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Abstract

The production of viable biological heart valves is of central interest in tissue engineering (TE). The aim of this study was to generate

decellularized heart valves with an intact ultra-structure and to repopulate these with endothelial cells (EC) under simulated physiological

conditions. Decellularization of ovine pulmonary valve conduits was performed under agitation in detergents followed by six wash

cycles. Viability of EC cultures exposed to washing solution served to prove efficiency of washing. Resulting scaffolds were free of cells

with preserved extracellular matrix. Biomechanical standard tension tests demonstrated comparable parameters to native tissue. Luminal

surfaces of decellularized valvular grafts were seeded with ovine jugular vein EC in dynamic bioreactors. After rolling culture for 48 h,

pulsatile medium circulation with a flow of 0.1L/min was started. The flow was incremented 0.3L/min/day up to 2.0L/min (cycle rate: 60

beats/min), while pH, pO2, pCO2, lactate and glucose were maintained at constant physiological levels. After 7 days, a monolayer of cells

covered the inner valve surface, which expressed vWF, indicating an endothelial origin. A complete endothelialization of detergent

decellularized scaffold can be achieved under simulated physiological circulation conditions using a dynamic bioreactor system, which

allows continuous control of the culture environment.

r 2006 Elsevier Ltd.
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1. Introduction

Cardiac valves replacement is a common surgical
procedure for patients with severe valve dysfunction. The
use of appropriate cardiac valve prosthesis in each
particular case can be efficient in decreasing of patients’
morbidity and mortality and may lead to satisfactory long-
term results. However, mechanical and biological pros-
theses still have several limitations [1,2]. The viable
cryo-preserved allograft valves induce a high immunologi-
cal response especially in young patients, causing valve
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degeneration [3]. The inability of currently available
valvular prostheses to grow and remodel represents
another particular disadvantage leading to repeated
operation in pediatric patients [4].
Tissue engineering (TE) of valve prostheses using

autologous cells might provide promising solutions to
overcome these limitations. An ideal bioengineered cardiac
valve should mimic the natural heart valve. The anatomical
and morphological structure of TE valves must be
similar to the native tissue. Moreover, the viable artificial
valve tissue should have the capacity to self-remodel
and regenerate along with the ability to grow. Further-
more, life-long constant hemodynamic stress requires
an adequate mechanical stability of bioengineered valve
prosthesis.
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Tissue engineered valves are constructed using either
synthetic or biological matrices [5–8]. Biological matrices
are based on xeno- or allogeneic tissue, which primarily
undergo a decellularization process [5,6,9,10]. Afterwards,
these scaffolds are repopulated with autologous cells prior
to implantation [5,6,8,10]. Optimization and standardiza-
tion of all these bio-technological processes as well as the
use of specially designed pulsatile bioreactor mimicking
the physiological circulation environment could improve
the heart valve TE outcome.

The aim of this study was to obtain decellularized
scaffold with mechanical and morphological properties
similar to native tissue and to dynamically repopulate this
scaffold with endothelial cells (EC) in a novel pulsatile
bioreactor, with continuous adjustment of all technological
processes to provide near physiological conditions.

2. Material and methods

2.1. Ovine pulmonary valves

All animal experiments and surgical procedures were performed in

compliance with the Guide for the Care and Use of Laboratory Animals as

published by the US National Institutes of Health (NIH Publication No.

85-23, revised 1996) and were approved by the local animal care

committees. Pulmonary valve conduits (PV) including a short subvalvular

myocardial cuff, valve annulus, valve leaflets, and pulmonary artery

wall (3 cm length) were harvested from juvenile sheep (15–20 kg) under

sterile conditions for the production of allogeneic scaffolds. After removal

of adherent fat, the PV were stored in phosphate-buffered solution (PBS)

at 4 1C.

2.2. Decellularization protocol

Decellularization was performed as described previously [10]. Briefly,

PV ðn ¼ 16Þ were suspended in a solution of 0.5% sodium deoxycholate

(Sigma) and 0.5% sodium-dodecylsulfate (SDS; Carl Roth) for 24 h. Six

wash cycles (12 h each) with PBS supplemented with penicillin and

streptomycin (100mg/mL, P/S, Biochrom) served for removal of residual

detergents and cell debris.

