fundamental solution of -A + K in R”; 
(iv) /iuE,jlLlj u,(x)+( l/rz) cu,[n(n- 2)]“!’ rK(:c, x0) in C&(R”\,(x,) j 

as Ej + 0. 

Remark 1.1. By saying that r, is a fundamental solution of -A + K(x) 
in R”, we mean that for each y E R”, 

- AT,( ., y) + K(x) r,( ., y) = 6(. -I.), XERIZ, 

r,(., ~1) is classical at X#Y, and rK(-x, ~1) + 0 as 1x1 -+ ~UZJ. The existence 
of a fundamental solution of --d + K(x) in R” can be found in Miranda 
[M, Theorem 20.1, p. 681, where the boundedness of K(x) in R” is 
required. However, we can easily obtain a fundamental solution of 
-A + K(x) with K(x) just non-negative and locally Holder continuous by 
using an argument in the Appendix of [KN], which is different from the 
classical paramatrix method. The proof of this assertion is included in the 
Appendix of this paper, for the convenience of the readers. The uniqueness 
of the fundamental solution follows easily from [GS]. 

Remark 1.2. Theorem 2 does not cover the case IZ = 4. However, we 
believe in this case that 

E, lb,, II t- 
1% II 4, II L” 

K(x,)+;s,~VK(x,) 
> 

(1.3) 

as c.? + 0. As we shall see in Section 4, the analysis in this case requires very 
accurate estimates for LI,, which seem to be difficult to obtain when we 
cannot use ODE methods. 
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Remark 1.3. The assertion of Theorem 2 says that {u,} blows up at 
some point x0. In the simple case when p = 0 (this is true if x. VK(x) 2 0 for 
all x E R”), x, = x,, = 0 for all a, and {us} itself blows up at the origin. There- 
fore Theorem 1 is a special case of Theorem 2, except for (iii) when n = 4. 

The outline of this paper is as follows. In Section 2 we present some 
preliminary results for Eq. (1.2). Section 3 is devoted to the proof of 
Theorem 2. In Section 4 we complete the proof of Theorem 1, that is, prove 
(iii) when IZ = 4. The existence of a fundamental solution of -d + K(x) in 
R” is proved in the Appendix. 

2. PRELIMINARY RESULTS 

In this section we prove the existence of ground states of Eq. (1.2) and 
some related results which will be used in the next section. Recall that we 
always assume that K(X) satisfies condition (K) throughout this paper, 
and by a ground state of (1.2) we mean a classical positive solution 
u E E n E(p, R”) which is also a minimizer of the functional I, defined in 
Section 1. 

LEMMA 2.1. For each 1 <q < (n + 2)/(n - 2), (1.2) has a grozmd state. 

Remark 2.2. For Lemma 2.1 we do not need the assumption made for 
K+ $x -VK in (K). 

Proof of Lemma 2.1. For each positive integer i let B, = (x E R”: 1x1 < i} 
and 

ai = inf{l,(u): 0 f u E Hh(B,)}. 

Set 

S, = inf{l,(u): 0 f 24 E E). 

Then it is easy to see that cli L S, as i + + co. 
It is standard that cli is assumed by a positive U, E HA(B,), which is also 

a classical solution of the Dirichlet problem 

Au - K(x)u + uq = 0, XEB~, 

From the above equation we see that 

s,, (~v~~~~+Kzz~)dx=~ .;+l dx. 
8 
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Hence 

1 
il-ZG+I)l 

a,=I,(u,)= j- (IVu,1’+Ku;)d~ 
6 

Since cli is bounded, then U;S, if we think of them as elements in E, are 
bounded in E. Hence, after passing to a subsequence, (~4~) converges 
weakly to some uq in E, and ui + uq a.e. in R” as i -+ + co. It is routine 
to see that uq E E is a non-negative solution of (1.2), therefore a classical 
solution by a boot-strap argument. 

Next, we prove that uq $0 (hence uq > 0 by the strong maximum 
principle) and uq E E(p, R‘*). From the assumption that K > 0 and K> K, 
at infinity, it is not hard to see that there exists A,>0 independent of i? 
such that 

Hence 

that is, 

O< u;(~;-~-&)dx. s & 

Since uj> 0 in Bi, we have max u, > Lk’(q-‘). On the other hand, by 
Lemma 3.22 of [DN], q~E(p, B,) for all i such that C(p) c B,. From 
this we have uq E E(p, R”) and max ui = u,(J~~) for some JJ~E C(p). By 
the standard boot-strap argument we see that ~(u~/I~~+~~~.~~~ is uniformly 
bounded in i. Hence after passing to a subsequence U, + uq in C(C(p)) as 
i -+ co. Now we conclude that max uq 2 1~(4-“. 

It remains to prove that zlq is a minimizer of Iq. We observe that from 
(1.2), 

ll~qll”, _ -- S,<I,(u,)= ,uql;+I IIuqI12Ef1-2’(q+1)) 

< lim inf IIuill ‘,” - 2’(q + l)) 
i-m 

=liminfa,=S,. 
i-cc 

Therefore uq is a minimizer of 1,. Q.E.D. 
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The next lemma gives a uniform lower bound for the L” norm of an 
arbitrary positive solution u E E of (1.2). 

