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SUMMARY

Particulates such as silica crystal (silica) and
aluminum salts (alum) activate the inflammasome
and induce the secretion of proinflammatory cyto-
kines in macrophages. These particulates also in-
duce the production of immunoglobulin E via a
T helper 2 (Th2) cell-associated mechanism. How-
ever, the mechanism involved in the induction of
type 2 immunity has not been elucidated. Here,
we showed that silica and alum induced lipopolysac-
charide-primed macrophages to produce the lipid
mediator prostaglandin E2 (PGE2) and interleukin-1b
(IL-1b). Macrophages deficient in the inflammasome
components caspase 1, NALP3, and ASC revealed
that PGE2 production was independent of the
NALP3 inflammasome. PGE2 expression was mark-
edly reduced in PGE synthase-deficient (Ptges�/�)
macrophages, and Ptges�/�mice displayed reduced
antigen-specific serum IgE concentrations after
immunization with alum or silica. Our results indicate
that silica and alum regulate the production of PGE2

and that the induction of PGE2 by particulates
controls the immune response in vivo.

INTRODUCTION

Some particulates and crystals can stimulate the innate immune

system to induce inflammatory responses. In particular,

aluminum salts (referred to as alum) and silica crystals can

induce type 2 inflammatory responses, which are characterized

by the accumulation of eosinophils at the site of injection and the

elevation of antigen-specific serum IgE and IgG1 amounts in vivo

(Aimanianda et al., 2009; Marrack et al., 2009; Kumar et al.,

2009). However, the basis for the adjuvanticity of these particu-
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lates and the mechanisms by which they elicit type 2 immunity

remain poorly understood.

In the innate immune system,macrophages and dendritic cells

(DCs) function as the first line of defense against foreign anti-

gens. These cells can recognize pathogen-associated molecular

patterns (PAMPs) through pattern-recognition receptors (PPRs)

and can induce inflammatory responses (Akira et al., 2006).

NOD-like receptors (NLRs) are intracellular PRRs (Ye and Ting,

2008). Among the known NLRs, NALP3 (also known as NLRP3,

Cryopyrin, CIAS1, or PYPAF1) is one of the best characterized.

Upon activation, NALP3 forms a multiprotein complex with

apoptosis-associated speck-like protein containing a caspase

recruitment domain (ASC) and caspase-1. This complex,

referred to as the NALP3 inflammasome, promotes the secretion

of the proinflammatory cytokines interleukin-1b (IL-1b) and IL-18

by the action of caspase-1 (Franchi et al., 2009; Martinon et al.,

2009; Schroder and Tschopp, 2010; Schroder et al., 2010). The

activated NALP3 inflammasome contributes to antifungal host

defense, antitumor immunity, and inflammation (Duewell et al.,

2010; Ghiringhelli et al., 2009; Gross et al., 2009; Halle et al.,

2008; Watanabe et al., 2008). In addition to being activated by

PAMPs, the NALP3 inflammasome is also activated by ATP,

various crystals (i.e., silica, asbestos and monosodium urate),

and alum (Cassel et al., 2008; Dostert et al., 2008; Eisenbarth

et al., 2008; Hornung et al., 2008). The NALP3 inflammasome

has been shown to induce type 2 immune responses, and

Nalp3�/� and Asc�/� mice display reduced type 2 immune

responses to alum (Eisenbarth et al., 2008; Kool et al., 2008;

Li et al., 2008). However, other reports have shown that the

NALP3 inflammasome is dispensable for alum adjuvanticity

(Franchi and Núñez, 2008; McKee et al., 2009). In addition, it

has been reported that the NALP3 inflammasome is not required

for antibody production in response to vaccination by the partic-

ulate adjuvant (Sharp et al., 2009). Thus, the role of the NALP3

inflammasome in the induction of type 2 immunity is still open

to further investigation.

In addition to proinflammatory cytokines, lipid mediators such

as prostaglandins (PGs) are also involved in the induction of
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inflammatory responses (Narumiya, 2009). PGE2, a well-charac-

terized proinflammatory lipid mediator, is an arachidonic acid

metabolite that is produced by various types of cells including

antigen-presenting cells. Previous reports have shown that

PGE2 suppresses T helper 1 (Th1) cell-type responses by

elevating intracellular cAMP concentrations in DCs, macro-

phages, and Th1 cells, thus inhibiting their ability to produce

type 1 cytokines such as IL-12 and IFN-g (Fabricius et al.,

2010; Koga et al., 2009; Kuroda and Yamashita, 2003). In addi-

tion, PGE2 can enhance IL-23 production by DCs and favors

Th17 cell polarization and IL-17 production (Boniface et al.,

2009; Yao et al., 2009). More recently, PGE2 was shown to facil-

itate Th1 cell differentiation in the presence of IL-12 and high

doses of the costimulatory CD28 antibody, via activation of the

PI3-kinase pathway (Yao et al., 2009). Thus, PGE2 has various

functions in the regulation of immune responses. However, the

involvement of PGE2 in particulate-mediated adjuvanticity has

not been investigated.

In this study, we showed that alum, silica, and ATP, which acti-

vate the NALP3 inflammasome, induced macrophages to

produce IL-1b, IL-18 and PGE2. Interestingly, PGE2 production

in macrophages was regulated by the spleen tyrosine kinase

(Syk) and p38 MAP kinase pathway but did not depend on in-

flammasome activation. In addition, particulate-induced PGE2

regulated antigen-specific serum IgE production in vivo. Our

results suggest that the activation of the PGE2 pathway by

particulates may be an important signal for the induction of

type 2 immune responses.

RESULTS

Silica, Alum, and ATP Induce PGE2 Production
in LPS-Primed Macrophages
Many reports have shown that alum, silica, and ATP stimulate

macrophages to produce the caspase-1-dependent cytokines

IL-1b and IL-18 by activating the NALP3 inflammasome (Cassel

et al., 2008; Dostert et al., 2008; Eisenbarth et al., 2008; Hornung

et al., 2008). These cytokines are thought to be important for

regulation of immune responses. However, some studies have

shown that caspase-1-dependent cytokines are dispensable

for immune regulation (Franchi and Núñez, 2008; McKee et al.,

2009; Sharp et al., 2009). Thus, we first ascertained whether in-

flammasome activators could induce the production of caspase-

1-independent factor(s) in macrophages. To this end, we exam-

ined the production of several cytokines, chemokines and lipid

mediators by macrophages in response to silica, alum and

ATP. Silica, alum and ATP induced LPS-primed macrophages

to produce IL-1b and IL-18, which is in agreement with previous

reports (Cassel et al., 2008; Dostert et al., 2008; Eisenbarth et al.,

2008; Hornung et al., 2008). These inflammasome activators also

induced LPS-primedmacrophages to produce PGE2 (Figure 1A).

