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The paper presents some extensions of the optimality results obtained in pre- 
vious work on algorithms used in the field of system identification in the light of 
information-based complexity. In particular, a class of conditional algorithms is 
defined by means of a restriction on the space of solution elements and a corre- 
sponding conditional worst case error is introduced. We define conditional central 
algorithms and show their optimality. A conditional central algorithm is then 
constructed by modifying a projection algorithm and obtaining in this way a condi- 
tional projection algorithm. This algorithm is shown to enjoy local optimality 
properties with reference to the problem element space within the class of condi- 
tionally correct algorithms. Finally, it is shown how these results can be used to 
handle the problem of reduced order model estimation. c 1988 Academic PKSS, IW. 

1. INTRODUCTION 

In past years it has been shown that information-based complexity 
(Traub and Woiniakowski, 1980; Traub et al., 1983) may prove very 
useful in dealing with problems in systems and control areas such as 
system identification, parameter and state estimation, prediction (Mila- 
nese and Tempo, 1985; Milanese et al., 1986; Kacewicz et al., 1986; 
Vicino et al., 1987). The results obtained so far, as well as most of the 
results derived by means of other approaches (e.g., based on statistical 
estimation theory), can be applied under the so-called “standard condi- 
tions” (Genesio and Milanese, 1979). These conditions essentially state 
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that the unknown “true system” which generates the available informa- 
tion belongs to the class of mathematical models selected to represent the 
actual data. Despite the fact that this assumption is seldom verified in 
practical applications, only recently some effort has been made to deal 
with this problem (see the references in Genesio and Milanese (1979) for 
further details). 

This paper is a first attempt at solving the problem within the informa- 
tion-based complexity setting and can be outlined as follows. One is inter- 
ested in evaluating the image S(f) of an element f belonging to a linear 
space F under an operator S. It is assumed that S mapping F into a linear 
space G is known, while f is not known but only approximate information 
y about f is given as y = N(f) + r). N, called the information operator, 
maps F into Y and q belongs to a bounded set of Y. An approximation of 
S(f) is derived by applying a suitable operator cp (called the algorithm) to 
the actual information y. Algorithms with optimality properties are sought 
among all algorithms mapping Y into a given subset Ga of G, where Go 
may not contain S(f), as usually considered in the literature. The general- 
ization introduced here permits us to deal with problems under “nonstan- 
dard conditions.” 

For example, in system parameter estimation problems F consists of a 
class of admissible dynamic systems with some unknown parameters and 
G is the set of system parameters to be estimated. For many reasons (e.g., 
computational complexity, numerical efficiency, complexity of the even- 
tual control of the system) only a subset F. of simpler systems is often 
considered for estimation purposes. Systems belonging to Fo, called ap- 
proximating models, have in general a smaller number of unknown pa- 
rameters whose possible values are a subset Go of the overall parameter 
set G. Then any estimation technique using approximating models can be 
considered as an algorithm mapping Y into Go. 

In this paper some results are presented which generalize results on 
optimality of central and least-squares algorithms (LSA) previously de- 
rived for the case Go = G (Kacewicz et al., 1986). In particular, it is 
shown that the most natural and widely used extension of least-squares 
algorithms may not preserve any of the interesting optimality properties 
derived for least-squares algorithms under standard conditions; a differ- 
ent extension is then proposed which preserves some of those properties. 
Although these preliminary results hold under quite restrictive condi- 
tions, they are shown to apply to meaningful examples of parameter esti- 
mation with approximating models. 

2. BASIC DEFINITIONS AND NOTATIONS 

Let F be a finite dimensional linear space over the real field. Let S be a 
fixed operator, called the solution operator, from F into G 
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S:F+G, (1) 

where G is a linear finite dimensional normed space over the real field. We 
are interested in approximating an element S(f) E G knowing only some 
perturbed information on f E F. We consider an information operator N 
mapping F into a linear finite dimensional normed space Y over the real 
field 

N:F+Y. (2) 

where dim y I dim F. It is assumed that information N(f) about f is not 
known exactly, but only perturbed information y is available such that 

Y = N(f) + 7, (3) 

where q is an unknown but norm bounded vector 

IIY - N(f)11 = 1b111 5 P (4) 

for a given nonnegative p. We will also assume that information is com- 
plete, i.e., N is a one-to-one mapping. These assumptions, already intro- 
duced in (Milanese and Tempo, 1985; Milanese et al., 1986) mean that 
problem uncertainty is due only to the information error term r); in fact, 
they hold true in most problems normally met in the system identification 
research area in which we are interested (see Milanese and Tempo, 1985; 
Kacewicz et al., 1986; Milanese et al., 1986; Vicino et al., 1987). 