2.3. DNA isolation and quantification

Decellularized PV were treated by a deoxyribonuclease digestion

using 17 IU/mL DNase I (Sigma) for 4 h at 37 1C to remove free

residual DNA. Since nuclear DNA in intact cells is protected from

DNase I, DNA isolated from tissue after digestion is indicative

for the presence of residual cells. Therefore, DNA was isolated

from 25mg decellularized valve tissue (cusps and wall, respectively)

using the DNeasy Tissue Kit (Qiagen) according to the recommended

protocol. Potentially extracted DNA was subjected to spectrometric

analysis.

2.4. Histology and immunohistochemistry

Formalin-fixed paraffin-embedded valvular tissue sections were stained

by standard Hematoxylin–Eosin (H&E), and Movat pentachrome

protocols. Immunohistochemical staining of cryo-sections was performed

by use of the avidin-biotinperoxidase technique. The integrity of collagen

IV, as a main protein of the basement membrane, was evaluated by mouse

monoclonal anti-collagen IV (clone CIV 22, Dako). EC were characterized

by the presence of von Willebrand factor (vWF) using a mouse
monoclonal anti-vWF antibody (clone 8/86, Dako) as previously

described [11]. Native ovine pulmonary valve tissue samples served as

positive controls.

2.5. Scanning electron microscopy (SEM)

Samples of PV (cusps and wall) were fixed in 2.5% glutaraldehyde

(Polyscience) in 0.1M sodium cacodylate buffer (Merck) at 4 1C, for a

minimum of 4 h followed by dehydration in an ascending concentration

series of ethanol. Samples were critical point-dried (Balzers CPD 030) and

sputtered with an ultra-thin gold layer (Polaron SEM Coating System).

Intraluminal surface and sharp cut cross-section areas of the specimens

were examined by SEM (Phillips SEM-505).

2.6. Biomechanical tests

Wall specimens (size: 15mm� 10mm) of native and decellularized

PV were mounted in clamps so that the unloaded reference length

of the specimens hanging under their own weight was 10mm. Cross-

sectional area was measured using a non-contact laser micrometer

(LDM-303H-SP, Takikawa Engineering). Specimens were prepared

for testing in the longitudinal and circumferential directions and

kept moist throughout testing procedure (PBS). The specimens were

preloaded to 0.01 N, and subsequently elongated until macroscopic failure

at 0.1mm/s in a materials testing machine (Model 1445, Zwick).

Load–elongation and stress–strain curves were generated and the ultimate

load, structural stiffness, ultimate stress, ultimate strain, and elastic

modulus (Young’s modulus) were determined. The ultimate load was

taken as the point at which the first significant reduction in load occurred.

The structural stiffness and elastic modulus were determined from

the linear portion of the load–elongation and stress–strain curves,

respectively.

2.7. Cell source and culture

For cell isolation, jugular veins were harvested from juvenile sheep

under sterile conditions. These individuals were different from those

that served as scaffold donors. EC were digested from the vessel wall

with 2% collagenase A (Roche Diagnostics) in M199 (Gibco) and

resuspended in culture medium (CM) composed from Endothelial Cell

Basal Medium-2 (Clonetics), supplemented with SingleQuot Kit

(Clonetics), 10% FCS (Biochrom), 100mg/mL P/S (Biochrom) and finally

seeded into culture flask. A suitable number of cells (1.2� 107, 2nd or 3rd

passage) were used for reseeding for each valve conduit. Additionally, EC

were seeded into 24-well plates in order to determine the toxic effect of

PBS washing solution (WS) on cell viability. The expected endothelial

phenotype of cultured cells was checked microscopically (cobblestone

growth pattern typical for EC) and immunohistochemically for expression

of vWF.