A time-course analysis revealed that silica stimulation of LPS-

primed macrophages for 2 hr was sufficient for detecting similar

amounts of PGE2 and IL-1b, in terms of pg/ml secreted

(Figure 1B). In our experiments, we tested three different alum

compounds: Imject alum (a mixture of aluminum hydroxide and

magnesium hydroxide; Thermo Scientific), alhydrogel (aluminum

hydroxide gel; Sigma-Aldrich) and LSL alum (aluminum

hydroxide hydrate gel suspension; LSL). The experiments
described in Figures 1A and 1B were performed with LSL alum

as a stimulator. To test which alum compound was the most

potentPGE2 inducer inmacrophages,westimulatedLPS-primed

macrophages with the three different compounds. Each alum

compound stimulated the production of PGE2, but LSL alum

(referred to hereafter as alum) induced the highest PGE2 produc-

tion in LPS-primed macrophages. Alhydrogel induced modest

production of PGE2 in LPS-primed macrophages, whereas

Imject alum induced low amounts of PGE2 (Figure S1A). It is

important to note that LPS-primedmacrophagesdid not produce

any other well-characterized inflammatory cytokines or chemo-

kines in response to silica (Figure S1B) or alum (data not shown).

Activated macrophages are known to produce PGD2 (Mohri

et al., 2003). Indeed, we found that LPS-primed macrophages

produced PGD2 in response to silica (Figure 1C). We also exam-

ined the effect of titanium dioxide (TiO2), which does not cause

severe inflammation on inhalational exposure and does not acti-

vate the NALP3 inflammasome (Cassel et al., 2008), on PGE2

production by macrophages. As shown in Figure 1D, TiO2 did

not induce IL-1b or PGE2 production in LPS-primed macro-

phages. Activation of the NALP3 inflammasome in DCs contrib-

utes to particulate-mediated adjuvanticity (Kool et al., 2008).

Thus, we compared PGE2 production by bone marrow (BM)-

derived DCs and macrophages. BM-derived DCs produced

IL-1b and PGE2 in response to silica and alum, but the amounts

of PGE2 were markedly higher in macrophages than in DCs (Fig-

ure 1E). We have previously reported that macrophages from

BALB/c mice produce higher amounts of PGE2 than those

from C57BL/6 mice (Kuroda et al., 2007; Kuroda and Yamashita,

2003). Macrophages from BALB/c mice produced �2-fold

greater amounts of IL-1b and PGE2 in response to silica than

macrophages from C57BL/6 mice (Figure 1F). Our observations

are not restricted to mouse studies, given that human peripheral

blood mononuclear cells (PBMCs) also produced PGE2 and

IL-1b in response to silica (Figure 1G). These results indicate

that in addition to IL-1b and IL-18, macrophages also produce

PG in response to silica, alum, and ATP.

Silica- and Alum-Induced PGE2 Production
Is Independent of the Activity of Caspase-1
IL-1b and IL-18 are known to induce PG production (Dinarello,

2002; Lee et al., 2004). However, simple exposure of LPS-

primed macrophages to IL-1b and/or IL-18 did not induce the

production of PGE2 (Figure 2A). BM cells from WT and IL-1

receptor-deficient mice were cultured for 7 days with macro-

phage colony stimulating factor (M-CSF), and adherent macro-

phages were analyzed for silica- and alum-induced PGE2

production. As shown in Figure 2B, WT and Il1r1�/� macro-

phages produced comparable amounts of PGE2. In addition,

treatment of silica- or alum-activated macrophages with a cas-

pase-1 inhibitor significantly reduced their ability to produce

IL-1b but did not affect their ability to produce PGE2 (Figure 2C).

Because silica and alum can induce cell death, we wanted to rule

out the possibility that the enhanced production of PGE2 in silica-

and alum-activated macrophages was due to cell death. For this

purpose, we measured cell death in silica- and alum-activated

macrophages by quantifying the release of lactose dehydroge-

nase (LDH) into the culture media. Treatment of macrophages

with a caspase-1 inhibitor reduced silica- and alum-induced
Immunity 34, 514–526, April 22, 2011 ª2011 Elsevier Inc. 515
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Figure 1. Inflammasome Activators Induce Macrophages to Produce PGE2

(A) Peritoneal macrophages from BALB/c mice were primed for 3 hr with or without low-dose LPS (1 ng/ml) and then stimulated with silica, alum or ATP for 2 hr.

(B)Macrophageswith orwithout LPS primingwere stimulatedwith silica for 2, 6, or 18 hr.Macrophages stimulatedwith high-dose LPS (1 mg/ml) for 6 hr were used

as controls.

(C) The culture supernatants of macrophages stimulated for 2 hr with silica were analyzed for PGD2 production as indicated in (B).

(D) LPS-primed macrophages were stimulated with silica or TiO2 for 2 hr.

(E) BM-derived macrophages and DCs were primed with LPS and then stimulated with 100 mg/ml silica or 400 mg/ml alum for 6 hr.

(F) Peritoneal macrophages from C57BL/6 (B6) and BALB/c (BALB) mice were primed with LPS and then stimulated with 100 mg/ml silica or 400 mg/ml alum for

2 hr.

(G) Human PBMCs were primed for 3 hr with LPS and then stimulated with silica for 3 hr. For all experiments, the amounts of IL-1b and PGE2 in the culture

supernatants were determined by ELISA. Data represent mean ± SE of three to five independent experiments (*p < 0.01).
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Figure 2. Silica- and Alum-Induced Lysosomal Damage Triggers PGE2 Production inMacrophages via Caspase-1-IndependentMechanisms
(A) LPS-primed peritoneal macrophages were stimulated with IL-1b or IL-1b plus IL-18 for 2 or 6 hr. Macrophages stimulated with high-dose LPS were used as

controls.

(B) M-CSF-derived BMmacrophages fromWT (C57BL/6) and Il1r1�/�mice were primed with low-dose LPS and then stimulated with 50 mg/ml silica or 200 mg/ml

alum for 6 hr.

(C) LPS-primed macrophages were stimulated with 100 mg/ml silica or 400 mg/ml alum in the presence or absence of caspase-1 inhibitors for 2 hr.