Let Go be subset of G. We consider the class Qr of (restricted) algo- 
rithms consisting of all operators cp mapping Y into GO: 

cp: Y-Go. (5) 

The operator cp, applied to an information y provides an approximation 
cp( y) E Go of the true solution element S(f) belonging to G. An algorithm 
will be also referred to as an estimator of S(f) (Kacewicz et al., 1986). In 
this paper we generalize some of the optimality results reported in (Kace- 
wicz et al., 1986), where it is assumed that GO = G. 

We now recall the concept of approximation errors. We introduce the 
three sets 

Ey(.f) = {Y E Y: IIY - N(f)11 5 PI 

J%(Y) = if E F : 11~ - N(f)11 5 P) 

EC(Y) = SGMY)). 

(6) 

(7) 

(8) 
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We shall assume that the set &(y) including all problem elements com- 
patible with a given information is nonempty, i.e., y belongs to a subset YO 
of Y given by 

Yo = {y E Y: &(y) f S}. (9) 

Again, this hypothesis is normally satisfied in well-posed estimation prob- 
lems. 

We now associate the definitions of approximation errors and optimal- 
ity to sets (6) and (7). We define an F-focal error eF(q, f) of an algorithm cp 
as 

ed(b, f) = ,s;!f) P(f) - cp(~)ll, f E F. (10) 

An algorithm ‘p* is called F-strongly optimal in a given class @ if ‘p* E CD 
and 

edcp”, .f) 5 e&h f) VfEF,VcpE@. (11) 

In a similar way, for each y E YO we define a Y- local error ey(cp, y) of an 
algorithm (o as 

eY(e Y> = sup IlW3 - d~)ll. 
fEEI- 

(12) 

An algorithm ‘p* is called Y-strongly optimal in a class @ if ‘p* E @ and 

e&*, Y) 5 eY(cp, y) v y E Yo, v $0 E aJ. (13) 

The (global) error of an algorithm cp is defined as 

e(p) = y-g edcp, f)(= ,“zg eyh Y)). (14) 

An algorithm cpo E Cp is called (globally) optimal in a class @ if it mini- 
mizes the (global) error e(q). 

3. CONDITIONAL CENTRAL AND CONDITIONAL 
LEAST-SQUARES ALGORITHMS 

A particularly interesting class of algorithms which has been exten- 
sively studied both from theoretical and constructive points of view 
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(Traub and Woiniakowski, 1980; Milanese and Tempo, 1985; Milanese et 
al. 1986) is that of central algorithms. More precisely, in the above-men- 
tioned references the case of GO = G has always been considered. We 
now generalize the concept of a central algorithm by defining a condi- 
tional central algorithm. Let us define a conditional center of the set 
Eo(y> with respect to the set Go as the point c(y) E Go such that 

sup Ilc(y) - ill = inf sup llg - S/l. 
.&Ed?) BEG0 BE.%(?) 

(15) 

We now assume that EG( y) has a conditional center c(y) for any y E Yo. 

DEFINITION 1. A conditional central algorithm cpc is defined by 

CpdY) = C(Y)? vy E Y,. (16) 

As it can be easily observed, when Go = G (15) defines the classical 
Chebychev center of&(y) and (16) the classical central algorithm. In that 
case it has been shown that a central algorithm is Y-strongly optimal (and 
globally optimal) in the class of all algorithms. It can be readily proven 
that the same result still holds when Go C G. 

THEOREM 1. A conditional central algorithm cpC is Y-strongly and 
globally optimal in the class W. 

