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Contractile myofibroblasts are responsible for remodeling of extracellular matrix during wound healing;
however, their continued activity results in various fibrocontractive diseases. Conversion of fibroblasts
into myofibroblasts is induced by transforming growth factor-b1 (TGF-b1) and is hallmarked by the
neo-expression of a-smooth muscle actin (a-SMA), a commonly used myofibroblast marker. Moreover,
myofibroblast differentiation and acquisition of the contractile phenotype involves functionally important
alterations in the expression of actin-organizing proteins. We investigated whether myofibroblast differentia-
tion is accompanied by changes in the expression of palladin, a cytoskeletal protein that controls stress fiber
integrity. Palladin is expressed as several isoforms, including major 3Ig (90 kDa) and 4Ig (140 kDa) forms that
differ in their N-terminal sequence. Expression of the 4Ig isoform is strongly induced in fibroblast stress fibers
upon TGF-b1 treatment preceding a-SMA upregulation. TGF-b1 induced upregulation of palladin is mediated
both by Smad and mitogen-activated protein kinase pathways. Furthermore, palladin 4Ig-isoform is co-
expressed with a-SMA in vivo in experimental rat wounds and in human myofibroblast-containing lesions.
Taken together these results identify palladin 4Ig as a novel marker of myofibroblast conversion in vitro and in
vivo. They also provide for the first time information about the signaling cascades involved in the regulation of
palladin expression.
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INTRODUCTION
Myofibroblasts are specialized cells that originate from
fibroblasts during both physiological and pathological
processes. Myofibroblasts secrete extracellular proteins,
proteases, cytokines, and growth factors and actively
participate in modulation of the extracellular matrix (ECM)
during wound healing (Powell et al., 1999; Tomasek et al.,
2002). The cells account for the contractile potential of
granulation tissue, which ensures the rapid and efficient

closure of dermal wounds (Hinz and Gabbiani, 2003b). After
wound closure myofibroblasts usually disappear by apoptosis
(Desmouliere and Gabbiani, 1995). However, in fibrocon-
tractive diseases, for example hypertrophic scars, liver
cirrhosis, idiopathic lung fibrosis, and glomerulosclerosis,
myofibroblasts persist and contribute to disease progress by
overproduction of ECM components and by excessive
contraction (Desmouliere et al, 2003; Gabbiani, 2003). They
are also a key element in the stromal reaction induced by
invasive neoplastic cells (Desmouliere et al., 2004).

Differentiation of myofibroblasts from normal fibroblasts
involves both mechanical stimulus to the cells by tensile forces
in the ECM and chemical stimuli by growth factors (Tomasek
et al., 2002). During this process, myofibroblasts first become
proto-myofibroblasts and, upon maturation, acquire smooth
muscle characteristics, including changes in the structure of
contractile actin cytoskeleton and concomitant neo-expression
of actin-associated proteins (Malmstrom et al., 2004). One of
the neo-expressed proteins is a-smooth muscle actin (a-SMA).
a-SMA is considered as the most reliable marker of myofibro-
blastic differentiation and it is widely used both in experi-
mental models and diagnostic pathology (Darby et al., 1990).
Besides a-SMA, myofibroblasts can express smooth muscle
myosin heavy chains and calponin, both of which are involved
in the contractile activity of the cells (Tomasek et al., 2002).
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However, myofibroblasts do not attain all the molecular
characteristics of smooth muscle cells, for instance they only
occasionally express desmin and do not express smoothelin
(Tomasek et al., 2002).

An important factor in myofibroblast conversion is
transforming growth factor-b1 (TGF-b1). TGF-b1 expression
is upregulated in dermal wounds, where it is released by
platelets and produced by keratinocytes, inflammatory
leukocytes and fibroblasts (O’Kane and Ferguson, 1997).
TGF-b1 mediates its effects primarily via Smad and mitogen-
activated protein kinase (MAPK) pathways (Massague, 2000;
Massague and Wotton, 2000). Most importantly for myofi-
broblastic differentiation, TGF-b1 can induce the expression
of a-SMA via Smad3 (Hu et al., 2003). TGF-b1 stimulation of
fibroblasts leads also to activation of ERK1/2 and p38, both of
which are members of the MAPK signaling pathway (Ravanti
et al., 1999a, b). There is considerable cross-talk between
Smad and MAPK signaling cascades, and MAPKs can either
positively or negatively influence Smad activation (Derynck
and Zhang, 2003).