(D and E) LPS-primed macrophages were stimulated with 100 mg/ml silica or 400 mg/ml alum in the presence or absence of cytochalasin D (D) or cathepsin B

inhibitor (E) for 2 hr.

(F) LPS-primed macrophages were incubated with Leu-Leu-OMe for 2 hr. Data represent mean ± SE of three (A and C–E) or two (B and F) independent

experiments (*p < 0.01).
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cell death (Figure S2). This result was expected because cas-

pase-1 is involved in promoting cell death. However, we have

already shown that PGE2 production in macrophages is inde-

pendent of caspase-1 activity (Figure 2C and Figure S2). There-

fore, these results indicate that caspase-1-dependent cytokine

release and cell death are not responsible for silica- and alum-

induced PGE2 production in macrophages.

Silica and Alum Induce PGE2 Production
in Macrophages through Phagosomal Destabilization
Phagocytes engulf particulates such as silica or alum, which

leads to lysosomal damage and rupture, followed by the release

of lysosomal enzymes, such as cathepsin B, into the cytoplasm.

Studies suggest that lysosomal damage can activate the NALP3

inflammasome and induce the production of IL-1b (Duewell

et al., 2010; Hornung et al., 2008). To address whether the

engulfment of particulates, lysosomal rupture, and release of

lysosomal enzymes could induce PGE2 production in macro-

phages, we cultured macrophages in the presence of cytocha-

lasin D, which inhibits actin filament assembly and phagocytosis.

Treatment of macrophages with cytochalasin D significantly

reduced their ability to produce IL-1b and PGE2 in response to

silica and alum (Figure 2D).

The release of lysosomal enzymes such as cathepsin B is

thought to trigger the activation of the NALP3 inflammasome.

In addition, the cathepsin B inhibitor CA-074 has been shown

to inhibit the NALP3 inflammasome (Duncan et al., 2009;

Hornung et al., 2008; Sharp et al., 2009). We showed the produc-

tion of IL-1b and PGE2 bymacrophages was partially inhibited by

treating the cells with CA-074 (Figure 2E). Lysosomal damage

has also been shown to trigger the activation of the NALP3 in-

flammasome. To investigate this process, we treated macro-

phages with leucyl-leucine methyl ester (Leu-Leu-OMe) to

induce lysosomal damage (Hornung et al., 2008). Leu-Leu-

OMe-treated macrophages produced large amounts of IL-1b

(Figure 2F) as previously reported. Leu-Leu-OMe-treatedmacro-

phages also produced PGE2. Altogether, these results suggest

that, similar to the stimulatory effect of NALP3 inflammasome

activation and IL-1b release, lysosomal damage and rupture trig-

gers PGE2 production in macrophages.

Silica- and Alum-Induced PGE2 Production
in Macrophages Is Independent of the NALP3
Inflammasome
We have shown that the NALP3 inflammasome activators silica,

alum, and ATP induce LPS-primed macrophages to produce

PGE2. We have also demonstrated that PGE2 production is

independent of caspase-1 activity. To investigate whether the

NALP3 inflammasome is involved in silica- and alum-induced

PGE2 production, we performed experiments similar to those

described above using Nalp3�/�, Asc�/�, and Casp1�/� macro-

phages. M-CSF-derived BM macrophages from WT and inflam-

masome-deficient mice were used in this experiment. As shown

in Figure 3A,macrophages deficient in NALP3, ASC, or caspase-

1 failed to secrete IL-1b in response to silica and alum, which is

consistent with previously published reports. However, macro-

phages from inflammasome-deficient mice produced slightly

higher amounts of PGE2 in response to silica and alum than cells

fromWTmice. IL-6 production was previously shown to be inde-
518 Immunity 34, 514–526, April 22, 2011 ª2011 Elsevier Inc.
pendent of the NALP3 inflammasome (Kumar et al., 2009;

Yamamoto et al., 2004). Indeed,WTand inflammasome-deficient

macrophages produced comparable amounts of IL-6. Similar

results were obtainedwhenwe performed the same experiments

with granulocyte-macrophage colony stimulating factor (GM-

CSF)-derived macrophages (Figure 3B). These results indicate

that silica and alum induce macrophages to produce PGE2

through NALP3 inflammasome-independent mechanisms.

PGE2 synthesis is regulated by cyclooxygenase (COX) and

PGE synthase. In particular, COX-2 and PTGES (also known as

mPGES-1) have been reported to regulate stimulation-depen-

dent PGE2 production in macrophages (Kuroda and Yamashita,

2003; Uematsu et al., 2002). As shown in Figure 3C, treatment

with NS-398, which is a COX-2-specific inhibitor, significantly

suppressed PGE2 production in silica-activated macrophages.

Similar to COX-2 inhibition, Ptges�/� macrophages did not

produce detectable amounts of PGE2 upon stimulation with

silica (Figure 3D). However, neither COX-2 inhibition nor PTGES

deficiency had an effect on silica-induced IL-1b production in

macrophages, suggesting that IL-1b production and activation

of the inflammasome are independent of PGE2 production

(Figure S3). Similar results were obtained when we performed

the same experiments with alum-activated macrophages (data

not shown). We then assessed the expression of COX-2 and

PTGES in macrophages upon stimulation with silica and alum.

As shown in Figure 3E, priming of macrophages with LPS

induced the expression of the COX-2 and PTGES proteins.

However, silica, alum, and ATP stimulation had no effect on

COX-2 and PTGES expression in macrophages. This result indi-

cates that silica- and alum-induced PGE2 production in macro-

phages does not involve increased expression of COX-2 or

PTGES. Collectively, these results indicate that silica- and

alum-induced PGE2 production in macrophages is mediated

by the COX-2 and PTGES pathways.

Silica- and Alum-Induced Production of PGE2

by Macrophages Regulates Immune Responses In Vivo
Given that Ptges�/� macrophages cannot produce PGE2 while

retaining inflammasome function and the ability to produce

IL-1b in response to silica and alum (Figure 3 and Figure S3), we

determined whether alum-induced PGE2 production plays a role

in regulating immune responses in vivo. We immunized Ptges+/+

and Ptges�/� mice with alum plus OVA twice (day 0 and 7). Ten

daysafter the last immunization, serawerecollectedandanalyzed

for amounts of OVA-specific IgE, IgG1, and IgG2c antibodies. In

Ptges+/+mice,OVA-alum immunization stimulated the generation

of OVA-specific IgE, IgG1, and IgG2c. In contrast, Ptges�/� mice

displayed reduced amounts of OVA-specific IgE (Figure 4A). In

contrast, the amounts of IgG1 and IgG2c in the sera taken from

Ptges+/+ and Ptges�/� mice were comparable (Figure 4A).

