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SUMMARY

Inhibitors of histone deacetylases (HDACi) hold
considerable therapeutic promise as clinical anti-
cancer therapies. However, currently known HDACi
exhibit limited isoform specificity, off-target activity,
and undesirable pharmaceutical properties. Thus,
HDACi with new chemotypes are needed to over-
come these limitations. Here, we identify a class of
HDACi with a previously undescribed benzoylhydra-
zide scaffold that is selective for the class I HDACs.
These compounds are competitive inhibitors with a
fast-on/slow-off HDAC-binding mechanism. We
show that the lead compound, UF010, inhibits cancer
cell proliferation via class I HDAC inhibition. This
causes global changes in protein acetylation and
gene expression, resulting in activation of tumor sup-
pressor pathways and concurrent inhibition of
several oncogenic pathways. The isotype selectivity
coupled with interesting biological activities in sup-
pressing tumor cell proliferation support further
preclinical development of the UF010 class of com-
pounds for potential therapeutic applications.

INTRODUCTION

Histone deacetylases (HDACs) remove the acetyl group from

lysine residues of histones and other cellular proteins. HDACs

are classified into four phylogenetic groups: class I (HDAC1,

HDAC2, HDAC3, and HDAC8), class II (HDAC4, HDAC5,

HDAC7, and HDAC9 in the class IIa subgroup, and HDAC6
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and HDAC10 in the IIb subgroup), class III (Sirt1 to Sirt7), and

class IV (HDAC11) (Smith et al., 2008; Yang and Seto, 2008).

Classes I, IIb, and IV HDACs possess bona fide Zn2+-dependent

acetyl-lysine deacetylase activities. While heightened HDAC

activities are implicated in several disorders, including chronic

neurologic, inflammatory, and metabolic conditions (Christen-

sen et al., 2014; Fass et al., 2013; Wagner et al., 2013), abnormal

epigenetic regulation, including globally or locally altered pat-

terns of histone acetylation, has long been implicated in cancer

etiology and progression. In particular, the roles of HDAC1,

HDAC2, and HDAC3 in promoting cancer progression have

been extensively documented (Muller et al., 2013; New et al.,

2012; Wilson et al., 2006).

Chemically diverse classes of small-molecule inhibitors of

HDACs (HDACi) have been developed and characterized, and

many exhibit potent anticancer properties in preclinical and clin-

ical studies (Bolden et al., 2006; Bradner et al., 2010). Based on

the structures of the Zn2+-chelating chemical groups, HDAC in-

hibitors can be divided into four major classes: hydroxamic

acids, aminobenzamides, cyclic peptides, and aliphatic acids.

A variety of derivatives of each class have been synthesized

and characterized. Three compounds, vorinostat and belinostat

(hydroxamic acids) and romidepsin (a cyclic peptide), have been

approved for clinical anticancer therapies (Marks, 2010; New

et al., 2012). These US Food and Drug Administration (FDA)-

approved drugs and a number of other HDACi have undergone

clinical evaluations for treating a variety of hematological malig-

nancies and solid tumors (New et al., 2012).

However, there are a number of issues that may limit broad

clinical utility of the currently known HDAC inhibitors. Hydroxa-

mic acids are pan-HDACi, active against different isoforms of

HDACs, and feature a rather strong Zn2+-chelating group

(warhead), which is also found in inhibitors of other metalloen-

zymes, such as matrix metalloproteases (MMPs) and tumor
–284, February 19, 2015 ª2015 Elsevier Ltd All rights reserved 273
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necrosis factor alpha-converting enzyme (DasGupta et al., 2009;

Lotsch et al., 2013; Nuti et al., 2011), although a recent study

shows that metal-chelating drugs generally do not display overt

off-target activities (Day and Cohen, 2013). This raises the risk of

significant off-target activities and unpredictable clinical toxicity.