Proof. From the definition of conditional central algorithms (16) and 
(15) it easily follows that 

e&p, Y) = sup jlW> - cp(y)ll 2 inf SUP IlW> - gll JEW?) PX% PG (Y) 
= a4vc, Y>, VYEYo (17) 

which proves the theorem. w 

In general the computation of conditional central algorithms is not an 
easy task. To the authors knowledge, the most extensive results on char- 
acterization of conditional centers can be found in the works of Laurent 
and Pham-Dinh-Tuan (1970), where necessary and sufficient conditions 
are given for a point to be a conditional center in the case where G,, has 
linear variety. Unfortunately, these conditions cannot easily be checked 
even for those particular assumptions which allow for a simple computa- 
tion of central algorithms in the usual case Go = G (Milanese et al., 1986; 
Kacewicz et al., 1986). 

Another appealing class of algorithms which already has been investi- 
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gated in (Kacewicz et al., 1986) in the case Go = G is that of projection 
algorithms. These algorithms are very frequently used in the field of sys- 
tem identification especially when a Hilbert norm is used in the informa- 
tion space Y, in which case the class of least-squares algorithms is ob- 
tained. For this reason we now extend the concept of least-squares 
algorithms to the case Go C G. 

First, we recall the definition of least-squares algorithms. Let Y be 
equipped with a Hilbert norm 11.//n. 

DEFINITION 2. Let JJ E Y, and fy be such that 

IINS,) - YIIH = 2; IIW) - YIIH. (18) 

A least-squares algorithm (prs is defined as 

CpLdY) = S(&). (19) 

The concept of LSA may be extended in several ways. We introduce an 
extension which leads to what we call a conditional least-squares algo- 
rithm (CLSA) and which takes into account the way of restricting from G 
to GO. We suppose that an operator R mapping G into GO is given. We call 
it a restriction operator. 

DEFINITION 3. For a given restriction operator R : G + GO, a condi- 
tional least-squares algorithm (pcLs is defined as 

PCLS(Y) = NS(f,)L y E Y, cm) 

where fy is defined by (18). 

It must be observed that what is usually done in the context of estima- 
tion theory when dealing with reduced order systems corresponds to a 
different type of extension of LSA which we call the reduced least- 
squares algorithm (RLSA). 

DEFINITION 3’. Let FO be a subset of F such that 

Fo = {f E F : S(f) E Go). 

Let ft E FO be such that 

l/w:) - YIIH = jg IINf) - YIIH. 

(21) 

(22) 

A reduced least-squares algorithm is defined as 
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pRLS(Y) = s(f;>. 

Though widely used, RLSA does not preserve any of the interesting 
optimality properties of LSA given by Kacewicz et al. (1986). We recall 
that LSA’s have been shown to be central, Y-strongly optimal in the class 
of all algorithms and F-strongly optimal in a class of algorithms of practi- 
cal interest called “correct” algorithms. In the following we show that a 
CLSA partially preserves these properties. 

First, we prove that a CLSA is F-strongly optimal in a class of algo- 
rithms called “conditionally correct” algorithms. 

DEFINITION 4. For a given restriction operator R : G + Go, an algo- 
rithm cp is said to be conditionally correct if 

cpW(f)) = R(W)) VfEF. (24) 

Whenever a conditionally correct algorithm is applied to exact informa- 
tion, it gives the exact solution restricted to GO according to R. The class 
of conditionally correct algorithms will be denoted by act. 

Remark 1. If Go = G and R = Zd (identity operator), Qcc coincides with 
the class of correct algorithms considered by Kacewicz et al. (1986). 

Remark 2. Qcc includes algorithms obtained by first using classical 
estimation algorithms such as least-squares, least absolute values, min- 
max, and then applying the restriction operator to the obtained estimate; 
in particular (pcLs E act. 

Remark 3. One of the most interesting choices for R is the projection 
operator on Go according to the norm defined in G. In this case, the class 
cPcc becomes particularly meaningful, because a conditionally correct al- 
gorithm provides a minimum estimation error when applied to exact infor- 
mation (p = 0). 

THEOREM 2. Zf N is a linear operator and Y is a Hilbert space, then 
~JCLS is F-strongly optimal in the class WC. 