Because previous reports have shown that OVA-silica immu-

nization induces OVA-specific antibody responses (Kumar

et al., 2009), we assessed whether silica could trigger IgE

responses. As shown in Figure 4B, OVA-silica immunization

induced the generation of OVA-specific IgE, IgG1, and IgG2c

antibodies. As observed with OVA-alum immunization, OVA-

silica-immunized Ptges�/� mice displayed reduced amounts of

OVA-specific IgE. In contrast, amounts of OVA-IgG1 and

IgG2c antibodies were comparable between Ptges+/+ and
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Figure 3. The Mechanisms of Particulate-Induced PGE2 Production

(A and B) Silica- and alum-induced PGE2 production is independent of the NALP3 inflammasome.M-CSF- (A) or GM-CSF- (B) derived BMmacrophages fromWT

(C57BL/6), Asc�/�, Nalp3�/�, and Casp1�/� mice were primed with low-dose LPS and then stimulated with 100 mg/ml silica or 400 mg/ml alum for 6 hr.

(C–E) Silica-induced PGE2 production is mediated by COX-2 and PTGES.

(C) LPS-primed BALB/c peritoneal macrophages were stimulated with 100 mg/ml silica in the presence or absence of the COX-2 inhibitor NS-398 for 2 hr.

(D) Peritoneal macrophages from Ptges+/+ and Ptges�/� mice were primed with low-dose LPS and then stimulated with 100 mg/ml silica for 2 hr.

(E) Ptges+/+ and Ptges�/�macrophages were primed with or without LPS and stimulated with 100 mg/ml silica, 400 mg/ml alum, or 1 mM ATP for 2 hr. Cell lysates

were analyzed for COX-2, PTGES, and GAPDH (loading control) expression by western blotting. Data represent mean ± SE of two (A and B) or three (C and D)

independent experiments (*p < 0.01).
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Ptges�/� mice. We carried out similar in vivo experiments using

Nalp3�/� and Casp1�/� mice, and we found that the amounts of

OVA-IgE from WT and mutant mice were comparable (Fig-

ure S4A). We also assessed the effect of a Th1 cell adjuvant, Pro-

pionibacterium (P.) acnes, on antigen-specific IgE, IgG1, and

IgG2c production in vivo. We found that P. acnes induced

comparable amounts of OVA-IgG1 and IgG2c in Ptges+/+ and

Ptges�/� mice and did not induce OVA-IgE in either genotype

(Figure S4B). Although Ptges�/� mice displayed reduced

amounts of OVA-IgE after immunization, the total IgE concentra-

tions were similar in unimmunized Ptges+/+ and Ptges�/� mice

(Figure S4C). This result indicates that Ptges�/� mice, unlike

Il4�/� or Stat6�/� mice, are not Th2 cell type prone.

We also immunized hematopoietic PGD synthase-deficient

(Ptgds�/�) mice, in which macrophages cannot produce PGD2,

with OVA-alum and analyzed sera for amounts of OVA-specific

IgE. As shown in Figure 4C, the amounts of OVA-specific IgE in
the serawere similar inWTandPtgds�/�mice. These results indi-

cate that silica- and alum-induced PGE2 production contributes

to the generation of IgE antibodies in vivo. In fact, we found that

PGE2 promoted the production of IgE in spleen cells stimulated

with LPS plus IL-4 or anti-CD40 plus IL-4 in vitro (Figure S4D).

Mice that received OVA alone did not exhibit an increase in

OVA-specific serum IgE levels and, in fact, exhibited 50-fold

lower amounts of OVA-specific IgG1 and IgG2c (Figure 5C and

data not shown).

Particulate Nickel Oxide Induces Macrophages
to Produce PGE2, but Not IL-1b, and Enhances
IgE production In Vivo
Nickel oxide (NiO) could induce macrophages to produce PGE2,

but not IL-1b or IL-18. NiO is a nanoparticle known to cause lung

inflammation when inhaled (Nishi et al., 2009; Ogami et al., 2009).

To determine whether NiO could activate macrophages, we
Immunity 34, 514–526, April 22, 2011 ª2011 Elsevier Inc. 519
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Figure 4. Ptges–/– Mice Display Reduced Antigen-Specific IgE Levels after Immunization with Silica or Alum

(A and B)Ptges+/+ andPtges�/�mice (n = 6) were immunized twice (day 0 and 7) with OVA plus alum (A) or OVA plus silica (B). Ten days after the last immunization,

sera were collected and analyzed for OVA-specific IgE, IgG1 and IgG2c antibodies by ELISA.

(C) Ptgds+/+ and Ptgds�/� mice (n = 4) were immunized twice (day 0 and 7) with OVA plus alum. Ten days after the last immunization, sera were collected and

analyzed for OVA-specific IgE antibodies by ELISA.
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carried out experiments similar to those in which we used silica

and alum. We found that, as observed with TiO2 (Figure 1D), NiO

failed to induce IL-1b production in LPS-primed macrophages

(Figure 5A). However, NiO-activated macrophages produced

significantamountsofPGE2at amountscomparable to silica-acti-

vatedmacrophages. As expected,NiO-inducedPGE2production

in macrophages is independent of the NALP3 inflammasome

(Figure 5B). In addition, mice immunized with OVA plus NiO ex-

hibited a significant increase in OVA-specific serum IgE concen-

trations (Figure 5C). In contrast, TiO2, which did not activate the

NALP3 inflammasome or induce PGE2 production in macro-

phages in vitro (Figures 1D and 5A), stimulated much weaker

IgE responses than immunization with alum and NiO (Figure 5C).

These results indicate that particulates that induce PGE2 produc-

tion, but not inflammasome activation in macrophages, positively

regulate the generation of IgE antibodies in vivo.

Silica-Dependent PGE2 Production Is Regulated
by the Syk and the p38 MAP Kinase Pathway
The mechanisms through which silica, alum, and ATP induce the

production of PGE2 in macrophages are unclear. Therefore, we
520 Immunity 34, 514–526, April 22, 2011 ª2011 Elsevier Inc.
sought to determine which signaling pathway was involved in

the production of PGE2. To this end, we stimulated LPS-treated

macrophages with silica in the presence or absence of various

signaling inhibitors, and we then determined which inhibitor(s)

suppressed PGE2 but had no effect on the production of IL-1b.