Although several mechanisms such as the induction of

apoptosis, cell-cycle arrest, or inhibition of DNA repair are pro-

posed to account for the antineoplastic activities of HDACi, it re-

mains challenging to determine precisely the importance of

HDAC inhibition for anticancer effects using pan-HDACi due to

off-target activities. Although yet to be proven, it is generally

thought that HDACi with increased isoform selectivity and po-

tency would be safer agents with reduced side effects and could

lead to superior clinical outcomes, because such selective com-

pounds would target only HDAC activities that are dysregulated

in a particular type of cancer without causing unnecessary

toxicity stemming from inhibiting other HDAC isoforms. Thus,

there have been significant efforts in drug development to iden-

tify HDACi with greater isozyme specificity (Ononye et al., 2012).

The aminobenzamide class of HDACi is selective to class I

HDACs (HDACs 1–3) and displays unique slow-on/slow-off

HDAC-binding kinetics (Beconi et al., 2012; Chou et al., 2008;

Lauffer et al., 2013; Newbold et al., 2013). A number of these

compounds, such as MS-275 (entinostat), have been tested in

clinical trials to treat diverse types of human cancer (Gojo

et al., 2007; Martinet and Bertrand, 2011). However, a recent

study reports that aminobenzamides seem to exhibit intrinsic

liabilities, including chemical instability under certain conditions,

high in vivometabolic turnover, and efficient removal by P-glyco-

protein drug transporters, which may significantly hamper their

potential clinical utility (Beconi et al., 2012). Although cyclic pep-

tides are more potent against the class I HDACs (Bradner et al.,

2010), the sulfhydryl group of romidepsin is thought to chelate

zinc with little specificity (Arrowsmith et al., 2012). Moreover,

serious adverse events associated with cyclic peptides,

including cardiac toxicity, have been reported (Martinet and Ber-

trand, 2011). These observations call for the development of

potent and isoform-selective HDACi of novel chemotypes to

overcome these limitations in order to unleash the considerable

therapeutic potentials of pharmacological HDAC inhibition.

Through a high-throughput screening (HTS) effort, we discov-

ered a lead compound that selectively inhibits HDAC1, HDAC2,

and HDAC3 of the class I HDACs. This lead compound (UF010)

features a previously unknown benzoylhydrazide scaffold as the

HDACi pharmacophore. Initial structure-activity relationship

(SAR) studies confirm the critical components of this scaffold

for HDAC inhibition. Importantly, HDAC inhibition potency of

UF010 and analogs correlates with their ability to impair cancer

cell proliferation. In addition, UF010 alters global gene expres-

sion to activate antineoplastic pathways. Thus, this new class

of HDACi can serve as powerful tools to investigate roles of

HDACs in the biology of human diseases.

RESULTS

HTS Identification of HDACi with Novel Chemotypes
To discover small-molecule HDACi with novel chemotypes, we

conducted an HTS campaign of 622,360 compounds using the

Scripps Drug Discovery Library. For the primary screen, we en-
274 Chemistry & Biology 22, 273–284, February 19, 2015 ª2015 Else
gineered a luciferase reporter under the control of the adenovirus

(Ad) major late promoter (Ad-MLP-Luc) in the colon cancer

HCT116 cell line. Compared with the luciferase reporter under

the control of the Ad E2 early promoter (Ad-E2-Luc), the Ad-

MLP-Luc reporter activity dramatically increased in a dose-

dependent manner by HDACi vorinostat or MS-275 (Figure S1).

The similar responses of the Ad-MLP-Luc reporter to different

classes of HDACi indicate that HDAC inhibition is the primary

mechanism for the reporter activation. Each library compound

was assayed at a single point and a single dose (8.6 mM). The re-

porter activity was detected as luminescence readout, and cell

viability was monitored with PrestoBlue dye as fluorescence in-

tensity in a multiplex format (Figure S2). A viability counterscreen

assay was used to remove highly toxic compounds. The HTS as-

says were robust with Z0 of > 0.6 (Figure S3). A specific hit cutoff

based on an average plus 3-fold SD was applied, resulting in the

identification of 5,868 compounds, which increased the Ad-

MLP-Luc activity by 9.2% of the high control (vorinostat at

28 mM). These compounds were tested in confirmation assays

in triplicate at 8.6 mM, among which 1,575 compounds were

confirmed to activate the Ad-MLP-Luc reporter (Figure S3).