Palladin together with myotilin and myopalladin forms a
novel subfamily of cytoskeletal Ig-domain-containing pro-
teins (Salmikangas et al., 1999; Parast and Otey, 2000; Bang
et al., 2001; Mykkänen et al., 2001). Myotilin and myopalla-
din are mainly expressed in striated muscle, whereas palladin
is more widely expressed both in epithelial and mesenchymal
cells (Parast and Otey, 2000; Mykkänen et al., 2001).
Palladin exists as multiple isoforms, whose transcription is
regulated in a cell type-specific manner. The genomic
structure of murine palladin implies the presence of three
different promoter regions, which may allow the tissue-
specific expression of different isoforms (Rachlin and Otey,
2006). Palladin localizes to the Z-discs in cardiomyocytes,
and to stress fiber dense bodies and focal adhesions in non-
muscle cells (Parast and Otey, 2000; Mykkänen et al., 2001).
By interacting with several actin-associated proteins includ-
ing a-actinin, ezrin, VASP, ArgBP2, and profilin, palladin can
serve as a scaffold that connects molecules with different
functional activities (Mykkänen et al., 2001; Boukhelifa et al.,
2004; Rönty et al., 2004; Rönty et al., 2005; Boukhelifa et al,
2006). Antisense experiments and studies with palladin
knock-out fibroblasts have shown that downregulation of
palladin leads to disruption of actin-containing stress fibers,
whereas transient overexpression leads to re-organization of
the actin cytoskeleton and induction of thick actin bundles
(Parast and Otey, 2000; Boukhelifa et al., 2003; Rönty et al.,
2004; Luo et al., 2005; Rachlin and Otey, 2006). In vivo, loss
of palladin causes embryonic lethality due to an apparent cell
migration defect resulting in defective neural tube and ventral
closure (Luo et al., 2005).

In this study, we have analyzed palladin isoform expres-
sion during fibroblast-to-myofibroblast conversion. We show
that palladin is upregulated during the differentiation process
in response to TGF-b1 and that the 4Ig isoform is neo-
expressed in myofibroblasts. The presence of the 4Ig isoform
is also demonstrated in vivo in a rat wound model and in
tissues rich in myofibroblasts. Finally, the TGF-b1 signaling
pathways involved in the regulation are identified.

RESULTS
Characterization of isoform-specific palladin antibodies and
expression of palladin isoforms

The cloning and characterization of mouse palladin has
identified at least five different isoforms, including a novel
transcript that contains four Ig domains (Rachlin and Otey,
2006). Western blot analysis with a C-terminal palladin
antibody (Ab953) has previously demonstrated that several
forms of palladin, including 90 and 140 kDa polypeptides,
are expressed in U251 human glioma cells (Mykkänen et al.,
2001). The 140 kDa protein presumably represents the 4Ig
isoform (Figure 1a) and therefore U251 mRNA was used as a
template to clone the 50-sequence extension of the human 4Ig
homologue by reverse transcriptase-PCR. New antibodies
against palladin sequences were raised to obtain further
insight on the presence and localization of various forms
of palladin. The antigen used to produce the 3Ig anti-
body corresponds to the previously described proline-rich
N-terminal segment of the Ab023209 sequence (Mykkänen
et al., 2001). The novel 4Ig sequence extension was produced
as a glutathione-S-transferase-fusion protein and used as an
antigen to produce a 4Ig-specific antibody (Figure 1a). The
reactivity of palladin antibodies was verified by Western blot
analysis of cells transfected with various green fluorescent
protein (GFP)-palladin constructs (Figure 1b). The Ab-3Ig
recognized the GFP-3Ig construct and Ab-4Ig-Hu raised
against the N-terminus of the human 4Ig sequence reacted
with GFP-4IgN-term construct. No crossreactivity or reactiv-
ity against GFP was observed. U251 cell lysates were next
probed with palladin antibodies Ab-3Ig, Ab-4Ig-Hu, Ab-4Ig-
Mo, Ab953, and a mixture of palladin mAbs (4D10, 7C6,
9C12, and 1E6) (Parast and Otey, 2000). As expected, the
antibodies reacted with several protein bands (Figure 1c).
One of the bands (140 kDa) was recognized by all antibodies
verifying that the 4Ig sequence is indeed expressed. The
previously described 3Ig (90 kDa) major isoform (Parast and
Otey, 2000; Mykkänen et al., 2001) was recognized by Ab-
3Ig, Ab953, and the mAb but not by either 4Ig antibody.
Thus, it can be concluded that Ab-3Ig reacts both with the 3Ig
and 4Ig isoforms, whereas the 4Ig antibodies react with the
4Ig but not the 3Ig isoform. In U251 cells additional bands
migrating at 115, 70, and 50 kDa were also detected. Similar
sized bands have been detected in previous reports with
independent antibodies as well as antibodies used in this
study (Parast and Otey, 2000; Bang et al., 2001; Mykkänen
et al., 2001; Luo et al., 2005). These bands could present
additional differentially spliced transcripts. In immunostain-
ing of U251 cells (Figure 1d), the 4Ig antibodies showed a
similar staining as Ab-3Ig and Ab953, decorating mainly
stress fiber dense bodies and focal adhesions.