As shown in Figure 6A, only wortmannin suppressed silica-

induced production of IL-1b. In contrast, SB203580, U0126,

and SP600125 suppressed silica-induced production of PGE2.

We also found that cyclosporin A, rapamycin, and wedelolac-

tone partially suppressed silica-induced PGE2 production. We

conducted similar experiments by using ATP-activated macro-

phages. SB203580 and wortmannin enhanced ATP-induced

IL-1b production, whereas the other inhibitors reduced IL-1b

production. With the exception of rapamycin, all the inhibitors

reduced PGE2 production in ATP-activated macrophages

(Figure 6B). It is worth noting that SB203580 had no effect on

the amounts of COX-2 and PTGES expressed by macrophages

(Figure S5A). Taken together, these data suggest that the p38

MAP kinase inhibitor SB203580 preferentially suppresses the

production of PGE2 in both silica- and ATP-activated macro-

phages. We also sought to ascertain whether silica and ATP
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Figure 5. NiO Functions as a Th2 Adjuvant

(A) LPS-primed BALB/c peritoneal macrophages were stimulated with

100 mg/ml silica, 50 or 100 mg/ml NiO, or 50 or 100 mg/ml TiO2 for 2 hr.

(B) BM-derived macrophages from WT (C57BL/6), Asc�/�, Nalp3�/� or

Casp1�/� mice were primed with low-dose LPS and then stimulated with

100 mg/ml NiO for 6 hr. Data represent mean ± SE of two (B) or three (A)

independent experiments (*p < 0.01).

(C) C57BL/6 mice (n = 4) were immunized twice (day 0 and 7) with OVA alone,

OVA plus TiO2, OVA plus alum, or OVA plus NiO. Ten days after the last

immunization, sera were collected and analyzed for OVA-specific IgE anti-

bodies by ELISA.
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could activate p38 MAP kinase in macrophages and found that

stimulation of LPS-primed macrophages with silica and ATP

induced p38 MAP kinase phosphorylation and activation

(Figure 6C). Several reports have shown that ATP stimulates

p38 MAP kinase, which then activates cytosolic phospholipase

A2 (cPLA2) (Gijón et al., 2000; Ulmann et al., 2010). As shown in

Figure 6D, treatment with a cPLA2 inhibitor preferentially sup-

pressed PGE2 production, but not IL-1b production (data not

shown), in both ATP- and silica-activated macrophages.

Next, we examined the mechanisms involved in silica-medi-

ated activation of p38 MAP kinase. We have shown that lyso-

somal rupture by Leu-Leu-OMe activated macrophages to

produce PGE2 (Figure 2E). However, SB203580 significantly

suppressed the production of PGE2 but not IL-1b in Leu-Leu-

OMe-treated macrophages (Figure 6E). In addition, treatment
of macrophages with poly-2-vinylpyridine-N-oxide (PVNO),

which is a lysosomal stabilizing agent (Allison et al., 1966; Von

Behren et al., 1983), also suppressed silica-induced PGE2

production, which was similar to SB203580 treatment (Fig-

ure 6F). Treatment with PVNO had no effect on ATP-induced

PGE2 production, given that ATP is not involved in lysosome

damage (Hornung et al., 2008). These results indicate that lyso-

somal damage is involved in PGE2 production via the activation

of p38 MAP kinase in silica-activated macrophages.

Several reports indicate that Syk plays an important role in

antifungal responses by activating the NALP3 inflammasome

(Gross et al., 2009). In addition, Syk has been shown to be

involved in malarial hemozoin-mediated and monosodium urate

crystal-mediated inflammasome activation (Ng et al., 2008; Shio

et al., 2009). A Syk inhibitor markedly suppressed the production

of PGE2 in both silica- and Leu-Leu-OMe-treated macrophages

(Figure 6G). In contrast, Syk inhibition partially suppressed

ATP-induced PGE2 production, suggesting that the signaling

pathway involved in PGE2 production is different between partic-

ulate- and ATP-activated macrophages. Syk was partially asso-

ciated with IL-1b production in silica-stimulated macrophages

(Figure 6G). In addition, knockdown of Syk by siRNA in macro-

phages significantly reduced PGE2 and IL-1b production

compared to cells transfected with control siRNA (Figures S5B

and S5C). Syk might act upstream of p38 MAP kinase because

Syk inhibition suppressed phosphorylation of p38 MAP kinase

in silica-stimulated macrophages (Figure 6H). Taken together,

these results suggest that lysosomal damage triggers Syk

activation, and then activated Syk upregulates cPLA2 activity

via the phosphorylation of p38 MAP kinase.

DISCUSSION

The NALP3 inflammasome has been reported to be activated by

alum and involved in alum adjuvanticity and IgE production

(Eisenbarth et al., 2008; Kool et al., 2008; Li et al., 2008).

However, whether the NALP3 inflammasome is required for

alum adjuvanticity is controversial. Here, we found that silica,

alum, and ATP, which normally activate the NALP3 inflamma-

some, stimulate macrophages to produce PGE2 through mech-

anisms that do not involve the NALP3 inflammasome. We also

found that PGE2 production by macrophages regulates the

generation of antigen-specific IgE antibody in vivo.

The cells of the innate immune system can sense cellular

danger and stress via the NALP3 inflammasome. Particulates,

such as silica and alum, function as danger signals to activate

the NALP3 inflammasome. We found that lysosomal damage

and rupture and the subsequent leakage of lysosomal enzymes

into the cytoplasm promoted the production of PGE2 by macro-

phages. These results demonstrate that the danger signal

caused by particulate-induced phagosomal destabilization acti-

vates the NALP3 inflammasome and induces macrophages to

produce PGE2. However, Nalp3�/�, Asc�/�, and Casp1�/�

macrophages produced PGE2 in amounts similar to WT macro-

phages, suggesting that the lysosomal damage caused by silica

and alum activates at least two different pathways, theNALP3 in-

flammasome pathway and the PGE2-inducing pathway. We also

examined the pathway involved in PGE2 induction and found that

lysosomal damage triggered the production of PGE2 via the
Immunity 34, 514–526, April 22, 2011 ª2011 Elsevier Inc. 521