The top 637 compounds were further tested in 10-point dose-

response assays in triplicate in the Ad-MLP-Luc activation assay

(Figure S3). We then selected 315 compounds highly active in

the cell-based assays for in vitro HDAC1 inhibition assays using

the HDAC-Glo I/II reagents (Figure S4). A majority (54%) of these

compounds inhibited HDAC1 in vitro with a potency of <10 mM,

among which there were nine hydroxamates, including vorino-

stat and scriptaid, and seven aminobenzamides (Figure S6A).

These results highlight the robustness of the cell-based Ad-

MLP-Luc activation assays for identifying HDACi with significant

inhibitory properties.

In subsequent studies, we focused on hits with novel chemical

scaffolds. A confirmed hit with a benzoylhydrazide scaffold

(UF010) displayed consistent HDAC inhibition in biochemical

and cell-based assays. We profiled UF010 against all Zn2+-

dependent HDACs and found that UF010 is class I HDAC selec-

tive with nanomolar potencies against HDACs 1–3 (Table 1).

SAR of UF010 and Analogs
UF010 was resynthesized and its activities were confirmed. A

total of >50 UF010 analogs with a variety of modifications of

the benzoylhydrazide scaffold have been synthesized and their

activities determined (data for select analogs are shown in

Table 2). These SAR data indicate that a tripartite structure of

this scaffold with a central –C(O)–NH–NH– unit flanked by a

phenyl group and a short aliphatic chain is important for HDAC

inhibition. The short 4-carbon linear aliphatic chain appears

nearly optimal (Table 2). Any changes in the chain length (in-

crease or decrease) or structure (e.g., branched) reduced

HDAC inhibition potency. As for the phenyl group, the presence

of a relatively bulky substituent at the para position relative to the

carbonyl group seems critical for HDAC inhibition (Table 2).

Among the analogs we have examined thus far, three (SR-

3208, -3302, and -3459) displayed improved potencies versus

HDACs 1–3 (Table 2).

We have performed comparative molecular modeling studies

of UF010 and the new analogs by using the Schrödinger

modeling package. This docking study was performed without
vier Ltd All rights reserved



Table 1. Inhibitory Potency (IC50, mM) of Different Classes of HDAC Inhibitors against HDACs 1–11

Inhibitor Class HDAC1 HDAC2 HDAC3 HDAC8 HDAC6 HDAC10 HDAC11 HDAC4 HDAC5 HDAC7 HDAC9

UF010a benzoylhydrazide 0.5 0.1 0.06 1.5 9.1 15.3 44.5 >100 >100 >100 >100

MS-275b benzamide 0.2 0.5 0.3 >10 5.90 >10 ND >10 >10 >10 >10

Cpd60c benzamide 0.001 0.008 0.5 >30 >30 3.4 NA >30 >30 >30 >30

SAHA hydroxamic acid 0.06 0.3 0.02 0.8 0.009 0.03 NA >10 >10 >10 >10

TSAd hydroxamic acid 0.005 0.008 0.01 0.2 0.0007 0.04 0.01 5.0 2.6 1.4 10.4

Romidepsine cyclic peptide 0.002 0.004 ND ND 0.8 ND ND 0.03 ND ND ND

ND, not determined.
aDose-response assays were performed in the concentration range of 5 nM to 100 mM based on fluorescence assays.
bHDAC6 IC50 was determined in this study; other data from Lauffer et al. (2013).
cData from the literature (Lauffer et al., 2013; Schroeder et al., 2013).
dHDAC1 and HDAC6 IC50 data from the literature (Lauffer et al., 2013).
eData from the literature (Newbold et al., 2013).
bias, and in each instance, the software identified the HDAC

active site as the only binding site for UF010 and analogs. The

butyl side chain of these compounds fills a deep hydrophobic

(foot) pocket (Figure S5). An immediate question was if the

inhibitors are Zn binders; this modeling analysis indicated in

some instances that the hydrazide carbonyl interacted in mono-

dentate manner with the active site Zn, while in others the sec-

ond (distal) hydrazide nitrogen was within coordination distance

of the active site Zn. In no cases was bidentate coordination

observed; in many instances, the inhibitors exhibited no interac-

tion whatsoever with the active site Zn. Thus, it appears that the

principal mode of binding of this novel class of HDACi is not due

to strong interactions with the active site Zn; this distinguishes

this class of inhibitors from the vast majority of other known

HDAC inhibitors.