Regulation of the isoform-specific expression of palladin during
myofibroblastic modulation

Next, we studied the expression and subcellular localization
of different palladin isoforms in fibroblasts during the TGF-b1
induced myofibroblastic differentiation. Under basal culture
conditions Ab-3Ig demonstrated an analogous staining
pattern in human skin fibroblasts as in U251 cells, whereas
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Ab-4Ig-Hu showed no specific reactivity. In cells treated with
5 ng/ml of TGF-b1 for 12–96 hours, a more robust stress fiber
staining was observed with Ab-3Ig. After treatment, also Ab-
4Ig-Hu showed a strong punctate stress fiber staining
indicating that TGF-b1 induces expression of the 4Ig isoform.
The changes in palladin expression were similar in the
presence and absence of FCS. In line with previous studies,
SMA was also upregulated during the myofibroblastic
differentiation and it colocalized with palladin in stress fibers
(Figure 2a–c). A similar result could be seen in Western blot
experiments, where TGF-b1 treatment resulted in upregul-
ation of the 90 kDa 3Ig isoform and neo-expression of the
140 kDa 4Ig isoform (Figure 2d). Upregulation of the 4Ig
isoform was rapid and high levels were present already after
24 hours of TGF-b1 treatment. Induction of a-SMA expression
occurred later and was markedly upregulated only after
48 hours of treatment. Thus, palladin 4Ig expression seems to
precede a-SMA.

The TGF-b1-induced palladin expression is mediated by Smad3,
p38, and ERK1/2

We elucidated the role of Smad signaling in TGF-b1-induced
palladin expression. We utilized adenoviral gene delivery of

wild-type Smad3 (RAdSmad3) to obtain overexpression of
Smad3, and RAd dominant-negative Smad3 (Smad3DN), and
inhibitory Smad7 (RAdSmad7) to inhibit Smad signaling.
Human gingival fibroblasts were infected with the corre-
sponding Smad adenoviruses and empty control adenovirus
(RAdpCA3) at multiplicity of infection 500, and treated with
TGF-b1 (5 ng/ml) for 24 hours, as indicated. As shown in
Figure 3a, a 24-hour TGF-b1 stimulation markedly enhanced
palladin expression in RAdpCA3-infected cells. Overexpres-
sion of Smad3 further enhanced the TGF-b1-elicited palladin
expression. Conversely, inhibition of Smad signaling by
adenoviral expression of Smad3DN and Smad7 markedly
inhibited the TGF-b1-induced levels of palladin (Figure 3a).
TGF-b1 stimulation also enhanced the expression of SMA,
and this was inhibited by adenoviral expression of Smad3DN
and Smad7 (Figure 3a). Together, these results imply that
Smad signaling, in particular via Smad3, mediates the TGF-
b1-induced expression of palladin and a-SMA in fibroblasts.

TGF-b1 activates ERK1/2 and p38 MAPK pathways in
gingival fibroblasts (Ravanti et al., 1999a). In addition, Smad3
is involved in regulating the TGF-b1-elicited expression of
matrix metalloproteinase-13 in cooperation with p38 MAPK
(Leivonen et al., 2002), and the TGF-b1-elicited expression of
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Figure 1. Characterization of the palladin antibodies. (a) A schematic illustration of the palladin isoforms and the regions used for recombinant protein/antibody

production, GFP-constructs and 4Ig Northern blot probe. (PP¼ poly-proline, Ig¼ IgC2 domain). (b) COS-7 cells were transfected with the indicated

GFP-palladin constructs and the lysates were blotted with antibodies Ab-3Ig (left side) and Ab-4Ig-Hu (right side). In the upper panel COS-7 cells were

transfected with a full-length 3Ig isoform construct. Ab-3Ig recognizes the transfected protein whereas Ab-4Ig-Hu does not. In the lower panel, COS-7 cells were

transfected with a construct that encodes the N-terminal sequence specific for 4Ig isoform. Ab-4Ig-Hu recognizes the transfected construct while Ab-3Ig

does not. Neither antibody reacted with GFP. (c) U251 cell lysates were blotted with palladin antibodies. All antibodies recognize the 140 kDa 4Ig isoform.

Ab-3Ig, Ab953, and the mAb mixture also recognize the 90 kDa 3Ig isoform, whereas Ab-4Ig-Hu and Mo do not. None of the palladin antibodies react with

b-actin, which is shown as a control. (d) U251 cells were stained with different palladin antibodies. All antibodies show a similar punctate staining pattern

along the stress fibers corresponding to dense regions, and in some focal adhesions. Bar¼ 5mm.
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CTGF in cooperation with ERK1/2 (Leivonen et al., 2005).
Therefore, we first examined whether ERK1/2 and p38 MAPK
pathways play a role in mediating the effects of TGF-b1 on
palladin gene expression in human gingival fibroblasts. We
used PD98059, an inhibitor for MEK1, the upstream activator
of ERK1/2, and SB203580, a specific chemical inhibitor for
p38 MAPK. Both PD98059 and SB203580 potently down-
regulated TGF-b1-induced palladin expression at the protein
level (Figure 3b), indicating that p38 and ERK1/2 MAPK
signaling cascades are important for mediating the effects of
TGF-b1 on palladin gene expression. Inhibition of the p38
pathway by SB203580 also reduced the TGF-b1-induced
a-SMA expression, and co-treatment of fibroblasts with
PD98059 and SB203580 abolished a-SMA expression
(Figure 3b).