A

B

C

Silica

ATP

%
 IL

-1
 p

ro
du

ct
io

n 150

100

50

0 %
 P

G
E

2 
pr

od
uc

tio
n

100

50

0

150

%
 IL

-1
 p

ro
du

ct
io

n

150

100

50

0

200

%
 P

G
E

2 
pr

od
uc

tio
n

100

50

0

150

p-p38

total p38

30 min 60 min
D

P
G

E
2 

(p
g/

m
l)

0

500

1000 **

E

P
G

E
2 

(p
g/

m
l)

IL
-1

 (
pg

/m
l)

0

2000

3000

0

1000

2000
**

1000

F

P
G

E
2 

(p
g/

m
l)

0

500

1000

G
**

p-p38

total p38

silicaH

P
G

E
2 

(p
g/

m
l)

**

0

500

1000

**

**

P
G

E
2 

(p
g/

m
l)

0

500

1000 **

IL
-1

 (
pg

/m
l)

0

2000

3000

1000

**

*

Figure 6. Silica-Induced PGE2 Production in Macrophages Is Regu-

lated by the Syk/p38 MAP Kinase Pathway

(A and B) LPS-primed BALB/c peritoneal macrophages were stimulated with

100 mg/ml silica (A) or 1 mM ATP (B) for 2 hr in the presence or absence of

signaling inhibitors as described in the Experimental Procedures. The results

are expressed as the percentage (%) of IL-1b and PGE2 produced, and the

amounts of IL-1b and PGE2 produced by macrophages stimulated with silica

or ATP in the absence of inhibitors were used as the 100% controls.

(C) Macrophages were stimulated with 100 mg/ml silica or 1 mM ATP for the

indicated time. Cell lysates were subjected to western blot analysis with anti-

phospho-p38 MAP kinase and total p38 MAP kinase antibodies.

(D) LPS-primed macrophages were stimulated with silica or ATP for 2 hr in the

presence or absence of 10 mM cPLA2 inhibitor (cPLAi).
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activation of Syk and the p38 MAP kinase. Syk is known to play

an important role in adaptive immune receptor signaling (Mócsai

et al., 2010), and it is involved inmalarial hemozoin-mediated and

monosodium urate crystal-mediated inflammasome activation

(Ng et al., 2008; Shio et al., 2009). Monosodium urate crystals

have been reported to induce prostaglandin synthesis in

phagocytic cells (Gordon et al., 1985), and we also found that

monosodium urate crystals stimulates macrophages to produce

PGE2 and IL-1b in our experimental system (data not shown). In

addition, cPLA2 activation and prostaglandin production are

regulated by the activation of Syk (Suram et al., 2006). We also

found that curdlan, which activates Dectin-1 and Syk, stimulated

macrophages to produce higher amounts of PGE2 in a Syk- and

p38MAP kinase-dependent manner (data not shown). Thus, Syk

activation triggered by lysosomal damage promotes the produc-

tion of PGE2 in macrophages.

We demonstrated that the p38 MAP kinase pathway is critical

for PGE2 (but not IL-1b) production in silica- and ATP-stimulated

macrophages. Several reports have shown that p38 MAP kinase

activates cPLA2 and induces arachidonic acid release and PGE2

secretion in a similar manner as Syk (Gijón et al., 2000; Ulmann

et al., 2010). In addition, Syk has been reported to be required

for p38 MAP kinase activation under the stress conditions

(He et al., 2002). We showed that Syk inhibition suppressed

phosphorylation of the p38 MAP kinase. These reports and our

findings suggest that Syk activates cPLA2 and PGE2 production

via the p38 MAP kinase pathway in particulate-activated

macrophages.

We also found that ATP stimulated macrophages to induce

PGE2 production. However, the required signaling pathway

might be different between particulate- and ATP-activated

macrophages. Inhibition of the p38 MAP kinase and cPLA2

significantly suppressed PGE2 production in both silica- and

ATP-activated macrophages. In contrast, Syk inhibition partially

suppressed ATP-induced PGE2 production.We have shown that

lysosomal damage triggers Syk activation, and ATP has been

reported to not be involved in lysosome damage (Hornung

et al., 2008). However, ATP stimulation regulates Syk in osteo-

clasts (Hazama et al., 2009). Hazama et al. and our findings

suggest that ATP-activated Syk is partially involved in PGE2

production in macrophages independent of lysosomal damage.

The detailed mechanism involved in lysosomal damage-trig-

gered activation of Syk and p38 MAP kinase remains unclear.

In addition, the involvement of cathepsin B in PGE2 production

should be clarified. As such, we are currently investigating which
(E) LPS-primed macrophages were incubated with 1 mM Leu-Leu-OMe for

2 hr in the presence or absence of p38 MAP kinase inhibitor.

(F) Macrophages were incubated with or without 20 mg/ml PVNO for 5 hr. Then

cells were primed with LPS. Primed macrophages were stimulated with silica

or ATP for 2 hr.

(G) LPS-primed macrophages were stimulated with 100 mg/ml silica, 1 mM

ATP, or 1 mM Leu-Leu-OMe for 2 hr in the presence or absence of 1 mM Syk

inhibitor (Syki).

(H) Macrophages were stimulated with 100 mg/ml silica for 30 min in the

presence or absence of 1 mM Syk inhibitor. Cell lysates from stimulated

macrophages were subjected to western blot analysis. Data represent

mean ± SE of two (C and H) or three (A, B, and D–G) independent experiments

(*p < 0.05, **p < 0.01).
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intracellular factor(s) or event(s) are associated with activation of

Syk and p38 MAP kinase in particulate-activated macrophages.

We have herein shown that Nalp3�/� and Casp1�/� mice

produce similar amounts of OVA-IgE to WT mice. These results

suggest that NALP3 inflammasome-dependent cytokines,

such as IL-1b and IL-18, are not required for particulate-induced

IgE responses. Our data in this study demonstrate that inflam-

masome activation and PGE2 production are not required for

the induction of antigen-specific IgG1 and IgG2c production.

We found that treatment of macrophages with PVNO sup-

pressed the production of PGE2; however, a previous study

has reported that treatment with PVNO prevent the adjuvant

effect of silica on both IgE and IgG1 antibody production

in vivo (Mancino et al., 1983). Taken together, these reports

and our findings suggest that factor(s) induced by phagosomal

destabilization other than IL-1b, IL-18, and PGE2 are also asso-

ciated with alum and silica adjuvanticity. Furthermore, these

results also suggest that the properties of individual particulates

are very important for the control of acquired immune responses

when particulates are used as adjuvants.