LEMMA 2.3. There exists a positive constant a, depending only on n and 
K(x) such that for 1~ q < (n + 2)/(n - 2), and for any positive solution u E E 
of (1.2), we have 

ProoJ: Multiplying (1.2) by u and integrating on R”, we have 

Take R > 0 large enough that K(X) > K, > 0 for 1x1 z R; then 

2 Kc, s u2 &+S lBR12(‘/2*--1/2) s u2 dx 
IJI > R BR 

3a, L12dx, 
s R” 

where S is the best Sobolev constant, 2” = 2n/(1z - 2), and rxl is a positive 
constant depending only on n and K(x). Hence we have 

a1 
s 

u2 dx < ((Vz~I~+K(x)u~)d.x 
R” 

= s R” Iulqfl dx, 

02 5 
u2(al - Iulq-l) dx. 

R” 

Thus llullL~~a, . ‘/(q-l) By taking a suitable constant clO, we complete the 
proof. Q.E.D. 
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Remark 2.4. From the proof above we see that E is continuously 
imbedded into Hl(R”), that is, 

1/4111’~c(% a II4IE~ for UE E. (2.1) 

LEMMA 2.5. Let S, be defined as in (2.1 jfor 1 < 4 < (H + 2)/(n - 2), and 
let p = (n + 2)/(n - 2). Then 

lim S, = S. 
4-p 

ProoJ: First, it is easy to see that 

sup s,<co. 
l<rl<P 

In fact, for any u~c,“(B,), ~30, inf,,,,, /11(~+i:>0, we have 

Now we choose a WOE E such that ~~~~~~~~~ = 1 and lll-~~lj~= S,. From (2.1) 
we have 

IIVqlzd /Iwql/HL<c(n, K) IIw,I/,dc(n, KjSY. 

By the Holder inequality we have 
1 = I,vql;e; < [u,qly-mP-qJ/2. (,z,ql~~ll)(l~(n--2)(P-q)i4) 

6 c(n, Kj (n-2)(P-q):2S(n--2)(P-q9)14. I 
4 

,““qlbP+tll)(l-(rz-~2)(P~q)/4) 

From this and the fact that supi 4q < p S, < co, we infer that 

lim inf Iw~]~+, 3 1. 
4-p 

Combining this with the fact that 

we have 

SGliminfS,. 
P-P 

Now it remains to prove 

lim sup S, B S. 
4-‘P 

(2.2) 
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This can be proved by using the result in Lemma 1.1 of [BN]. Set 
E = p - q. For n 2 4, define a radial function w, as 

w,(r) = ql(T)(& + r2)--(m-2)‘2, 

where r = (xl, a, E C,“(B,), q > 0, and q = 1 in B,,2. Then one has as E --+ 0, 

(Vw’,I;=Kl&-(‘*-2)‘2+0(1), 

Iw,(;+1=K2&-(n-2)‘2+O(&), 

where K;s are positive constants with K1/K2 = S (see [BN]). By a simple 
estimate we see that as E --) 0, 

lwEI;+l-E= lM’,l;+l +O(E-(n-2)‘2), 

J 
(n - 4112 

Kw; dx = WE- ), n>5 
R” wag El), n = 4. 

For n = 3, let 

w,(r) = p(r)(.z + r2)-1’2 

where p E C,“(B,), q(0) = 1, q’(O) = 0, q(l) = 0. We have from [BN] tha 

IVw,l; = K,E-“~ + O(l), 

Iw~I;=K~E-~‘~+O(E~‘~), 

I%Iq=o(l). 
It is easy to check that 

Iw,I:-, = lwzI: + O(E-“2), 

J K(x)w,2 dx= O(1). 
R” 

Hence for n 2 3 we have 

s 
P 

< lvw,l ; + JR” K(x) wf dx _ 
&-- I%l;+I--E 

=$+o(l)=S+o(l), as E --, 0. 
2 

Thus (2.2) is verified and the proof is completed. Q.E.D. 
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From Lemma 2.5 we immediately have the following 

COROLLARY 2.6. 

s R” 
(IVu,l’+K(x)u~)dx-,S”;‘, 

where uq is an arbitrary minimizer of I, and a solution of (1.2). 

The following lemma concerns the local properties of subsolutions of the 
equation 

Au + a(x)zP = 0 

and is useful in our analysis. Set B(Q, r)= {BERT Ix-Q1 <r>. 

LEMMA 2.7. Suppose UE H:,,(R”) is a non-negative subsolution of 
-Au = a(x)zP with 1 < q < (n + 2)/(n - 2). Let 2* = 2n/(n - 2). Then there 
exists a 6, > 0, depending only on n, such that if 

then 

s Jauq-11r*i2dx,<6,,, B(Q.2r) 
b~IL@*‘2’?(B(Q,r)) G c(nb-2’2* bli L1*(B(Q,2r)). 

Furthermore, if there exists 0 < b ( 1 such that 

auqel E Ln’c2-s’(B(Q, 2r)), 

b 

1,,2* 
u2* dx , 

where C depends only on n, 6, and r’ j/aztq-1j/Ln,,2-6) (B(Q, 2r)). 