We examined the possible cross-talk between the MAPK
and Smad3 pathways in mediating the TGF-b1-elicited
expression of palladin. Human gingival fibroblasts were
infected with recombinant adenoviruses for Smad3 and
Smad4 together with adenoviruses for wild-type p38a

(RAdp38a), and constitutively active MKK3b (RAdMKK3bE),
an upstream activator of p38, and incubated for 24 hours. In
the absence of TGF-b1, activation of p38 by a constitutively
active mutant of its upstream activator MKK3b induced the
expression of palladin 4Ig mRNA (Figure 3c). Overexpression
of Smad3 further enhanced the upregulatory effect of
MKK3bE on palladin mRNA expression. Next, gingival
fibroblasts were infected with adenoviruses for constitutively
active MEK1 (RAdMEK1CA) alone or in combination with
RAdSmad3 and RAdMKK3bE. Activation of ERK1/2 with co-
expression of Smad3 resulted in marked induction in palladin
4Ig isoform expression (Figure 3d). This effect was further
enhanced by co-expression of constitutively active MKK3b.
Together, these results imply that interplay between ERK1/2,
p38, and Smad3 signaling plays an important role in
regulating palladin gene expression.

Palladin is expressed in experimental rat dermal wounds

Next, we studied the expression of palladin in experimental
rat dermal wounds. Sections of 6 and 9-day-old granulation
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Figure 2. Immunoreactivity of fibroblasts with palladin and a-SMA antibodies before and after treatment with TGF-b1. Human dermal fibroblasts were grown

on coverslips and treated with TGF-b1 (5 ng/ml) for 12–96 hours. Subsequently, the cells were fixed and stained. (a) Ab-3Ig, which recognizes both the 3Ig

and 4Ig isoforms show a punctate staining pattern along the stress fibers both in the control cells and TGF-b1-treated cells. However, the staining is more robust

after 12 hours of treatment. (b) Ab-4Ig-Hu, which recognizes only the 4Ig isoform shows only weak diffuse staining in untreated cells. After 12 hours of

TGF-b1 treatment a signal similar to Ab-3Ig is seen along the stress fibers. TGF-b1 treatment induces also expression of a-SMA, but the signal is evident

only after 48 hours. After 96 hours most of the cells are positive for both 4Ig palladin and a-SMA (a and b). (c) At a higher magnification the punctate

staining pattern of palladin along a-SMA-positive stress fibers is evident. The expression of palladin 3Ig and 4Ig isoforms together with a-SMA was also studied

by Western blotting. Palladin 3Ig is expressed already in the control cells but the expression increases during TGF-b1treatment. Palladin 4Ig is neo-expressed

in fibroblasts. Palladin isoforms are upregulated prior to a-SMA appearance. (d) A Coomassie-stained gel is shown as a loading control.
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tissue from full thickness rat dermal wounds were co-stained
for a-SMA, palladin 4Ig (Ab-4Ig-Mo) and palladin 3Ig
(Figure 4). Both palladin antibodies stain the fibroblasts
already in 6-day-old tissue when they are still negative for
a-SMA and thus represent the proto-myofibroblast phenotype
(Figure 4a and c). After 9 days wound healing the proto-
myofibroblasts evolve into differentiated myofibroblasts by de
novo expressing a-SMA (Figure 4b and d), palladin coloca-
lizes with a-SMA in the stress fibers (Figure 4b and d insets).

Experiments with cultured fibroblasts showed that the
palladin 3Ig isoform is expressed already at basal culture
conditions whereas palladin 4Ig is neo-expressed when the
cells differentiate into myofibroblasts. Therefore, we wanted
to study the expression of the 4Ig isoform in more detail in the
rat dermal wound model. As shown in Figure 5a, palladin 4Ig
isoform is not expressed in fibroblasts of early (3 days) wound
granulation tissue, which do not exhibit microfilament

bundles. However, around day 6 post-wounding granulation
tissue fibroblasts de novo express palladin 4Ig isoform in
conjunction with the development of stress fibers (Figure 5b
and e). Until this stage myofibroblasts are negative for a-SMA
(Figure 5g–h), which is upregulated after 9 days wound
healing (Figure 5c, i, and l). At both differentiation stages,
palladin 4Ig isoform exhibits punctate staining pattern along
stress fibers (Figure 5i inset). Arrowheads mark blood vessels,
which are positive for actin and a-SMA but negative for
palladin 4Ig.