2.8. Dynamic bioreactor system

The cell-seeding experiments were performed using a specially

developed dynamic bioreactor system (filled with 500mL CM, kept in a

conventional cell incubator at 37 1C (MCO-20AIC, Sanyo)), which

allowed pulsatile circulation (Fig. 1). The system is able to mimic

the physiological condition of pulmonary circulation. Flow rate and

pulsation were continuously measured (Flowmeter, Medi-Stim) and

adjusted. The pressure and temperature were constantly maintained and

monitored with a monitoring system (Model-64S, Hewlett-Packard). The

gas exchange occurred by constant medium surface aeration inside the

oxygenation/compliance chamber (Fig. 1). Fresh gas (average 94% air,

6% CO2) was transported into the reservoir by a roller pump (Ismatec).

The pH level in the circulating CM was adjusted by the flexible changing

of CO2 supply.
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Fig. 1. Schematic drawing of the novel dynamic bioreactor system for

tissue engineering of heart valves.
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2.9. EC repopulation and dynamic culture

Under rotation conditions: Decellularized PV ðn ¼ 11Þ were inserted into

bioreactors after pre-incubation in CM for 24 h. Cultured cells were

inspected morphologically (cobblestone pattern) and immunohistochemi-

cally (vWF) and were accepted for reseeding when expressing predomi-

nantly an endothelial character. In three rounds, EC (0.4� 107 cells each)

were injected precisely in the valve lumen through specially designed cell-

seeding inlets (Fig. 1). Each seeding step was followed by a 12 h period of

slow rotation of the bioreactor (0.1 rotation/min), exposing the entire

valve surface to achieve optimal attachment conditions. After completed

reseeding three PV were analyzed for morphology and viability of cells.

Under dynamic conditions: Following the reseeding, eight bioreactors were

attached to a pulsatile pump. The pulsatile circulation was started with

0.1 L/min. The initial flow rate was increased by 0.15L/min twice a day

until a maximal flow of 2.0 L/min (mimicking physiological conditions: 60

beats/min) was reached. Mean system pressure was maintained at

2574mm/Hg during the entire duration of dynamic cultivation. At day

3, half of the CM volume was exchanged. The morphology of reseeded

valves and its metabolic activity (see below) were analyzed at flow rates of

1.0 L/min (3 PV) and 2.0L/min (5 PV).

2.10. Lactate, glucose, pO2, pCO2, and pH measurements

During dynamic culture, lactate, glucose, pO2, pCO2, and pH levels

were repeatedly measured. Three samples of 1mL CM each were

examined on a blood-gas analyzer daily (Radiometer, ABL 300). During

the measurements, samples were hermetically sealed in blood-gas syringes

which prevented exposure to the atmosphere. Results of the measurement

after launching the perfusion were used as baseline data.
2.11. Metabolic activity test (MTS assay)

CellTiter 96s AQueous One Solution Cell Proliferation (MTS) Assay

(Promega) was used to asses the metabolic activity of re-endothelialized

valve tissue as well as to monitor the success of detergent removal from the

decellularized PV during washing according to manufacturer’s protocol

(Promega). Briefly, this test is based on an MTS tetrazolium compound

(Owen’s reagent), which is bioreduced by cells into a colored formazan

product soluble in CM. This conversion is accomplished by NADPH or

NADH produced by dehydrogenase enzymes in metabolically active cells

[12]. Decellularized valve tissue was used as negative control. For WS

toxicity, ovine EC in 24-well plates (NunclonTM) were incubated with a

mixture of CM (50%) and WS (50%) for 24 h. PBS instead of WS served

as control. Seven hundred microliters CM and 140mL MTS were added to

each drained well and incubated at 37 1C for formazan formation. Samples

of PV wall and leaflet (surfaceE25mm2) were incubated in wells

containing 700mL CM and 140mL MTS at 37 1C. Wells containing CM

with MTS reagent without cells or tissue samples were used as baseline.

After 2 h of incubation, formazan production in a sample of 100mL was

measured photometrically at 490 nm in a 96-well plate ELISA Reader

MRX (Dynatec), as previously described (6). Three replicates were read

for each sample.