Remark 2.8. The first part of this lemma is basically covered by 
Lemma 6 in [H]. The second part can be proved by thinking of u as a sub- 
solution of a linear equation and then using the well-known property of 
subsolutions (see [T] ). 
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3. PROOF OF THEOREM 2 

This section is devoted to the proof of Theorem 2. Keep in mind that we 
always assume that K(X) satisfies condition (K), U, is a ground state of (1.2). 

The first lemma in this section concludes that {Us> blows up as E + 0. 

LEMMA 3.1. jlZl,(ILm + Cc US & -+ 0. 

ProoJ: Suppose the assertion is not true. Then there exists a sequence 
E, -+ 0 such that IJu /IL” is ’ bounded. Combining this with the fact that IIu,(I E 
is bounded (by CAollary 2.6), we have, after passing to a subsequence, 

%, + uo weakly in E, 

ue, + uo in C~,(R”). 

Then zlo is a bounded non-negative classical solution of the equation 

Au - K(x) u + up = 0, ,YER”. 

In fact u. 8 0, because U, E E(p, R”) and (IuE(ILa 2 go > 0 by Lemma 2.3. 
Now we prove that this is impossible by using the Pohozaev identity. 

First we prove that u. and Vu, decay exponentially at co. Indeed, by the 
second part of Lemma 2.7 with 6 = f, we have 

* sup U,<C 
WQ, 1) (J 

1:2* 

u;* dx > , B(Q,2) 
(3.1) 

where C depends only on y1 and 1) u. )I La. Since u. E E, u. E L2*( R”). So we have 

s 
u;*dx+O as /Ql-co. 

B(Q.2) 

Together, (3.1) and (3.2) imply that uo(x) + 0 as 1x1 -+ a. From this fact 
and the proof of Proposition 4.1 in [GNN2] we have 

u,(x), 

for some a>O. 

pG4,(x)l = o(e -a ‘“1) as 1x1 + co, (3.3) 

On the other hand, applying the Pohozaev identity (see, e.g., [DN]), we 
have 
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where B,= (KE R": 1x1 <i> and v is the outer normal vector on as,. 
Letting i + + co, by the decay rate of u0 and IVu,l in (3.3) we infer 

J( R" 
K+;x-VK u@=O. 

i 

Since K(x) + $X .VK(x) > 0 and $0 in R”, it follows that ldO z 0, which 
contradicts the fact that z10 $0. Q.E.D. 

Now we make a standard resealing of U, as follows. Since U, E E(p, R"). 
we can assume that u,(x,) = lluejl L4 for some X, E C(p). Let y, > 0 be such 
that 

p,2’(p-1--E’= jlZ4,jlL”. 

Define v,(s) = &“(p- ’ -‘) u,(x, + p,x). Then 0 < v,(x) < 1, u,(O) = 1, and 

dv,-~,~K(x,+~L,Jc)u,+u~-"=O, XER". 

From Lemma 3.1, ,u8 + 0 as E + 0. By the interior elliptic estimates we have 

II~EII &‘(B,) --. <Iv,< cc 

for each i > 0. Therefore by a standard diagonalization argument, there 
exists a sequence E] --* 0 such that v,, -+ U, in Cf,,(R"), where U, is the 
classical positive solution of the equation 

du+u~=O, x E R", 

and U,(O) = /) U1llLm = 1. By the uniqueness result in [CGS] we know that 

(1,(X)=(1+&)-in-2’~2_ (3.4j 

and hence 

V,-+ Ul in Cfoc(Rn) as E -0. 

It is well known that U1 is a minimizer of the functional 

in N'(R"), I(U,) = s. 

From this and the equation of U,, it is easy to see that 
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Hence we have 

PI2 = lVUl (2 < lim inf IVv,l i 
E-+0 

<lim sup [VuJ: 
e-0 

&(N - 2)://(4 - &(n - 2)) = liy:;p p s 
s 

(IVu,12 + K(x)u,~) dx 
R” 

The last equality comes from Corollary 2.6. Thus lim,,, IVv,l z = 
IVU, 1 i = S”12 and p; + 1 as E -+ 0. Therefore we have 

LEMMA 3.2. Vvz -+ VU, in L2(R”), v, + UI in L2*(R”), IVo,[: + S*/‘, and 
pi-+1 as E-+0. 

COROLLARY 3.3. If x,, --) x0 as .sj --f 0, then 

IVu&J2 + fP2 6(. -x0) 

in the sense of distribution. 

Proof of Corollary 3.3. For any q E Cr(R’?), 

lim ~, _ o s R,, IVu,12 v dx 

[VvJ2 (y) ~(x, + ,/A~, y) dy 1 c~,E’(“-~)~‘~~-E,(~‘-~)) 

= lim s e,+o R” W,,12 (Y) &,+P~,JVY 

* = lim J &,‘O R” W112 (Y) &L~+A,Y) & 

= dxo) s WI12 dY 
Rn 

= cp(~~)S*‘~. Q.E.D. 
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We shall need the following lemma to obtain a uniform decay rate 
estimate for u, at co. 

LEMMA 3.4. {,.r, ZR u:* dx + 0 uniformly W.T.I. E as R -+ ir,. 

Proof. Suppose the assertion is not true. Then there exist two sequences 
cj -+ E,, and R, -+ co such that 

for some 6 > 0 and j = 1, 2, . . . . We shall prove tha.t this is impossible by 
considering the following two cases. 