Impact of UF010 on Global Protein Acetylation
In cell-based assays, we exposed HCT116 cells to UF010 along

with other HTS hits (UF003, UF006, UF007, UF008, and UF009;

the structures of these hits are shown in Figure S6A), trichostatin

A (TSA) (a hydroxamate), and MS-275 (an aminobenzamide).

Data presented in Figure 1A show that UF010 consistently

induced the accumulation of acetylated histones at all sites we

have examined. TSA strongly induced acetylation at some sites

but weakly at other sites. In contrast, MS-275 only slightly

induced acetylation at several sites but failed to induce acetyla-

tion at most sites. This is probably due to the short (1 hr) expo-

sure of the cells to MS-275, as it and other aminobenzamides

are known to bind rather slowly to the active site of an HDAC

(Beconi et al., 2012; Chou et al., 2008; Lauffer et al., 2013). We

also assessed the cellular activities of synthetic UF010 analogs.

In HCT116 cells, their cellular activities are consistent with their

in vitro potencies for inhibiting the deacetylation at H4K5, while

for H3K18ac, some weak in vitro inhibitors (e.g., SR-3205) also

notably increased acetylation (Figure 1B), suggesting that

in vitro activities do not exactly reflect cellular effects. Among

these analogs, UF010 and SR-3208 consistently displayed sig-

nificant inhibition of cellular HDACs (Figure 1B).

We then assessed the impact of UF010 on the acetylation of

nonhistone proteins. While TSA dramatically increased a-tubulin

acetylation, UF010 had no effect (Figures 1C and 1D), even at a

high concentration (Figure S6B). However,UF010 induced accu-
Chemistry & Biology 22, 273
mulation of acetylated p53 in both HCT116 and A549 cells after

exposure to etoposide that inhibits DNA topoisomerase II and in-

duces double-stranded DNA breaks. As expected, etoposide

activated the p53 pathway, as indicated by the accumulation

of p53 and its transcriptional targets p21 encoded by CDKN1A

and PUMA encoded by BBC3 (Figures 1C and 1D). Both

UF010 and MS-275 also notably stabilized p53 with or without

etoposide treatment (Figures 1C and 1D). HDAC6 (class IIb) is

the major tubulin deacetylase (Hubbert et al., 2002; Matsuyama

et al., 2002; Zhang et al., 2003), whereas HDAC1, probably in the

context of the NuRD complex, deacetylates p53 (Contreras

et al., 2013; Luo et al., 2000). These data indicate that UF010

is a class I HDAC-selective inhibitor, in agreement with in vitro

biochemical assays (Table 1).

To identify proteins the acetylation of which is impacted by

UF010 globally, we conducted a proteomic experiment. We

found that acetylation of histones H2B, H3, and H4 at most

known sites of acetylation was enriched in UF010-treated cells

(Table S3). Surprisingly, no acetylated peptides of H2A were de-

tected in our experiment, although both MS-275 and vorinostat

were shown to potently induce H2A acetylation (Choudhary

et al., 2009). Acetylated peptides of several other proteins

were also enriched (Table S3). Although these proteins are all

known acetylated proteins (Choudhary et al., 2009), the identi-

fied acetylation sites in nucleolin, parathymosin, and PEX14 in

UF010-treated cells have not been reported thus far (Table

S3). Whereas it is most likely that only the most abundant acet-

ylated peptides were detected in our limited proteomic profiling,

these data suggest thatUF010 exerts a distinct impact on global

acetylation compared with existing HDAC inhibitors, further sup-

porting the notion that UF010 possesses unique activities.