2.12. Statistics

All data are reported as mean7SD. The unpaired student’s t-test was

used for analyses. Statistical significance was defined as po0:05. The SPSS
statistical software package 11.0 for Windows (SPSS) was used for

statistical analysis.

3. Results

3.1. Morphological and biomechanical characterization of

decellularized PV

Native PV from sheep showed the following structure:
Luminal surface of the conduit is covered with a monolayer
of EC. The valve leaflet represents a typical 3-layered
structure with mesenchymal cells in the matrix scaffold
which is covered on both sides with an EC monolayer. The
media of the pulmonary vessel consist of fibers populated
with smooth muscle cells, whereas the adventitia is
composed of connective tissue interspersed with fibroblasts
(Fig. 2A, B).
Histological analysis revealed that the treatment with

detergents for 24 h followed by a DNase I digestion
resulted in the loss of cells in the graft to a level below a
detectable threshold (Fig. 2C, D). In agreement with this
result, DNA extraction from decellularized PV samples
(leaflet, wall) showed less then 5% of residual DNA when
compared to native tissue samples (n ¼ 3 each; data not
shown). In decellularized scaffolds, the collagen, elastic
fibers, and glycosaminoglycans (GAG) were comparable
to native tissue as observed by histological means
(Fig. 3A–D). Along this line, SEM revealed an efficiently
preserved three-dimensional network of ECM fibers with
complete maintenance of the basement membrane all along
the inner surface of the pulmonary wall as well as on both
sides of the leaflet (Fig. 4A, B). This observation was
confirmed by the presence of collagen IV in the basement
membrane of decellularized grafts (Fig. 5A, B).
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Fig. 2. Histology of native and decellularized PV. H&E staining. (A) Native pulmonary artery wall, (B) native cusp, (C) decellularized pulmonary artery

wall, (D) decellularized cusp. Nuclei—blue, connective tissue—red. Bars ¼ 100mm.

Fig. 3. Representative histological image of native and decellularized PV demonstrated an efficient preservation of matrix structures. Movat pentachrome

staining of native pulmonary artery wall (A), native cusp (B), decellularized pulmonary artery wall (C), and decellularized cusp (D). Collagen—yellow,

elastic fibers—red, proteoglycans—blue/green, nuclei—dark purple. Bars ¼ 50 mm.
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3.2. Biomechanics

The biomechanical parameters of native and decellular-
ized tissue (ultimate force, structural stiffness, ultimate
strain, ultimate stress, and elastic modulus) are shown in
Table 1. Ovine decellularized tissue revealed biomechanical
properties in both longitudinal and circumferential direc-
tion comparable to native PV. Biomechanical examination
revealed a higher tissue resistance to tension in circumfer-
ential of native as well as of decellularized pulmonary
conduit. Parameters as ultimate force, stiffness, ultimate
strain, and ultimate stress were slightly decreased (below
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Fig. 4. Transversal section of decellularized ovine PV wall and cusp

demonstrated the presence of the basement membrane (BM) on the

luminal surface by SEM: (A) cusp, (B) wall. Bars ¼ 10 mm.

Fig. 5. Immunohistochemistry of native and decellularized PV cusps

demonstrated the presence of collagen IV as main protein of the basement

membrane: (A) native cusp, (B) decellularized cusp. Bars ¼ 50 mm.
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statistical significance) in decellularized PV as compared to
native. Tissue decellularization caused also a slightly non-
significant decrease of elastic modulus data by longitudinal
and a slightly increase by circumferential tension.
3.3. Detergent removal from decellularized tissue

WS samples from the third and consecutive washing
cycles proved to be non-toxic to EC as determined by
metabolic activity and viability, and they were statistically
comparable to the PBS control (Fig. 6). Six washing cycles
over 72 h were chosen as a standard protocol for detergent
removal from decellularized tissue. All valves treated
according to this protocol revealed cellular attachment
and formation of EC monolayer on the valvular surface
after graft recellularization in a bioreactor.