Case 1. Ed 10. Since ll~~l\ E is bounded, passing to a subsequence of 
(u,> if necessary, we may assume that u,, + ii,, weakly in E. By the 
standard elliptic regularity argument, u? -+ ii,, in C~O~a(R”), after passing 
to a subsequence again. Hence U,, is a classical solution of (1.2) with 
4 = p - sO. Using Lemma 2.3 we can prove as before that tiEo is a positive 
solution. Observe that 

Hence we have 

SP-8EO=Zp-EEO(G,) = lim SP-zJ= lim ZP -z,(uJ. j-fee j + cc 
In particular, IIu,,(I E + I(UEolIE as j -+ K#, and therefore 
hence in L2*(R”) as j + co. But this is contrary to (3.5). 

u,, -+ UEO in E and 

Case 2. s0 =O. From (3.5) we have 

fwr 
-? I4 2 R, 

u; dx=p” 9 s I%,+P~Y~>-, 
u:,* b,, -t- clEl Y) 4 

= n-(2/(p--lbE,)).2* 
% s IG,+A,YI>R, 

vr (~-1 dy 

=iu 
-n&,/(4-~~(~-22)) 

9 s b~(l/p~,)(R,~ Ixc,l) 

vr (I’) dy 

-+O as j+eo. 
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because L~I”, -+ 1, (l/y,)(R, - (xJ) --, co, and II~, --) U, in L2*(R”). Again we 
reach a contradiction. Q.E.D. 

Now we are ready to give a decay rate estimate for U, and /VU,/ uniform 
in E. 

LEMMA 3.5. There exist positive constants C, R, and a, independent of E, 

such that 

u,(x), jVu,(x)l d Ce-“‘“’ for 1x1 >R. 

PPOO$ We shall prove that u,(a) + 0 uniformly w.r.t. E as l?c( + XI. 
Then the result desired follows from the proof of Proposition 4.1 in 
[GNN2]. 

By Lemma 3.4 and the Holder inequality, there exists RO > 0 independent 
of E such that 

where ho is as in Lemma 2.7. By virtue of the first part of Lemma 2.7, we 
have that Ilu, II L~~*~2~~~B~Q,2~~ is uniformly bounded w.r.t. E and Q E R” with 
IQ1 > RO. Since $(2*)2 > (n/2)(p - 1 -a), by the second part of Lemma 2.7, 
we have 

sup u,< c 
WQ, 1) 

l/2* 
a,‘* dx 3 

where C is independent of E and Q E R” with IQ1 > R,. Now letting 
IQ/ + co and again using Lemma 3.4 we have U,(X) + 0 uniformly w.r.t. E 
as (xl + co. This completes the proof. Q.E.D. 

The following lemma will play a key role in our analysis. 

LEMMA 3.6. These exists a positive constant c, independent of F, such that 

v,(x) G cU,(x), for x E R”. (3.6) 

ProoJ: Let GE(x) be the Kelvin transform of v,, i.e., W,(x) = 
)x12-‘* v,(x/~x~~). From (3.4) we see that (3.6) is equivalent to the assertion 

W,(x) <c for x E R”, (3.7) 

where C is independent of E. Since v,(v) < 1 for y E R”, (3.7) is true for 1x1 
bounded away from zero. Therefore it suffices to prove that (WE} is 
bounded uniformly w.r.t. E in a neighborhood of x = 0. 
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By direct calculation, we see that S, satisfies the equation 

where q = p - E. Hence 

-AiC,<a(x) ii;, u(x) = 1x1 -(n-2)E. 

We shall use Lemma 2.7 to obtain the desired upper bound for WE. First, 
we estimate the integral 

l B(Q) 
(u(x)w~-‘)““d*=~,~,<~~+~~~~,~,<~~=Ii+12. 

1 L 

where B(r, j = {x E R”: 1x1 < rO} and r0 < 1 is to be chosen later, and 
without loss of generality we assume pf d rO. In the following we shall 
denote by c,‘s constants independent of E and r0 < 1. 

For Ix, we observe that 

The last inequality is by the fact & + 1 as E + 0. From Lemma 3.2, v, + U, 
in L’*(P), hence 1~~ --+ 0, in L2*(R”), where O,(x) = (~1~~~ U,(x/jxl’) is 
the Kelvin transform of U,. Thus by (3.8) we can choose a small r0 > 0 
such that 

I* < g,, (3.9) 

where 6, is as in Lemma 2.7. 
To estimate I, we observe that from Lemma 3.5, 

Hence 
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so 

(3.10) 

if y0 is small, where b is independent of E. 
Now (3.9) and (3.10) together imply that 

s (u(x)ti:- 1)n’2 dx d &. B(ro) 

Hence by Lemma 2.7 we have 

II ~~.t)EIl P2f2(B(rcJ/Z)) G Cw,2’2* ll*~EllL2*(B(ro,,. 

The right-hand side of above inequality is bounded uniformly in E, and so 
is the left-hand side. 

Since $(2*)2 > i(q- l)n, we can choose an 0 < 6 < 1 such that +(2*)2 > 
n(q - 1)/(2 - 6). For this 6, we estimate the integral 

s (&,-74(2--b) dxx= 
Wo/2) 

By slightly modifying the previous estimates for I1 and 1, and using the 
bound for the Lc2*jq2 norm of GE mentioned in the above paragraph, we 
can prove that 1; and r2, and hence jB(&) (u~~-~)‘*~~~-~) dx, are bounded 
uniformly in small E. Now the second part of Lemma 2.7 implies the desired 
upper bound for W,. Q.E.D. 