Proof. For each problem element f E F we have that 

e&fas, f) = sup ID(f) - cpCLS(Y)II 
? : II?-NfIlH~P 

= sup IIS - R(S(f,))ll 
? : ll?-~fllH~P 

= sup bW) - R<WJll. 
X : IIM-WH~P 

(25) 



80 KACEWICZ, MILANESE, AND VICINO 

On the other hand, for any conditionally correct algorithm cp 

edcp, f) = S”P IIW) - dY)ll 
? : IkNfllH~P 

= SUP I ^ IIS - RW))ll. (26) 
I : llNf-NfllH% 

From (25) and (26) it follows that 

dwLs, f) 5 &A f), V f E F, V cp E WC (27) 

which proves the theorem. H 

We now look for conditions ensuring Y-strong optimality of a condi- 
tional least-squares algorithm. The problem is equivalent to studying the 
conditional centrality of (pcLs which, as previously noted, may not be an 
easy task. In the following we prove that (pcLs is Y-strongly optimal under 
conditions that are rather restrictive from a purely mathematical point of 
view but which nevertheless are certainly of interest in problems of sim- 
plified model parameter estimation (see the example in the next section). 

Without loss of generality, let F = R”, Y = R” (m 2 n) and G = RP. 
Consider the following hypotheses. 

Hl. Assume that Y is equipped with a Hilbert norm, G is equipped 
with an 1, norm and S and N are linear operators. 

H2. Assume that Go C G is a linear variety dejined by k real numbers 
al,a2,. . . , ak,Olklp 

GO = {CSI, .a, . . . , g,): g;, = aI, g12 = a2, 

. . . , gi, = ak, il, i2, . . . , ik fixed and such that I 5 4 I p and zj f il 
for j f 1). (28) 

H3. R is the projection operator on Go in the Euclidean norm, i.e., 

R(g) = go, g E G, (294 

where go is such that 

llg - sol12 = min l(g - 2/12. 
1EGll 

(29b) 
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Under this last condition the conditional least-squares estimator becomes 
as follows. Let $, be defined as in (18) and g, be such that 

IkY - Wll* = 2: 118 - wv)ll2~ gy E Go (304 

then 

CpCLdY) = gy. (Job) 

Now, we will show that the algorithm (30) is Y-strongly optimal in the 
class of all algorithms. In order to do that we have to state a preliminary 
lemma. We observe that under the hypotheses on S and N, the following 
extrema are finite and they are achieved at some points belonging to Z+(y) 
(Y E Yo): 

(Yi = inf (Sf); 
fEEp(y) 

Pi = SUP tsf)i 

i= 1,. . . ,p. 

fEEF(Y) 

(31) 

In (31) the subscript i denotes the ith component of a vector. 

LEMMA 1. Under the hypotheses H 1, H2, and H3 we have that 

(9 (‘PCLS(Y))i = 
aj, if i = ij, for some j = 1, 2, . . . , k 

(S.fy)i 7 if i # ij, forj = 1, 2, . . . , k 
(32) 

(ii) for i # ii, j = 1, 2, . . . , k. (33) 

The proof of (i) follows easily from the definition of (pc~s (30) and the 
hypothesis H3. The proof of (ii) follows from the fact that, due to the 
Hilbert norm in the space Y and the linearity of N, E&y> is a centrally 
symmetric set with Sf, as the symmetry center. Thus, S.f, is also a 
Chebychev center of&(y) (see, e.g., Kacewicz et al. (1986)) and hence 
its coordinates are given by (33). 

We can now state Theorem 3. 

THEOREM 3. If hypotheses Hl, H2, and H3 hold, then C~CLS is a 
conditionally central algorithm and therefore it is Y-strongly optimal in 
the class W. 
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Proof. Let Y be the Y-local error of (pcLs 

r = ~Y~PCLS, Y) = sup /ISf - g,L. 
fEEkb1 

(34) 

We know that for some f* E &(y) and some 1 5 i 5 p 

r = I(Sf*)i - (&Ii\. (35) 

Let g E GO; with reference to (35) there are two possible cases. In the first 
one, if i = ii for some j = 1, 2, . . . , k, then 

Bi = (gy)i = “j 

and we have that 

y = J(Sf*)i - g;l 5 llSf* - g/I,. (36) 

In the second case, if i f ij for j = 1, 2, . . . , k, then from Lemma 1 it 
follows that 

ai + Pi 
C&h = -y-- (37) 

and either (,!?f*); = (Y; or (Sf*)i = p; with r = (pi - q)/2. Thus, if we 
denote by f the point of&(y) symmetric to f*, i.e., f = 2f, - f*, we 
have 

r 5 maxWf*)i - gil, ICS.0; - gill5 v g;. (38) 

It follows from (36) and (38) that in both cases we have 

(39) 

which proves the theorem. w 

The following result easily follows from Theorems 1, 2, and 3. 