UF010 Is a Competitive HDACi with a Fast-On/Slow-Off
Target Binding Mechanism in Cells
The hydroxamic acid and aminobenzamide classes of HDACi

occupy the catalytic center of HDACs and display the competi-

tive mechanism of HDAC inhibition (Chou et al., 2008; Kral

et al., 2014; Lauffer et al., 2013). We have conducted inhibition

kinetic experiments and found that UF010 is clearly a competi-

tive inhibitor of HDAC2 versus its substrates (Figure 2A), indi-

cating that UF010 binds to the substrate pocket of the catalytic

core of HDAC2.
–284, February 19, 2015 ª2015 Elsevier Ltd All rights reserved 275



Table 2. SAR of Selected UF010 Analogsa

IC50 Values (mM)b

Compound R1 R2 HDAC1 HDAC2 HDAC3 HDAC6 HDAC8

UF010 Br n-butyl 0.46 1.33 0.19 9.09 2.83

SR-3203 F n-butyl 13.2 15.1 1.78 ND ND

SR-3204 –OCF3 n-butyl 8.86 9.09 1.35 ND ND

SR-3205 H n-butyl >50 >50 >50 ND ND

SR-3206 –OMe n-butyl 1.91 2.52 0.43 ND ND

SR-3208 –NMe2 n-butyl 0.23 0.88 0.12 9.57 0.72

SR-3210 Cl n-butyl 3.0 3.8 2.5 ND ND

SR-3302 t-butyl n-butyl 0.19 1.04 0.07 6.83 0.49

SR-3459 –CH2N3 n-butyl 0.32 0.53 0.15 10.8 0.89

SR-3212 Br n-propyl 1.70 3.88 0.22 4.63 ND

SR-3970 Br n-pentyl 1.87 1.92 0.92 5.73 4.87

SR-3367 Br n-hexyl 10.27 16.11 20.04 39.1 ND

SR-3213 Br CH2CH2Bn >50 >50 24.18 ND ND

SR-3297 Br CH2CH2(c-C5H10) 7.40 7.65 1.08 ND ND

SR-3364 Br CH2(c-C5H10) 8.81 28.45 6.98 ND ND

SR-3365 Br CH2CH2CH2(c-C5H10) >50 >50 >50 ND ND

SR-3298 –NMe2 CH2(c-C5H10) 1.76 3.25 1.67 ND ND

ND, not determined.
aUF010 is an HTS hit. All compounds identified with ‘‘SR’’ numbers are synthetic analogs.
bHDAC activity assays were performed using the HDAC-Glo I/II reagents.
The hydroxamates are fast-on/fast-off HDACi, whereas the

aminobenzamide HDACi display a slow-on/slow-off HDAC-

binding mechanism (Beconi et al., 2012; Chou et al., 2008;

Lauffer et al., 2013). To assess how UF010 might interact with

HDACs, we exposed HCT116 cells to various HDACi for 6 hr.

The drugs were washed out and the cells were cultured for

various lengths of time after drug washout. Consistent with pub-

lished data (Lauffer et al., 2013), vorinostat induced high levels of

histone acetylation (H3K18ac) within 6 hr, and the acetylated his-

tones were quickly reduced to normal levels upon the drug

removal (Figure 2B, lanes 7–11). Romidepsin also quickly

induced acetylation, and the acetylation levels were stable up

to 24 hr (18 hr after drug removal) (Figure 2A, lanes 1–5), suggest-

ing that romidepsin has a slower rate of release fromHDACs than

vorinostat. The accumulation of histone acetylation induced by

the aminobenzamide MS-275 was apparent only at 18 hr after

6 hr exposure, and the acetylated histones were stable up to at

least 48 hr (Figure 2B, lanes 12–15), in agreement with a slow-

on/slow-off mode of HDAC inhibition (Beconi et al., 2012;

Chou et al., 2008; Lauffer et al., 2013). For UF010, histone acet-

ylation was induced within 6 hr of exposure, and the levels of

induced acetylation were maintained up to 96 hr (Figure 2B,

lanes 17–22), suggesting that UF010 is a fast-on but slow-off

inhibitor.