In the following, we set 

w,(x) = llzlEllp u,(x) = pe-‘~(P-----44~(X). 

Then ~~~~ satisfies 

dw,-K(x)H’E+~~MI~-e=O, x E R”. (3.11) 
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LEMMA 3.7. There exist positive constants F, R, and ii independent of E 
such that 

w,(x) < Ceealxi for 1x1 3 R 7 

lv,(x)~c~x-xx,~2-‘~ for XER”, 

where .‘c,E C(p) such that u&x,) = I/u,/ILm. 

Proof. From Lemma 3.6 we have 

(3.12) 

(3.13) 

w,(x) 6 cp, E(n-22)?/(4-&E(n-22))(~E2+ (~ycxx,12)-(iz--2J/2, 

The inequality (3.13) follows. Since X,E C(p), {Ix,/ > is bounded, IV,(X) + 0 
uniformly in E as 1x1 + cc. Now (3.12) follows from (3.11) and the proof of 
Proposition 4.1 in [GNN2]. Q.E.D. 

LEMMA 3.8. Suppose x,, -+ ~0 as Ej + 0. Then 

WE, -+ f o,[n(n - 2),“” r,( -, x0) in Ck,(R” - (x01), 

where l-&x, y) is the fundamental solution of -A + K. 

ProoJ: From Lemma 3.7, we see that (1~~) is uniformly bounded in any 
compact subset of R”\ {x0>. By the elliptic regularity argument we can 
extract a subsequence {pi} of {sj} such that 

w,, --+ G in CfO,(R”\,(xo)). 

We shall prove that 

Then by the uniqueness of G, we see that 

IV,, -+ G in Cf,,(R”\(xoJ\). (3.14) 

Since (wE} is bounded in any compact subset of Rn\{xo) and ,u, 40, 
from (3.11) we have 

-AG+K(x)G=O in R”\>(x,j. 

Also, (3.13) implies that 

G(x)<? Ix-x~I~--~ for .Y #x0. (3.15) 

505.‘99; 1-l 
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For any SECT, by (3.14) we km 

But 

1 

J R” 
lVe,( -A +K)q dx 

= 
s R” 

q(-A+K)w,dx 

= s P(*Y) PCL, 2/(P- ‘-I+.$- “/(x) dx (by (3.11)) 
R” 

1 
=~L-~,(n--22/(4-&,(“-2)) 

J 
R~ cpk, +A,.Y) v;-YH 4 

+ C&TO) jR,z Wx) dx (by Lemma 3.6) 

Thus 

-AG+K(x)G=+(n-2)]“/‘6(.-x0). 

BY IPI 

1 
G=nwJz(n-2)]“/2r,(~,x,))+g, 

where g is a regular solution of 

-Au+K(x)u=O in R”. 

Since both G(x) and rK(x, x0) --t 0 as 1x1 --) co, g(x) --f 0 as Ix!+ XI. Now 
by the maximum principle we have g = 0. Q.E.D. 

LEMMA 3.9. Suppose x,, +x0 as ci + 0. Then for II > 4 we have 

lim &I IIu~,JI~‘$-~)= 
E, * 0 

K(x,)+~x,.VK(x,) 
> 

16n(n - I) 
. (FI-2).3 . 
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ProoJ: For simplicity we denote ~~ by E. Applying the Pohozaev identity 
to (1.5) on a ball B,, we get 

Using Lemma 3.5 and letting i -+ IYS, we have 

that is, 

&(rz-2)' s 2(2?'2-E(FZ-2)) R” uE)+‘-‘dx 

= K+VK 
> 

ai; dx 

= pt - c(n - 2)2/(4 -~ E(PI - 2)) K(x,+p,gl+l(h.,+g,l.j 

.VK(x, + A v) 1 I: 4 (3.14) 
Using Lemma 3.6 and the fact U, E L2(R”) when n > 4, by the Lebesgue 
Dominated Convergence Theorem we have 

K(J,+P,Y)+~(~,+P,~).VK(X,+P,Y) 
I 

v:(yj dy 

-(K(x,)+~x,~VK(xo~ j U:CJI)&? as 
> 

E -+o. (3.17) 
R” 

Note that 
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2(n - 1) T(n/2)2 
=w,,[n(n-2)]“2.~-- 

r(n) 

r(nl2) = 4(7@“/2 (fq - 2)(n-W (n- 1) - 
r(n) ’ 

By Corollary 2.6, we have, as E + 0, 

(3.18) 

(3.19) 

Together, (3.16)-(3.19) give 

K(J,)+;“Y,,.VK(x,) 1 16n(n - 1) . 
(n-2)3 ’ 

which is what we seek. Q.E.D. 