The effect of PGE2 on Th1 and Th2 cell responses is a complex

issue. Previous studies have reported that PGE2 induces type 2

immunity by suppressing the production of cytokines from Th1

cells, macrophages, and DCs (Koga et al., 2009; Kuroda and

Yamashita, 2003; Fabricius et al., 2010). However, PGE2 facili-

tates the differentiation of Th1 cells in the presence of IL-12

and high doses of CD28 antibody through the activation of the

PI3-kinase pathway (Yao et al., 2009). Why does PGE2 function

as an activator of Th1 and Th2 cells?We speculate that the cyto-

kine milieu, containing IL-4 and IL-12, among many other cyto-

kines, influences the effects of PGE2 on the immune systems.

PGE2 facilitates Th1 cell responses in the presence of IL-12

(Yao et al., 2009). In contrast, herein we show that silica and

alum induce macrophages to produce only caspase-1-depen-

dent cytokines and PGE2, but not other inflammatory cytokines,

including IL-12. Similar to the findings of others (Fedyk and

Phipps, 1996; Roper et al., 1995), our findings also showed

that PGE2 cooperates with IL-4 to promote IgE production in

spleen cells in vitro. Our results suggest that PGE2 facilitates

the generation of either Th1 or Th2 cell responses, depending

on the balance of IL-12 and IL-4 amounts.

Our in vivo and in vitro experiments suggest that PGE2 func-

tions as an activator of IgE production in B cells. Consistent

with these results, previous reports have shown that PGE2 facil-

itates IgE production in LPS plus IL-4-stimulated B cells (Fedyk

and Phipps, 1996; Roper et al., 1995). However, contrary to

our findings, Garrone et al. showed that PGE2 suppresses IgE

production in anti-CD40 plus IL-4-stimulated B cells (Garrone

et al., 1994). This discrepancy between their results and ours

might be due to the different types of cells used. We carried

out our experiments with unsorted spleen cells, but Garrone

et al. used purified B cells (Garrone et al., 1994). Our findings

suggest that non-B cells affected by PGE2 might stimulate B

cells to induce IgE.

In conclusion, we have found that silica and alum stimulate

macrophages to produce PGE2 through a pathway that is

dependent on Syk and p38 MAP kinase. PGE2 generated by

this mechanism regulates type 2 immune responses in vivo.

Our results suggest that manipulating particulate-induced cyto-
kines and PGE2 production could open new possibilities for the

treatment of allergic inflammation, infectious diseases, and

cancer.

EXPERIMENTAL PROCEDURES

Animals

Female C57BL/6 and BALB/c mice were purchased from Charles River

Laboratories Japan (Yokohama, Japan). Ptges�/� mice were generated by

S. Uematsu and S. Akira at Osaka University (Uematsu et al., 2002) and

were backcrossed to the C57BL/6 background for five generations; their WT

littermates were used as controls. Ptgds�/� mice (BALB/c background) were

established by Y. Urade at the Osaka Bioscience Institute (Mohri et al.,

2006). Asc�/�, Nalp3�/� and Casp1�/� mice on C57BL/6 background were

described previously (Mariathasan et al., 2004, 2006). IL1r1�/� mice were

obtained from Jackson Laboratories. All the animal experiments were carried

out in accordance to the guidelines for the care and use of animals approved

by the University of Occupational and Environmental Health.

Reagents

We used three different types of alum compounds in this study. LSL alum was

purchased fromCosmoBioCo. Ltd. (Tokyo, Japan); alhydrogel waspurchased

fromSigmaAldrich (St. Louis,MO); and Imject alumwaspurchased fromPierce

(Rockford, IL). All the cytokines except IL-18 were purchased from PeproTech

(RockyHill, NJ). Recombinantmouse IL-18 and themouse IL-18 ELISA kit were

purchased fromMBL (Nagoya, Japan). The cytokine and chemokine ELISA kits

were purchased from PeproTech. The PGE2 and PGD2-MOX EIA kits were

purchased from Cayman Chemical (Ann Arbor, MI). The silica crystals (Min-u-

sil 5 silica) were purchased from U.S. Silica (Berkeley Springs, WV). NiO was

purchased from Vacuum Metallurgical (Chiba, Japan). TiO2 and ATP were

purchased fromWako Chemical (Osaka, Japan). The PI3 kinase inhibitor wort-

mannin was purchased from Sigma Aldrich. The caspase-1 inhibitor I (YVAD-

CHO), cathepsin B inhibitor (CA-074 Me), p38 MAP kinase inhibitor

(SB203580), cyclosporine A, MEK1/2 (Erk) inhibitor (U0126), rapamycin, JNK

inhibitor (SP600125), NF-kB inhibitor (wedelolactone), and Syk inhibitor were

purchased from Calbiochem (Merck; Darmstadt, Germany). Cytochalasin D

was purchased from Enzo Life Science (Plymouth Meeting, PA). Cytosolic

PLA2 inhibitor (Arachidonyl Trifluoromethyl Ketone) was purchased from

Cayman Chemical. Leu-Leu-OMe was purchased from Chem-Impex Interna-

tional (Wood Dale, IL). Poly-2-vinylpyridine N-oxide (PVNO) was purchased

from Polysciences (Warrington, PA). The following antibodies were used for

western blot analysis: anti-GAPDH (Fitzgerald Industries International,

Concord, MA); anti-COX-2 and anti-PTGES (mPGES-1) (Cayman Chemical);

and anti-p38 MAP kinase and anti-phospho-p38 MAP kinase (Thr180/Tyr182)

(Cell Signaling, Danvers, MA). The cells were cultured in RPMI 1640 medium

(Nissui Pharmaceutical, Tokyo, Japan) supplemented with 10% FBS (BioWhit-

taker,Walkersville,MD,USA), 2mMglutamine, 50U/ml penicillin, and 50 mg/ml

streptomycin (all from Life Technologies, Rockville, MD, USA).

Cell Preparation

Peritoneal macrophages were generated by injecting mice i.p. with 2 ml 4%

thioglycolate broth (Eiken, Tokyo, Japan) and harvested as described previ-

ously (Kuroda and Yamashita, 2003). BM-derived macrophages were

prepared by culturing BM cells in the presence of 10 ng/ml of M-CSF or

GM-CSF as described previously (Kuroda et al., 2007; Kuroda et al., 2009).