We assessed the HDAC inhibition activity of UF010, MS-275,

and SAHA in live cell cultures. As shown in Figure 2C,UF010 ex-

hibited an HDAC inhibition IC50 of 1.8 mMwithin minutes after its
276 Chemistry & Biology 22, 273–284, February 19, 2015 ª2015 Else
addition, and this inhibitory potency remained relatively constant

throughout the assay period up to 4 hr. The IC50 of MS-275

reached the minimum in about 2 hr after drug addition and

showed a moderate increase thereafter. The IC50 of SAHA

reached the minimum of �0.1 mM immediately after drug addi-

tion. These data are consistent with the binding kinetics of these

inhibitors as observed in drug washout experiments. One sur-

prising finding is that UF010 is about 5-fold more potent than

MS-275 against HDACs in HCT116 (Figure 2C) and HepG2 cells

(data not shown). These experiments also indicate that UF010

quickly penetrates cell membranes and interacts with its cellular

targets in cell cultures.

HDAC Inhibition Potency of UF010 and Analogs
Correlates with their Antiproliferative Effects
To assess the effects of UF010 and analogs on cancer cell

viability, we treated diverse cancer cell lines withUF010 analogs.

In general, UF010 is less potent to impair the viability of cancer

cells than vorinostat or MS-275. For example, the IC50 values

(mM) for killing the colon cancer HCT116 cells were 11.2 for

UF010, 2.1 for MS-275. and 1.2 for vorinostat. To assess poten-

tial roles of HDAC inhibition on cancer cell cytotoxicity, we

exposed liver cancer cell line HepG2 to UF010 and analogs

with various in vitro HDAC inhibition potencies. We found that

HDAC inhibition potencies of these analogs exhibited an excel-

lent correlation with their cytotoxicity to HepG2 cells (Figure 3A).

Indeed, SR-3208, which is 2- to 5-fold more potent than UF010
vier Ltd All rights reserved
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(A) HCT116 cells were exposed to TSA (0.2 mM)

and other compounds at 2 mM for 1 hr. UF003 and

UF006–UF010 are hits identified in the HTS. His-

tones were extracted and subject to western

blotting with antibodies to histones with the indi-

cated modifications or stained with colloidal blue

(CBS). The antibodies against H4Kac recognize

H4 acetylated at K5, 8, 12, and 16.

(B) The effects of synthetic UF010 analogs on

histone acetylation. HCT116 cells were exposed to

TSA (0.1 mM), romidepsin (5 nM), and other com-

pounds at 0.5 mM for 24 hr. The total cell extracts

were subject to western blotting with antibodies to

histones with the indicated modifications. PCNA

was detected as a loading control.

(C and D) HCT116 (C) and A549 (D) cells were

exposed to DMSO or etoposide (Etop, 10 mM) for

6 hr. TSA (0.2 mM), MS-275, and UF010 (2 mM)

were added 1 hr before cell lysis. The total cell

lysates were subject to western blotting with

antibodies to the indicated proteins. PCNA was

detected as a loading control.
in inhibiting HDACs 1–3, is 3-foldmore potent in eliciting cytotox-

icity on HepG2 cells. By contrast, SR-3205, which did not inhibit

HDACs in vitro, exerted no growth inhibition for HepG2 cells.

Similar effects were also observed in other cancer cell lines

(HCT116, colon; MDA-MB-231 and HCC1957, breast cancer;

Figures 3B–3D), despite highly variable sensitivities of these

cell lines to UF010 analogs. These data suggest that HDAC inhi-

bition appears critical for the UF010 class of HDACi to halt can-

cer cell growth and proliferation.

UF010 was screened against the NCI-60 panel of cancer cell

lines by the National Cancer Institute (NCI) Development Thera-

peutics Program. It inhibits proliferation of all tested cell lines

(including five breast cancer and seven colon cancer cell lines)

with a mean GI50 of 2.94 mM, although sensitivity to this com-

pound varies among these cell lines (Figures 4A and 4B; Fig-

ure S7). Cell-cycle analysis using MDA-MB-231 cells exposed

to UF010 or vorinostat indicate that UF010 mainly blocked

G1/S transition with an increased G1 cell population and a

reduced cell population in the S phase in a dose-dependent

manner, while vorinostat inhibited G1/S progression at 1 mM

but induced a strong G2/M block at 10 mM (Figure 4C). The

G2/M checkpoint induced by vorinostat is probably due to a

strong DNA-damage response in cells treated with vorinostat

(Lee et al., 2010). To assess potential effects of UF010 on cell

migration that is associated with metastatic progression, we

conducted a wound healing assay. Monolayer MDA-MB-231

cultures were exposed to DMSO, vorinostat (SAHA), or UF010,

and then scratched. Cell migration to the denuded areas was as-

sessed. We found that UF010 at 1 mM markedly slowed migra-

tion, whereas SAHA did not significantly affect this phenotype

(Figure 4D). It is unlikely that possible cross-inhibition of MMPs

by UF010 contributes to the inhibition of cell migration, as
Chemistry & Biology 22, 273–284, February 19, 2015
SAHA containing the hydroxamic acid