LEMMA 3.10. Suppose n = 3 and x,, -+ x0 as .zj + 0. Then 

l-:(x, x0) dx. (3.20) 

ProoJ: Using the Pohozaev identity as before, we have 

Therefore 

E lkll:~ 
s 2(6-c) ~3 

u;-‘dx= (3.21) 

Recall from Lemma 3.8 with n = 3, 

From this and Lemma 3.7, it is easily seen that 

= 30: K+;sJK 
> 

r;(x,x,)dx< +a. 
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This, (3.21), and Corollary 2.6 imply 

(Note that for n = 3, S 3'2 = (37c)3!2 (z-($)/J-(3)) = 12 J3 7r.) 

Remark 3.11. When n = 3 and K z 1 we have 

T(x, 2’)= 5 
0 

l/2 Ixey, --I e-l”-J”. 

In this case (3.20) becomes 

7687~’ m 384 

=qa3 O 
s 

e 
-2rdr=--n6. 

5 t/ 

Remark 3.12. Part (i) of Theorem 2 follows from Corollary 2.6; (ii) 
comes from Corollary 3.3; (iii) is the same as Lemmas 3.9 and 3.10; and 
(iv) is nothing but Lemma 3.8. 

4. COMPLETION OF THE PROOF FOR THEOREM 1 

As we mentioned in Section 1, Theorem 1 follows from Theorem 2 except 
for (iii) of Theorem 1 when n =4. Therefore to complete the proof for 
Theorem 1, we need only prove the following: 

LEMMA 4.1. Assume n = 4 and u, is the unique ground state of (1.1) with 
u,(O) = IIuEIILV. Then 

. E IMC” 
Et log Ijz4JL” 

= 48. 

Denote 1/~~/1~~ by LX,. Then 

From Lemmas 3.1 and 3.2 we have 
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By the mean value theorem we have 

la”,-1)6celoga,, Ip:-lIdCEloga,, (4.1) 

where c is independent of E. Let 

cp,(r1 = a, [ 1 + ~(~)2(l-~i)]-(n-2)‘2. 

LEMMA 4.2. For n > 3 and r > 0, uze have 

%(I’) < cp&)T (4.2) 

ProoJ We shall prove this lemma by the method in [APl]. Define 

v(t)=%(r), t+-22)+-2+-n. 

Then 

yfl+ t-yyp--E-+0, for t >O, 

lim y(t) = a,, Y(O) = 0, t-a? 

where k=2(n- l)/(n-2). Since U:(Y) ~0 for r>O, we have y’(t)>0 for 
t > 0. As in [APl ] we have 

(y’tk--lJ,l--k)‘= -2(k- 1) tk-2y-kH(r), (4.4) 

where 

We claim that H(t) > 0 for t > 0. First, since y’(t) = -u:(r) t-k’2 and k > 2, 
we see that H(t) -+ 0 as t + + co. Second, by the fact that U,(T) and U:(T) 
decay exponentially at r = + co (see Lemma 34, we have H(t) + 0 as 
t -+ 0. Now we see that to prove the claim, it s&ices to show that H’(t) has 
only one zero on (0, + co). This can be seen from the formula 

H’(t) = & tl-‘y’(t) y(t)[2(k-2)-zyPmm1-“(t)] 

and the fact that J,‘(t) > 0 for t > 0. The proof of the claim is completed. 



BLOW-UP BEHAVIOR OF ELLIPTIC EQUATIONS 101 

From (4.4) and the claim proved above, we have (y’?- ‘ylek)’ < 0, and 
hence 

y’tk-ly’-k > lim y’(t) tkmmly(t)l-k 
f--rcc 

= lim ( -uL(r)tpki2) tkpl?(t)lpk 
**cc 

= lim 
-(n-2) 

u;(Y) y(t)‘-” 
t+cc I 

so 
1 ylyl-k>- 

k- 1 t’-ka2-k 
E (x:-l-&- 1). 

Integrating over (t, 00) we get 

y(t)<z(t)rx, l+& 
[ 

t2-yaP-‘-E- 1) E 1 
-ljfk- 2) 

9 (4.5) 

which gives (4.2). 
It is easy to see that 

Z”+t-kx~-qx~-~-xE)Zp=O 

z(cc’)=x,, 
xp--l-& 

Z(t)=aB- & 

-1 cx 

NP--l s 
(s - t) s-~z:(.s)~ ds. 

E 
f 

and 

y(t)=xE-/m (s-~)s-~~~(s)P-‘~s+S~ (,s-t)JckJqs)ds. 
f f 

From the integral equations of z and J’ above, (4.5), and the fact that 
y’(t) < 0, one easily obtains 

y(t) > aLf K: t2-"y(t) 
@P-E 

‘8 --a, 

Z(t)l--E-t(B I z(t)” (a;--&-a,) -l “(k-l)(k-2)’ 1 
which gives (4.3). QED. 
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Now we are ready to give 
Proof of Lemma 4.1. First we observe that for fixed 0 <a< 1, if 

u,(rO) < (1 - a2)1’(p-11EE), then us(r) < uE(pO)e-a(‘-ro) for Y > I’~. This fact 
follows from the proof of Proposition 4.1 of [GNN2]. Using this fact and 
Lemma 3.8 we have 

u,(r) ,< u,(l)e- (r- 1v2 < qle m-42 for I’> 1. 

From this we have 

The following will be used frequently in the remaining part of this proof, 

By virtue of (4.2), we have 

Observe that for any fixed N> 0, 

Now (4.6)-(4.8) imply that 

s R4 
u,Zdx<c5C(,210ga,. 