Analysis of palladin expression in vivo in human tissue samples

The in vivo correlation of the in vitro experimental results was
also studied by immunohistochemistry of human tissue
specimens of conditions associated with myofibroblastic
differentiation. Such conditions include fresh scar formation
and the reactive proliferative lesion, nodular fasciitis (Figure
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Figure 3. Palladin gene expression in fibroblasts is regulated by Smad3, ERK1/2, and p38 signaling. (a) Normal human gingival fibroblasts were infected with

adenoviruses for RAdSmad3, RAdSmad3DN, Smad7 (RAdSmad7), or with empty control virus RAdpCA3 at multiplicity of infection 500, and incubated for

24 hours. Thereafter, the cells were treated with TGF-b1 for 24 hours. Cell lysates were analyzed for the expression of palladin 4Ig isoform by Western blotting.

Equal loading was confirmed by stripping and reprobing the same filter with b-actin. The effect of TGF-b1 on the palladin expression was further augmented by

wild-type Smad3 construct and it could be inhibited by either Smad3DN or by an inhibitory Smad7 expression. (b) Human gingival fibroblasts were serum

starved for 18 hours, and treated for 1 hour with PD98059 (30 mM), or SB203580 (10 mM), inhibitors for MEK1 or p38, respectively. Subsequently, TGF-b1 (5 ng/

ml) was added for additional 16 hours. The cells were lysed and analyzed for palladin 4Ig and a-SMA expression. The effect of TGF-b1 on the 4Ig expression is

inhibited by MAPK inhibitors. Both the p38 inhibitor SB203580 and the MEK1/2 inhibitor PD98059 inhibited the upregulation individually and when combined

the effect was even more pronounced. Similar result could be appreciated with a-SMA expression. (c) Human gingival fibroblasts were infected with

recombinant adenoviruses for wild-type p38a (RAdp38a), constitutively active MKK3b (RAdMKK3bE), Smad3 (RAdSmad3), Smad4 (RAdSmad4), or with empty

control virus RAd66 at multiplicity of infection 500, and incubated for 24 hours. Total cellular RNA was analyzed with Northern blot hybridizations for the

expression of palladin 4Ig and GAPDH mRNAs. Northern blot analysis of 4Ig palladin expression in human fibroblasts infected with adenoviruses encoding

several MAPK and Smad constructs. MKK3b expression upregulates the 4Ig transcript and the effect is enhanced by co-expression of wild-type Smad3/4

constructs. (d) Human gingival fibroblasts were infected with recombinant adenoviruses for constitutively active MEK1 (RAdMEK1CA), constitutively active

MKK3b (RAdMKK3bE), Smad3 (RAdSmad3), and control virus RAd66 as in (c). The cell lysates were analyzed for the expression of palladin with Western

blotting. In line with mRNA analysis, active MEK1, MKK3b, and wild-type Smad3 induce expression of the palladin 4Ig isoform at protein level.
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6a and b), both of which contain a high number of
myofibroblasts, and a myofibroblastic tumor of the breast
(not shown). Subsequent sections of each entity were stained
for a-SMA, desmin, and with two palladin antibodies; Ab-4Ig-
Mo and Ab-3Ig. In all of the analyzed specimens a clear
correlation between a-SMA and palladin staining could be
detected, whereas desmin (a smooth muscle marker) did not
stain myofibroblasts. In normal dermis the fibroblasts did not
express palladin, desmin, or a-SMA (Figure 5c).

DISCUSSION
We here show that the expression of palladin isoforms is
regulated in fibroblastic cells during TGF-b1-induced myofi-
broblast differentiation. TGF-b1 induces neo-expression of
palladin 4Ig isoform and upregulates expression of the 3Ig
isoform in cultured fibroblasts via Smad and MAPK pathways.
The 4Ig isoform is also expressed in myofibroblastic lesions
and its expression precedes upregulation of a-SMA.

TGF-b1 regulates the expression of several cytoskeletal
proteins, most importantly a-SMA, during myofibroblastic
differentiation (Desmouliere et al., 1993; Malmstrom et al.,
2004). These proteins are thought to enhance the contractility
of fibroblasts and for a-SMA this effect has also been shown
experimentally (Hinz et al., 2001). The contractile force is
generated by stress fibers composed of bundles of actin and
several actin-associated proteins. In myofibroblasts the

contraction of the stress fibers is thought to be regulated by
the Rho-Rho kinase pathway and hence produce a slower but
more durable force than by the Caþ -regulated contraction of
smooth muscle cells (Tomasek et al., 2002; Hinz and
Gabbiani, 2003b). The generated force is transduced to the
ECM via focal adhesions. In myofibroblasts the size and
molecular composition of the focal adhesions differs from
their counterparts in normal fibroblasts. The adhesions are
longer and contain additional components, such as tensin.
These structures, also termed ‘‘super-mature focal adhesions’’
(Dugina et al., 2001, Hinz and Gabbiani, 2003a; Hinz et al.,
2003), are thought to enable the transmission of higher forces
to the ECM produced by the more contractile myofibroblasts.
Both palladin isoforms expressed in myofibroblasts localize
to stress fiber dense bodies and to focal adhesions. In these
structures, they interact with an important actin crosslinking
protein, a-actinin (Rönty et al., 2004). Localization to these
specific structures suggests that palladin could be involved in