warhead that is known to lead to pan-

MMP inhibition did not affect cell migra-
tion in our experiments. Vorinostat and other hydroxamic acid

HDACi have been shown to suppress breast cancer metastases

in several preclinical models (Chiu et al., 2013; Huang et al.,

2014; Palmieri et al., 2009), although other studies showed that

HDACi of the hydroxamic acid class could augment metastatic

spread of certain cancer cell lines (Lin et al., 2012).

UF010 Activates Tumor Suppression Pathways but
Inhibits Oncogenic Signaling
To assess cellular effects ofUF010 comprehensively, we treated

MDA-MB-231 cells withUF010 at 1 mM for 24 hr and analyzed its

impact on global gene expression in comparison with DMSO

control using the Affymetrix Human Transcriptome Array 2.0,

which allows for the interrogation of transcripts for splicing vari-

ants of coding and noncoding genes. The expression of a large

number of transcripts was affected due to UF010 treatment,

with more downregulated transcripts than upregulated ones

overall (Figure 5A). Most of these responsive genes exhibited

moderate levels of changes in their mRNA expression. Among

the responsive genes that were up or downregulated by 1.5-

fold, 115 were upregulated and 68 downregulated (Figure 5A).

The changes in gene expression patterns due to UF010 treat-

ment were subject to ingenuity pathway analysis. In the biolog-

ical function analysis, the most highly affected pathways include

the induction of cell death, the suppression of cell-cycle progres-

sion, and DNA repair (Figure 5D). In the upstream regulator

analysis, UF010 induced the activation of p53 and Rb tumor

suppressor pathways but suppressed the MYC, MYCN, and

KRAS oncogenic pathways. We showed above that UF010

induced G1 cell-cycle arrest in fluorescence activated cell sort-

ing (FACS) analysis (Figure 4). Concordantly, pathway analysis

of our gene expression data revealed that UF010 activated
ª2015 Elsevier Ltd All rights reserved 277
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Figure 2. Mechanisms of HDAC Inhibition by UF010

(A) Purified HDAC2 was incubated with various concentrations of substrate and UF010 for various lengths of time. The data were fitted based on the classic

Michaelis-Menten kinetics model (top). The Km of HDAC2 was determined to be 7.6 mMwithout compound UF010. The observed Km of HDAC2 was significantly

increased in the presence of UF010. The Lineweaver-Burke replots of the rate data are shown in the lower panel.

(B) HCT116 cells were pulse treated with the indicated HDACi for 6 hr. The drugs were then washed out, and regular medium was added. The cells were lysed at

the indicated times after drug addition. The lysates were subject to western blotting with the indicated antibodies.

(C) HCT116 cell cultures were exposed to various doses of the indicated drugs. HDAC-Glo I/II reagent was added immediately following drug addition. Lumi-

nescencewas detected 20min after adding HDAC-Glo I/II reagent, and every 10min thereafter up to 240min (4 hr). The HDAC inhibition IC50 was determined and

plotted against time.
pathways that promote G1 arrest, while suppressing mecha-

nisms that promote cell-cycle progression (Figure 5B). UF010-

induced activation of CDKN1A encoding p21 was confirmed

by quantitative real-time PCR (Figure 5C). Notably, MDA-MB-

231 cells express a mutant (R280K) form of p53. Thus, the acti-

vation of the p53 pathway by UF010 is somewhat surprising but

could involve partial reactivation of p53 through increasing its

acetylation, as UF010 could indeed increase the levels of acety-

lated p53 (Figure 1). As expected of an HDACi, this analysis also

revealed that UF010 activated overlapping downstream effec-

tors of the known HDACi, including tributyrin, butyric acid,

TSA, and romidepsin (Figure 5D). The inhibition of both HDAC1

and HDAC2 was also revealed in the pathway analysis (Fig-

ure 5D), thereby providing an independent validation of UF010

as a class I-specific HDACi. Interestingly, UF010 also seems to

show overlapping functions with several other drugs, especially

genotoxic chemotherapeutics, including cisplatin, camptothe-

cin, doxorubicin, and etoposide (Figure 5D; Table S4). This is

consistent with the ability of HDACi to elicit DNA-damage

response (Lee et al., 2010).