By the Pohozaev identity and Corollary 2.6 we have 

. 
J RJ 

u; dx = $ S2c + O(E). 

From (4.9) and (4.10) we have 

E < C6CX,2 log IX,. 

By (4.3) we have 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

For l/a8 <r =S 1 we have from the definition of 50, that 

a: > pi(r) 2 a,“[1 + $&,2] -“a c;oI$~ > c&u:. 



BLOW-UP BEHAVIOR OF ELLIPTIC EQUATIONS 103 

This and (4.1) yield 

~cp~(r)-l~dc,Elogcc~. 

Now observe that for l/aE < I 6 1 

(4.13) 

< CgE log a, < c,,a,2(log cI,)Z. 

(The last two inequalities follow from (4.1), (4.13), and (4.11).) Combining 
this with (4.12) and (4.1), we have for l/cc, < r < 1, 

This and (4.2) yield 
%(I’) < %(f-) + ClO~,‘UW d2. 

Id(r) - u:(r)1 G w,‘(log %J2 (v,(r) + dr)) 
< cl,x,‘(log aJ2 (p&). 

Now for any fixed N> 1, 

(4.14) 

i 
l/log a, 

< c12a, log a, r3a,pC1,2r-2 dr 
’ Niar 

Ge,,logcd,[&-($)i]-0 as c-+0. 

Therefore 

=64+0 ; +o((logcc,)-1’2)+o(l). 
0 
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This and (4.8) give that 

1 
s 

mws 
lim- 
E-ologq 0 

r3(a,~,(r))2 dr = 64 + o 

Letting N + 00 we get 

1 
s 

l,lloga, 
lim - 
E’O1OgCCE cl 

r3(a,u,(r))’ dr = 64. 

From (4.2) we have 

1 1 

log ME s 
r3(a,~,(r))2 dr 

1/logs, 

1 1 
<- 

log a, s r”h~,(r))~ dr 
l/logx, 

c14 <- 
loi? % 

log log c(, + 0 as E +O. 

Combining this with (4.6) and (4.15), we have 

4 
log a, s R4 

uf dx = 640~ = 128~~. 

This and (4.10) imply 

lirn “,2 -=48. 
B+OlogC(E 

(Note that when n = 4, S* = !$c’.) 

(4.15) 

Q.E.D. 

APPENDIX 

In this appendix we prove the existence of a fundamental solution 
(defined in Section 1) of -A + K(x) in R”, under the assumption that K is 
a locally Hljlder continuous function in R” and K(x) > 0. We believe this 
is also true for more general second order elliptic operators, but we do not 
intend to pursue those. The authors thank Professor Wei-Ming Ni for his 
suggestion of using the argument in [KN]. 

Let B, = (x~ R”: 1x1 < R}. For any f~ C(aB,), consider the following 
Dir&let problem in the exterior domain: 

--dw+K(x)*o=O, I-XI > 1, 
w( aB, = f, lim,,, _ co M:(X) = 0. (Al) 
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Problem (Al) is solvable by the method of sub- and super-solutions. In 
fact, let T,(x) be a suitable multiple of the standard fundamental solution 
of -d such that Z-,,laB, = 1. Then take IlfI/LsC(BR,j T,(X) as a super-solution 
and - llfll Lm(aB,) T,(x) as a sub-solution The solution ~7 obtained above 
satisfies 

By the maximum principle this solution is unique. 
We consider the following Dirichlet problem in a ball B,: 

where R > 1 is to be chosen. The unique solution of (A3) is denoted by z-,. 
By the maximum principle again we have 

ll’fll L”(8/3,) 6 /l’~fIILyaRR) G U-II r=(s&) Il~ollr”,aB,)~ (A4) 

Since T,(x) 40 as 1x1 -+ co, we can choose R large enough that 
I/~*llLyasR, 12’ <I Then we can define a linear operator A from C(dB,) to 
C(aB,) by 

where z+- is determined by (Al ) and (A3) for this R. From (A4) we have 
IIAll < $1 

For R chosen above we consider the problem 

--AZ, + K(x)z, =6(x), XE B,, 

z,las,=O; 
(A5) 

i.e., zr 1s the Green function of -A + K(x) in BR with the Dirichlet condi- 
tion on aB,, with pole at x=0. The existence of z1 is a well-known fact. 

Set g=zlliiel. Since llAl\ <$, there exists an f~c(dB,) such that 
(I- A)f= g, that is, 

f-ZfldB,=&s,. (ASI 

Let ~1~ = zf+z,. From (Al), (A3), and (A5), 

(-AfK(x))~~~=(-A+K(x))w~=0 in {l<lxl<R), 

~~Jllas, =f= “7flas,Y 

‘vllSE,q = zfi6E, = ‘“flaBx. 
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Therefore lzil E HJ~ in { 1~ 1x1 CR}. Now we define rK(x, 0) as 

rK(x, 0) = ZfW + ZI(X), if 1x1 <R, 

q(x), if (xl > 1. 

We see that rK(x, 0) is well-defined and satisfies 

-AT&, 0) + K(x) rK(x, 0) = 6(x), 

~,(x,O)+O as 1x1 + co. 

In the same way, for any y E R” we can find rK(x, y) such that 

--dT,(., y)+K(.)T,(., Y)=6(---2’), 

r&P Y) + 0 as (xl --) co. 