3.4. Maintenance of physiological environment in

bioreactors

Analysis of the gas concentration in the circulating
medium showed physiological conditions of pO2, pCO2,
and pH during culture (Fig. 7). The exact adjustment of the
pH level was achieved by modulating the CO2 supply. The
optimal CO2 concentration in the incubator was 6–7%.
Glucose concentration was set to 5.571.4mmol/L. The
low release of lactate (1.370.2mmol/L) implied normal
aerobic cell metabolism in all cultures.

3.5. Morphological evaluation of bioengineered PV

After seeding under rotation conditions in the bioreactor
for 2 days, EC were detected on the luminal surface as an
incomplete monolayer (not shown). Under dynamic,
pulsatile flow at a rate of 1.0 L/min, EC reached confluence
and formed a complete monolayer (Fig. 8A). Immunohis-
tological analysis revealed that cells on the scaffold
expressed vWF demonstrating an endothelial origin
(Fig. 8C). Even after further graduated increase of the
flow rate up to 2.0 L/min, the confluent EC monolayer was
also present on the whole luminal surface of the valvular
scaffold (Fig. 9). Reseeded EC on the matrix surface
showed a high metabolic activity as ascertained by MTS
assays compared to negative control (decellularized matrix)
(0.3370.12 vs. 0.0370.04 absorbance units at 490 nm;
po0:001; respectively).

4. Discussion

Here we report on the development of a special
bioreactor system, which permits the use of variable levels
of shear stress forces on EC during the recellularization
process. Accurate monitoring and continuous adjustment
of cell culture parameters in our bioreactor leads to a
significantly improved cell-seeding procedure. Current in
vitro studies have shown that the expression of many genes
in EC and activation of different signaling pathways
could be regulated by shear stress-induced mechanotrans-
duction [13,14]. In vitro development of stable cell–matrix
and cell–cell connections during dynamic culture may
favorably influence the biocompatibility of bioengineered
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Table 1

Biomechanical properties (tension tests) of native versus decellularized PV

Value Native PV ðn ¼ 5Þ Decellularized PV ðn ¼ 5Þ

Longitudinal Circumferential Longitudinal Circumferential

Area (mm2) 29.275.7 29.676.3 31.876.6 29.971.6

Ultimate force (N) 9.574.3 13.971.5 6.672.1 11.473.9

Stiffness (N/mm) 3.072.6 4.371.6 2.770.7 3.971.3

Ultimate strain (mm/mm) 0.870.5 1.670.6 0.670.2 1.270.8

Ultimate stress (MPa) 0.3270.15 0.5070.18 0.2270.11 0.3970.14

Young’s modulus (MPa) 1.0470.94 0.8670.57 0.9070.38 1.1870.55

PV—pulmonary valve conduit (n ¼ 5 each). No statistically significant differences between the native and decellularized groups were found.

Fig. 6. Metabolic activity of sheep EC exposed to washing solution

samples from six succeeding washing cycles (WC) as ascertained by MTS

assay. �po0:05; ��po0:001 vs. control.

Fig. 7. pO2, pCO2, and pH levels in the pulsatile bioreactor during

dynamic reseeding of EC onto the decellularized ovine PV.
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heart valves in vivo. Experiments including functional tests
in vivo are pending.

Constant levels of temperature, nutrients, pO2, pCO2,
and pH seem to be essential for metabolism, growth, and
proliferation of cultured cells [15,16]. The constant
physiological balance of the medium gases could be
achieved only if they are supplied in sufficient quantities
into the CM. The fact that medium gases can be precisely
adjusted by our bioreactor system assures constant
physiological conditions.

Another important issue in heart valve TE is the
maintenance of a stable EC layer under high flow rate
comparable to physiological hemodynamic circulation
conditions. In this respect, the abrupt transfer of reseeded
EC from static conditions to high flow in a bioreactor
system could disrupt the EC layer [17]. For example,
the physiological high flow in a pulsatile heart valve
bioreactor may cause a cell wash-off from the matrix
surface, especially from distinctive turbulent areas
such as valve leaflets [10]. Therefore, the slow adaptation
of EC through a stepwise increase of the flow within a
bioreactor system seems to be a crucial point in avoiding
EC layer injury under physiological flow conditions. The
flow regime in our bioreactor allowed the maintenance of a
confluent layer of EC on the valve surface during the
culture exposed to flows up to 2.0 L/min, which approxi-
mately corresponds to physiological pulmonary flow in a
juvenile sheep.
Successful results of TE of heart valves based on a