COROLLARY. If H 1, H2, and H3 hold, then (PcLS is Y-strongly optimal 
in the class a’ and F-strongly optimal in the class WC. 
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FIGURE 1 

4. A PARAMETERESTIMATION PROBLEM 

Now we report an example from the system identification area to clarify 
the meaning of conditional estimators and of the optimality properties of 
conditional least-squares estimators. 

Consider the linear discrete time dynamic system shown in Fig. 1. In 
Fig. 1 the signals u(t), w(t), e(t), and y(t) are assumed to be discrete time 
functions; u(t) is the system input, w(t) is the system output, e(t) is 
measurement noise, and y(t) is the corrupted system output; L(q-‘) is a 
linear operator which for a large class of systems (called autoregressive 
systems) takes the form 

L(q-I) = 1 
AW’1’ 

where A(q-‘) is a polynomial of order n in the unit delay shift operator 
4 -I ’ 

A(q-1) = 1 - i Ujq-‘. 
i-l 

The parameter estimation problem consists of evaluating the unknown 
system parameters ai, assuming that the quantities u(t) and y(t) are 
known for a given set of time points [O, 1, . . . , N]. The difference 
equation describing the system of Fig. 1 is 

y(t) = W(t) + e(t) = 2 Uiy(t - i) + U(t) + e(t) 
i=l 

+ 2 Uie(t - i), t=n+l,. . . ,A’. (42) 
i=l 

’ The operator q+ is such that q-‘y(r) = y(t - i). 
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In (42) the values y(O), . . . , y(n) are assumed to be the system initial 
conditions. Now, setting 

PO) = y(t) - u(t) (43) 

E(t) = e(t) - C qe(t - i) 
1=I (44) 

we obtain the equation 

E(t) = i Uiy(t - i) + F(t), t=n+ 1,. . . ,N, (45) 
i=l 

where y(t) and y(t - i) are known data and E(Z) represents the measure- 
ment uncertainty called equation error. Assuming that 8(f) is unknown 
but bounded in some norm, the problem of estimating the parameters ai 
can be formulated in the context of information-based complexity. More 
precisely, the space F is identified as the n-dimensional linear space of 
parameters, the operator S is the identity, and the information space Y is 
an (N - n) dimensional space containing the corrupted information y(t). If 
a Hilbert norm is used in Y (as is frequently done in system identification 
contexts), then we can apply the theory developed in the previous sec- 
tions. The need for reduced order model estimation stems from the fact 
that the value of IZ (order of the autoregressive system) may be very high 
and only simplified models are looked for, containing fewer parameters. 
Thus, our problem consists of evaluating the parameters of reduced order 
models corresponding to subspaces Go C G of dimension less than n and 
restriction matrix R described as 

1, ifi=j,i<n--k 
Yij = (47) 

0. ifi>n-korifjandisn-k. 

Now, if g = [ai, a2, . . . , a,]rE G, thengo = Rg = [a,, a2, . . . , an-k, 
0, . . . ) O]r E GO. In these conditions, the conditional least-squares 
estimator ‘pcLs defined in (30) is by Theorem 3 a Y-strongly optimal algo- 
rithm in the class of all algorithms W, provided that Y-local errors are 
defined in a 1, norm. This result is particularly significant, because it 
means that the use of an ordinary least-squares estimator (Kacewicz et 
al., 1986) for the full order system permits in one shot an optimal solution 
to the problem of estimating all the reduced order models for any value of 
k (1 5 k 5 n). It must be observed that this conclusion means that no 
further improvement of the Y-local estimation error can be achieved by 
reformulating, as is usually done, the reduced order model estimation 
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problem as a new (n - k) dimensional problem and applying an ordinary 
least-squares algorithm; indeed, this would mean using an RLSA. Finally, 
it must be noted that this fact does not contradict the optimality results on 
least-squares estimators given in (Kacewicz et al., 1986) that refer to the 
case in which the space GO contains the true system (dim Go = n); in our 
case the assumption that the space Go is of dimension (n - k) means that 
GO does not necessarily contain the true solution element. 
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