Thus we are done. Q.E.D. 

Note ad&d inprooj We were informed by Zhenchao Han that he obtained a proof of (1.3). 

CAP11 

CAP2 I 

PI 

CBLI 

CBNI 

@PI 

cc1 

CCGSI 

CDNI 

REFERENCES 

F. V. ATKINSON AND L. A. PELETIER, Emden-Fowler equations involving critical 
exponents, Nonlinear Anal. 10 (1986), 755-776. 
F. V. ATKINSON AND L. A. PELETIER, Elliptic equations with nearly critical growth, 
J. Dijferential Equations 70 (1987), 349-365. 
M. S. BERGER, On the existence and structure of stationary states for a nonlinear 
Klein-Gordon equation, J. Funct. Anal. 9 (1972), 249-261. 
H. BERESTYEKI AND P. L. LIONS, Nonlinear scalar field equations, I, II, Arch. 
Rational Mech. Anal. 82 (1983), 313-345, 347-375. 
H. BREZIS AND L. NIRENBERG, Positive solutions of nonlinear elliptic equations 
involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437477. 
H. BREZIS AND L. A. PELETIER, Asymptotics for elliptic equations involving critical 
growth, in “Partial Differential Equations and Calculus of Variations,” Vol. 1 
(F. Colombini et al., Eds.), pp. 149-192, BirkhLuser, Basel, 1989. 
C. V. COFFMAN, Uniqueness of the ground state solution for du - I( + u3 = 0 and a 
variational characterization of other solutions, Arch. Rational Mech. Anal. 46 
(1972), 81-95. 
L. CAFTARELLI, B. GIDAS, AND J. SPRUCK. Asymptotic symmetry and local behavior 
of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. 
Math. 42 (1989), 271.-297. 
W.-Y. DING AND W.-M. NI, On the existence of positive entire solutions of a 
similinear elliptic equation, Arch. Rational Mech. Anal. 91 (1986), 253-308. 

[GNNl] B. GIDAS, W.-M. NI, AND L. NIRENBERG. Symmetry and related properties via the 
maximum principle, Comm. Math. Phys. 68 (1979), 209-243. 

[GNN2] B. GIDAS, W.-M. NI, AND L. NIRENBERG, Symmetry of positive solutions of 
nonlinear elliptic equations in R”, Adv. in Math. Stud. A 7 (1981), 369-2. 



BLOW-UP BEHAVIOR OF ELLIPTIC EQUATIONS 107 

CGsl 

[HI 

WI 

IKNI 

WI 

D-21 

CM1 

CMSI 

WeI 

WI 

WI 

CR1 

CT1 

PI 

D. GILBARG AND J. SERRIN, On isolated singularities of solutions of second order 
elliptic differential equations, J. Ana@se Math. 4 (1955/1956), 309-340. 
2. C. HAN, Asymptotic approach to singular solutions for nonlinear elliptic 
equations involving critical Sobolev exponent, Analyse Non/in. 8 (1991). 1599174. 
M. K. KWONG, Uniqueness of positive solutions of Au-u+ trp=O in 17”. 
Arch. Rational Mech. Anal. 105 (1989), 243-266. 
C. E. &NC AND W.-M. NI, On the elliptic equation tu- k + Ke’” =O, 
Amt. Scuola Norm. Sup. Pisa Ser. IV 12 (1985), 191-224. 
P. L. LIONS, The concentration-compactness principle in the calculus of variations. 
The local compact case, I, II, Ann. Inst. H. PorncarP Anal. Non Z&&ire 1 (1984), 
109-145, 223-283. 
P. L. LIONS, On positive solutions of semilinear elliptic equations in unbounded 
domains, in “Nonlinear Diffusion Equations and Their Equilibrium States, II” 
(W.-M. Ni et al., Eds.), pp. 85-177, Springer-Verlag, New York, 1988. 
C. MIRANDA, -‘Partial Differential Equations of Elliptic Type,” 2nd rev. ed. 
(Z. C. Motheler, Trans. j, Springer-Verlag, New York, 1970. 
K. MCLEOD AND J. SFXRIN, Uniqueness of positive radial solutions of Au +.f(u) = 0 
in R”, Arch. Rational Mech. Anal. 99 (1987) 115-145. 
2. NEH~IU, On a nonlinear differential equation arising in nuclear physics, 
Proc. Roy. Irish Acad. Sect. A 62 (1963 j, 1177135. 
W.-M. NI AND J. SERRIN, Existence and nonexistence theorems for ground states 
for quasilinear partial differential equations, Accad. Naz. Lincei 77 (1986). 231-257. 
L. A. PELETIFX AND J. SERRIN, Uniqueness of solutions of semilinear equations in 
R”, J. Differential Equations 61 (1986). 380-397. 
0. KEY, Proof of two conjectures of H. Brezis and L. A. Peletier, Manuscripta 
Math. 65 (1989). 19-37. 
N. S. TRUDINGER, On Harnack type inequalities and their applications to 
quasilinear elliptic equations. Comm. Pure Appl. M&. 20 (1967), 721-747. 
L. ZHANG, Uniqueness of ground state solutions, Acta Mat. Sci. 8 (1988), 449468 