a b

c d

Figure 4. Palladin expression in wound granulation tissue. (a–d) Sections of

(a and c) 6-day- and (b and d) 9-day-old granulation tissue from full thickness

rat wounds were co-stained for a-SMA (red), (a and b, green) palladin 4Ig

(Ab-4Ig-Mo) (c and d, green) and palladin 3Ig. Small vessels that are positive

for a-SMA but not palladin are highlighted with arrowheads. Bar¼ 20 ı̀m.

Images are representative for three independently collected series. Note

that the expression of palladin 4Ig and 3Ig in 6-day-old tissue precedes

myofibroblast differentiation and a-SMA expression, occurring around day 9

after wounding.

a b c

d e f

g h i

j k l

Figure 5. Palladin 4Ig expression in wound granulation tissue myofibro-

blasts. (a–l) Sections of (a, d, g, and j) 3-day-, (b, e, h, and k) 6-day-, and

(c, f, i, and l) 9-day-old granulation tissue from full thickness rat wounds were

triple stained for palladin 4Ig (Ab-4Ig-Mo) (a-c), F-actin (d–f) and a-SMA (g–i).

(j–k) Overlay of staining for palladin 4Ig (green), F-actin (red), and a-SMA

(blue). Bar¼ 20 ı̀m (full image) and 4 ı̀m (inset); images are representative for

three independently collected series. Palladin 4Ig expression in granulation

tissue is initiated 6 days post-wounding together with the differentiation

of fibroblasts into F-actin-positive but a-SMA-negative proto-myofibroblasts.
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the generation of contractile forces and/or force transmission
to the ECM.

Palladin 4Ig isoform differs from the previously described
3Ig isoform by its N-terminus, which contains an additional
IgC2 domain. In adult murine tissues, this particular isoform
has been shown to be highly expressed in tissues rich in
smooth muscle, such as stomach and uterus and in the
cardiac muscle. The isoform shows stronger actin organizing
ability than the 3Ig isoform and specifically binds to an actin-
associated protein, LIM and SH3 protein 1 (LASP-1) (Rachlin
and Otey, 2006). LASP-1 is homologous to nebulin, a muscle-
specific protein which plays an important role in sarcomere
structure and function (Tomasetto et al., 1995; Chew et al.,
2002). Thus, palladin 4Ig isoform could be involved in TGFb-
1-induced actin remodeling and production of contractile
force in myofibroblasts.

The role of TGF-b1 in myofibroblastic differentiation is
widely appreciated, but the signaling pathways involved in
cytoskeletal modulation are incompletely characterized. We
show that TGF-b1-induced palladin expression is regulated
by both the Smad and MAPK signaling pathways. The same
pathways have also been shown to induce a-SMA expression
during myofibroblastic differentiation (Hashimoto et al.,
2001b; Hu et al., 2003). A direct cross-talk between the
signaling cascades regulates important myofibroblast effector
proteins, such as matrix metalloproteinases (Leivonen et al.,
2002). For palladin, active MKK3bE upregulated the 4Ig
transcript when co-expressed with wild-type Smad3/4 and
p38. On the protein level palladin expression was upregu-
lated by specific activation of ERK1/2 and p38, and
overexpression of Smad3. MAPK inhibitors abrogated the
TGF-b1-mediated induction of 4Ig isoform expression and the
effect of TGF-b1 was also blocked by expression of
Smad3DN and inhibitory Smad7 constructs. These results

are in line with the previously described expression of a-SMA
and matrix metalloproteinases by myofibroblasts during
wound healing and further support the assumption that the
upregulation of palladin serves a functional role in this
modulation. We have previously shown that palladin
expression is also upregulated during the differentiation of
dendritic cells from monocytes by IL-4 and GM-CSF
(Mykkänen et al., 2001). Although the cell types are different
and the results are not experimentially connected, it is
interesting to note that IL-4 have also been shown to
upregulate the expression of SMA in human lung and
synovial fibroblasts (Mattey et al., 1997; Hashimoto et al.,
2001a). Also, GM-CSF have been shown to upregulate the
number of a-SMA-expressing cells in granulation tissue, but
this effect may be indirect and mediated by the recruited
inflammatory leukocytes which are known to produce TGF-
b1 (Rubbia-Brandt et al., 1991; Shephard et al., 2004).