biological scaffold have previously been reported by our
institution [5,6]. Tissue immunogenicity of the heart valve
conduits was resolved by enzymatic treatment using
trypsin/EDTA solutions for cell removal. Resulting
valve scaffolds were reseeded with autologous cells in a
bioreactor. Recent gains in knowledge of TE processes,
together with the results of animal implantations, have
encouraged us to reconsider current TE methods and
to improve the biotechnological processes of cardiac
valve TE.
The enzymatic treatment of the valve tissue is aggressive

and leads to partial matrix injury with damage of the
basement membrane [18,19]. As an alternative, we used a
detergent treatment to decellularize the tissue. The use of
detergents, however, necessitates a drastic washing proce-
dure prior to reseeding since detergents are well-known cell
toxins [19,20]. Nevertheless, the biomechanical properties
of the decellularized matrices produced by our method,
which are similar to those of the native tissue, suggest that
the matrix structures of the tissue were not significantly
compromised. The preservation of the mechanical stability
of matrices treated in this way may result in a more
adequate resistance to hemodynamic forces present in
physiological circulation as implicated by our tests using
high flow rates.
Implantation of decellularized allograft and xenograft

valves induces tissue regeneration in vivo with efficient
repopulation of the matrix by interstitial cells, but no
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Fig. 8. Confluent EC monolayer on dynamically reseeded PV (pulsatile flow: 1.0 L/min). (A) Perfect re-endothelialization of the ventricular and

pulmonary sides of cusp and wall surface (H&E staining; Bar ¼ 1mm). Representative immunohistochemistry showing expression of vWF (brown) in

native PV cusp (B) and of reseeded cells on the decellularized PV cusp (C). Bars ¼ 50mm.
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sufficient re-endothelialization [9,21]. The absence of a
confluent endothelial layer on decellularized valves predis-
poses the unprotected matrix surface to thrombosis and
intimal hyperplasia with subsequent graft failure [22,23].
Although the decellularized grafts have already reached
clinical trials, the outcome is still controversial [24].
Therefore, our concept is based on pre-operative endothe-
lialization of the decellularized scaffolds to facilitate tissue
remodeling and to decrease the risk of graft failure.

The important point in heart valve TE is the autologous
cell seeding in physiological dynamic culture environment.
The cell repopulation of the decellularized scaffolds was
previously performed mainly under static conditions [5,25],
or under low flow circulation using non-pulsatile bioreac-
tors [6]. The application of mechanical shear stress during
in vitro culture of EC plays an important role in cell
growth, orientation, and phenotypic remodeling [14,26,27].
5. Conclusion

In conclusion, we present a new method for TE of
pulmonary heart valves in a dynamic bioreactor system.
Using detergents, we were able to produce a non-toxic
valve scaffold while simultaneously preserving the struc-
tures of the ECM and thus observed analogous biomecha-
nical properties when compared to native tissue. The
dynamic culture of EC onto biological scaffolds using a
novel pulsatile bioreactor system imitating pulmonary
circulation environment improves cell growth and adhesion
and allows the formation and maintenance of an EC
monolayer. The adaptation of reseeded EC to physiologi-
cal circulation conditions by an initially low flow and
gradually increasing flow in the bioreactor provides the
basis for stable cell–matrix connections. In this respect, this
work represents the first time that an EC monolayer on a
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Fig. 9. Complete re-endothelialization of PV reseeded with EC exposed to

pulsatile circulation (2.0L/min flow). SEM of the cusp: (A) original

magnification 1000� , bar ¼ 10 mm; (B) original magnification 100� ,

bar ¼ 100mm.
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biological scaffold exhibits sufficient adhesional stability
when exposed to high pulsatile flow. Thus, permanent
monitoring of biotechnological processes and continuous
adjustment of the physiological conditions seem to be
important in improving cardiac valve engineering out-
comes.
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