The purity of the BM-derived macrophages was more than 95% F4/80 and

Mac-1 positive as determined by flow cytometric analysis. BM-derived DCs

were prepared by culturing BM cells in the presence of 10 ng/ml of GM-CSF

for 5 days. CD11c+ cells were then enriched from the culture with the MACS

(Miltenyi Biotec, Bergisch Gladbach, Germany). The enriched CD11c+ BM-

derived DCs were 80%CD11c pure, as determined by flow cytometry. Human

PBMC were purified by density gradient using Lymphoprep (Axis-Sheld Poc

AS, Oslo, Norway).

In Vitro Stimulation

In all the experiments, the cells were cultured at a density of 53 105/ml/well in

24-well plates (Falcom 3047; BD Biosciences, Franklin Lake, NJ), unless
Immunity 34, 514–526, April 22, 2011 ª2011 Elsevier Inc. 523
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otherwise specified. Macrophages and BM-derived DCs were primed with or

without 1 ng/ml LPS (low dose) for 3 hr and then stimulated with 50 or

100 mg/ml silica, 200 or 400 mg/ml alum, 1 mM ATP, 50 or 100 mg/ml TiO2,

or 50 or 100 mg/ml NiO for 2, 6, or 18 hr. In other experiments, 10 ng/ml of

IL-1 or IL-18 or 1 or 2 mM of Leu-Leu-OMe was used instead of silica or

alum. In some experiments, inhibitors were added to LPS-primed macro-

phages together with silica, alum, or ATP. The working concentrations of the

inhibitors used were as follows: 10 mM caspase-1 inhibitor I, 10 mM CA-074

Me, 2 mM cytochalasin D, 1 mM NS-398, 10 mM SB203580, 100 nM wortman-

nin, 100 nM cyclosporin A, 10 mM U0126, 100 nM rapamycin, 10 mM

SP600125, 20 mM wedelolactone, 10 mM cPLA2 inhibitor, and 1 mM Syk inhib-

itor. After stimulation, cell-free supernatants were collected and used for

ELISA. In some experiments, macrophages stimulated with 1 mg/ml LPS

(high dose) for 6 hr were used as controls. For the PVNO treatment, macro-

phages were incubated with or without PVNO for 5 hr. Cells were washed

and then primed with low-dose LPS. LPS-primed macrophages were stimu-

lated with silica. For the western blot analysis, LPS-primed macrophages

were stimulated with silica, alum, or ATP for 30 and 60 min. The cells were

then lysed with RIPA lysis buffer and used for western blot analysis as

described previously (Kuroda et al., 2009). Human PBMCs were cultured at

a density of 1 3 106/ml/well in 24-well plates and primed with 0.1 ng/ml LPS

for 3 hr. Primed PBMC were then stimulated with 50 mg/ml silica for 3 hr.
Immunization

The mice were immunized twice (day 0 and 7) i.p. with 100 mg OVA plus 2 mg

alum, 100 mg OVA plus 0.5 mg silica or 100 mg OVA plus 0.5 mg NiO in 200 ml of

PBS. Ten days after the last immunization, sera were collected and analyzed

for the OVA-specific IgE, IgG1, and IgG2c antibodies by ELISA.
ELISA

The amounts of cytokines, chemokines, and PGs were measured with either

cytokine/chemokine ELISA kits or PGE2/PGD2 EIA kit in accordance with the

manufacturer’s instructions. The amounts of OVA-IgE in the sera were deter-

mined with the DS mouse IgE ELISA (OVA) kit (DS Pharma Biochemical,

Osaka, Japan). For the analysis of OVA-IgG1 and IgG2c, serial dilutions of

sera were prepared in 96-well plates coated with 10 mg/ml OVA. HRP-conju-

gated goat anti-mouse IgG1 or IgG2c (Bethyl Laboratories, Montgomery,

TX) were used as secondary antibodies. The reciprocal value of serum dilution

being absorbance (OD 405 nm) at 0.5 was defined as the titer of antigen-

specific serum IgG1 and IgG2c.
Statistical analysis

All the experiments were repeated between two to five times and representa-

tive results are shown. The statistical analyses were performed with the

Student’s t test. p values of < 0.05 were considered statistically significant

and marked with an asterisk.
SUPPLEMENTAL INFORMATION

Supplemental Information includes five figures and Supplemental Experi-

mental Procedures and can be found with this article online at doi:10.1016/j.

immuni.2011.03.019.
ACKNOWLEDGMENTS

We thank G. Krystal (British Columbia Cancer Research Agency) for helpful

discussion. This work was supported in part by a UOEH Research Grant for

Promotion of Occupational Health (to E.K.) and a Grant-in-Aid for Scientific

Research from theMinistry of Education, Science, Sports andCulture of Japan

(21890297 and 22791094 to E.K.).

Received: June 10, 2010

Revised: March 14, 2011

Accepted: March 24, 2011

Published online: April 14, 2011
524 Immunity 34, 514–526, April 22, 2011 ª2011 Elsevier Inc.
REFERENCES

Aimanianda, V., Haensler, J., Lacroix-Desmazes, S., Kaveri, S.V., and Bayry, J.

(2009). Novel cellular and molecular mechanisms of induction of immune

responses by aluminum adjuvants. Trends Pharmacol. Sci. 30, 287–295.

Akira, S., Uematsu, S., and Takeuchi, O. (2006). Pathogen recognition and

innate immunity. Cell 124, 783–801.

Allison, A.C., Harington, J.S., and Birbeck, M. (1966). An examination of the

cytotoxic effects of silica on macrophages. J. Exp. Med. 124, 141–154.

Boniface, K., Bak-Jensen, K.S., Li, Y., Blumenschein, W.M., McGeachy, M.J.,

McClanahan, T.K., McKenzie, B.S., Kastelein, R.A., Cua, D.J., and de Waal

Malefyt, R. (2009). Prostaglandin E2 regulates Th17 cell differentiation and

function through cyclic AMP and EP2/EP4 receptor signaling. J. Exp. Med.

206, 535–548.

Cassel, S.L., Eisenbarth, S.C., Iyer, S.S., Sadler, J.J., Colegio, O.R., Tephly,

L.A., Carter, A.B., Rothman, P.B., Flavell, R.A., and Sutterwala, F.S. (2008).

The Nalp3 inflammasome is essential for the development of silicosis. Proc.

Natl. Acad. Sci. USA 105, 9035–9040.

Dinarello, C.A. (2002). The IL-1 family and inflammatory diseases. Clin. Exp.

Rheumatol. 20 (5, Suppl 27), S1–S13.
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