The role of myofibroblasts in wound healing has been
studied extensively and their crucial involvement has been
verified both in experimental settings and in lesions encoun-
tered in diagnostic pathology. Myofibroblasts are present in
several benign/reactive processes such as nodular fasciitis,
liver cirrhosis, pulmonary fibrosis, and kidney fibrosis (Dayan
et al., 2005; Desmouliere et al., 2005). Also in some malignant
tumors, for example myofibrosarcomas, the malignant cells
are best characterized as myofibroblasts (Lagace et al., 1999;
Montgomery et al., 2001). The most common immunohisto-
chemical markers used to detect myofibroblasts in clinical
specimens are a-SMA and calponin (Tomasek et al., 2002).
Since myofibroblasts do not usually express desmin, it can be
used to differentiate smooth muscle cells from myofibroblasts.
We studied the expression of palladin both in an experimental
wound model on rats and in human lesions known to contain
high numbers of myofibroblasts (Dayan et al., 2005). In

HE 3Ig 4Ig SMA Desmin

a

b

c

Figure 6. Immunohistochemical staining of human myofibroblastic lesions. (a) Fresh dermal scar, (b) nodular fasciitis, and (c) normal dermis were stained

with two palladin antibodies Ab-3Ig, Ab-4Ig-Mo, and with a-SMA and desmin antibodies. In the dermal scar specimen, hematoxylin and eosin staining

demonstrates reactive fibroblast-type cells within vascularized collagenous matrix. The reactive myofibroblasts show strong positivity for palladin and a-SMA,

while the desmin staining is negative. Hematoxylin and eosin staining of the nodular fasciitis specimen shows that the spindle-shaped reactive cells are

embedded in a loose collagenous matrix. The cells are strongly positive for both palladin and a-SMA but do not stain with desmin antibody, thus verifying their

myofibroblastic nature. In the normal dermis (c) fibroblasts are negative for a-SMA, desmin and palladin. As a positive control for the desmin staining a small

erector pili muscle is shown in the bottom parts of the figure. Bar¼10 mm.
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experimental wounds palladin 4Ig was neo-expressed in the
granulation tissue fibroblasts and its expression preceded
a-SMA. Palladin 4Ig was already present in proto-myofibro-
blasts, which contain actin stress fibers but are a-SMA
negative. This in vivo result is in accordance with the results
obtained in vitro with TGF-b1-treated cultured human dermal
fibroblasts. Furthermore, a clear correlation between a-SMA
and 4Ig expression was also seen in human myofibroblastic
lesions such as scar tissue and nodular fasciitis.

Taken together we have shown that palladin expression is
upregulated by TGF-b1 during myofibroblast differentiation.
The palladin 4Ig isoform thus adds to the list of myofibroblast
markers and probably participates in their force generation/
transmission machinery.

MATERIALS AND METHODS
Palladin constructs

Palladin isoforms were named according to the number of Ig

domains contained in the sequence (Figure 1). Palladin 3Ig

corresponds to the previously characterized 90 kDa major isoform.

The 3Ig constructs were PCR amplified using expressed sequence tag

Ab023209 cDNA as a template. The 3Ig pEGFP has been described

before (Rönty et al., 2004). Unpublished human 4Ig 50-sequence was

reverse transcriptase-PCR amplified using U251 cell total RNA and

cloned into pGEX4T-1 vector for recombinant protein production

and into pEGFP-C/N vectors for mammalian cell expression. The

identity of all derived constructs was verified by DNA sequencing.

Antibody production and Western blotting

Polyclonal antibodies were raised in rabbits using recombinant

glutathione-S-transferase-fusion proteins containing N-terminal se-

quences of either the 3Ig or the 4Ig isoform as antigens. After four

immunizations, rabbits were bled. The specificity of the antisera was

tested by Western blotting of COS-7 cells transfected with cDNA of

the 3Ig-full length sequence or 4Ig 50-sequence in GFP vector.

Transfection was verified by immunofluorescence microscopy. The

palladin mAbs and the polyclonal C-terminal peptide antibody (953)

have been described before (Parast and Otey, 2000; Mykkänen

et al., 2001). In addition, a polyclonal antibody raised against the

N-terminal mouse 4Ig sequence (Ab-4Ig-Mo) was used (Rachlin and

Otey, 2006). For Western blotting, U251 cells and human fibroblasts

treated either with TGF-b1 (5 ng/ml) or vehicle were lysed in

Laemmli buffer. Lysates were resolved in 10% SDS-PAGE and

transferred onto nitrocellulose filters. The filters were probed with

palladin antibodies, followed by peroxidase-conjugated swine anti-

rabbit or anti-mouse IgG (DAKO, Glostrup, Denmark), and detected

by enhanced chemiluminescence (Pierce, Rockford, IL). b-Actin was

detected with a mAb (Clone AC-74, Sigma, St Louis, MO).

Cell cultures, transfections, and immunofluorescence
microscopy

Human dermal and gingival fibroblasts (Leivonen et al., 2005) and

U251 cells were grown in modified eagles medium supplemented

with 10% fetal calf serum, L-glutamine, and antibiotics. Fibroblasts

were treated with recombinant TGF-b1 (Sigma) at the concentration

of 5 ng/ml for 12–96 hours. Treated cells grown on glass coverslips

were fixed in 3.5% formaldehyde, permeabilized with 0.1% Triton

X-100, and stained with palladin 3Ig or 4Ig antibodies together with

a-SMA mAb (clone 1A4, Sigma). The antibodies were detected with

FITC- and tetramethyl rhodamine isothiocyanate)-conjugated anti-

rabbit and anti-mouse antibodies (Jackson Immunochemicals, West

Grove, PA). The samples were analyzed in Zeiss Axiophot fluore-

scence microscope equipped with AxioCam cooled charge-coupled

device camera.

Transduction of fibroblasts with recombinant adenoviruses

The adenoviral constructs RAdSmad2, RAdSmad3, and RAdSmad4

harboring human Smad2, Smad3, and Smad4 cDNAs, respectively,

and an empty control virus, RAdpCA3, have been described

(Leivonen et al., 2002). Recombinant adenoviruses for Smad7

(RadSmad7) (Fujii et al., 1999) and RAdSmad3DN (Pardali et al.,

2000) were kindly provided by Dr Aristidis Moustakas (Ludwig

Institute for Cancer Research, Uppsala, Sweden). Adenovirus for

constitutively active MEK1 (RAdMEK1CA) (Foschi et al., 1997) was

kindly provided by Dr Marco Foschi (University of Florence) and for

constitutively active MKK3b (RAdMKK3bE) (Wang et al., 1998b) and

for wild-type p38a with a FLAG tag (RAdp38a) (Wang et al., 1998a)

by Dr Jiahui Han (Scripps Research Institute, La Jolla, CA). Control

adenovirus RAd66 (Wilkinson and Akrigg, 1992) was kindly

provided by Dr Gavin W.G. Wilkinson (University of Cardiff,

Cardiff, UK). Adenoviral infections of human gingival fibroblasts at

multiplicity of infection 500 were performed as described (Leivonen

et al., 2002). p38 MAPK inhibitor SB203580 (10 mM) and MEK1/2

inhibitor PD98059 (30 mM) were from Calbiochem (San Diego, CA).

Northern blot hybridization

Total cellular RNA was extracted with Qiagen’s Rapid RNA

Purification kit (Qiagen, Chatsworth, CA) and northern blot

hybridization was performed as described (Leivonen et al., 2002).

For the hybridization a 1.0-kb 50 4Ig palladin cDNA and a 1.3-kb rat

glyceraldehyde-3-phosphate dehydrogenase cDNA were used (Fort

et al., 1985).

Animal experiments, immunofluorescence, and confocal
microscopy

A total of 12 female Wistar rats (200–220 g) were used. After shaving

the skin, full thickness 25� 25 mm2 wounds, including the

cutaneous muscle, were made using surgical scissors in the middle

of the dorsum on the 1st day of the experiments and were allowed to

heal spontaneously. Rats were killed by CO2 anesthesia and

granulation tissue was harvested after 3, 6, and 9 days post-

wounding. Cryostat sections of 3mm thickness were produced and

immunostained. As primary antibody we used anti-a-SMA mAb

(IgG1, a gift of Dr C. Chaponnier, University of Geneva) (Skalli et al.,

1986) and as secondary antibody FITC-conjugated goat anti-mouse

IgG1 (Southern Biotechnology Associates Inc., Birmingham, AL).

F-actin was probed with Alexa 647-conjugated phalloidin (Mole-

cular Probes, Eugene, OR). Images were acquired with a confocal

microscope (DM RXA2 with a laser scanning confocal head TCS SP2

AOBS, Leica, Glattbrugg, Switzerland), equipped with objective

� 60/1.4 (Leica).

Immunohistochemistry

Human tissue samples obtained from operations performed at the

Helsinki University Central Hospital, and archived at the Depart-

ment of Pathology, University of Helsinki were used. Three to five
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specimens per diagnosis were selected. Specimens were fixed in

10% buffered formal saline and embedded in paraffin. For routine

histochemistry, 5 mm sections were stained with hematoxylin and

eosin. Immunostaining was performed using the avidin–biotin

peroxidase complex method (Dako Cytomation). For antigen

retrieval, the slides were incubated in 10 mM sodium citrate buffer

(pH 6.0) for 10 minutes at 951C. Palladin was detected with two

polyclonal antibodies (Ab-4Ig-Mo and Ab3Ig, both at dilution

1:500), a-SMA (clone 1A4 Sigma, dilution 1:10,000), and desmin

(clone D33,Calbiochem, dilution 1:200) with mAbs.

The human and animal studies were approved by the authors’

Institutional Review Boards. Tissue specimens were used under

patient’s consent and in agreement with the the Declaration of

Helsinki Principles.
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