DISCUSSION

Potent and selective HDACi serve as powerful tools for probing

fundamental biological questions and for ameliorating diverse

pathological conditions. Although structurally diverse classes

of small-molecule HDACi have been identified, many of the

known HDACi feature strong Zn-chelating warheads that could

lead to unintended off-target effects. We have identified a novel
278 Chemistry & Biology 22, 273–284, February 19, 2015 ª2015 Else
group of selective class I HDAC inhibitors withUF010 as the first-

in-class lead compound. This class of HDACi features a novel

pharmacophore targeting class I HDACs with a benzoylhydra-

zide scaffold. Our preliminary SAR studies confirm a tripartite

structure of this scaffold with a central –C(O)–NH–NH– unit

flanked by a phenyl group and a short aliphatic chain. The central

unit might provide hydrogen-bonding and weak Zn2+-chelating

functionalities, while the flanking hydrophobic groups interact

specifically with the hydrophobic pockets in the HDAC catalytic

core (Figure S5). Of importance, weaker Zn2+-chelating war-

heads in HDACi might reduce off-target activities (Lobera

et al., 2013). Our data suggest that UF010 analogs display a

unique HDAC inhibition pharmacology. UF010 seems more

potent in suppressing the deacetylation of histones and p53

than aminobenzamides and less so than hydroxamates pos-

sessing a strong Zn2+-chelating warhead in cell-based assays.

Importantly, we found that the HDAC inhibition potencies of

UF010 and analogs correlate directly with their ability to sup-

press the survival of cancer cells (Figure 3). Bioinformatics anal-

ysis of gene expression data also implicates the suppression of

HDAC1 and HDAC2 activity by UF010 (Figure 5D). Thus, HDAC

inhibition may underlie their tumor suppressive activity. Notably,

UF010 seems to exert a powerful tumor suppressive effect

through activating critical tumor suppressor pathways (e.g.,

p53 and Rb), while inhibiting several dominant oncogenic mech-

anisms (e.g., MYC, MYCN, and KRAS), representing novel

mechanisms of action for a potential anticancer agent. Our

data show that UF010 is less cytotoxic than both vorinostat

and MS-275. Notably, UF010 is a more potent HDAC inhibitor
vier Ltd All rights reserved
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Figure 3. Suppression of Cancer Cell Viability by UF010 Analogs Correlates with Their HDAC Inhibition Potencies

(A–D) Hepatocellular carcinoma cell line HepG2 (A), colon cancer cell line HCT116 (B), and breast cancer cell lines MDA-MB-231 (C) and HCC1957 (D) were

exposed to DMSO (control) or various doses ofUF010 or an indicated analog. Viable cells were detected at 96 hr after treatment using the CellTiter-Glo assay kit.

The fraction of survived cells is plotted against compound concentrations. Error bars show SEM (n = 3). The IC50 of each compound was determined using

nonlinear regression curve fitting with the Prism 6 software.
than MS-275 in cell-based assays (Figure 2C). These observa-

tions suggest that off-target activities of MS-275 might

contribute significantly to its cytotoxicity. Regardless, reduced

general cytotoxicity for an HDACimay bemore desirable for can-

cer therapy, given the clinical toxicity associated with known

HDACi (Martinet and Bertrand, 2011). Furthermore, less toxic

compounds might be more suitable for treating diseases such

as neurologic conditions and metabolic diseases, as cell death

should be avoided in these settings. In preliminary experiments,

we found that UF010 has a half-life of 15.8 hr in cell culture me-

dium containing 10% fetal bovine serum (data not shown), which

is similar to that of romidepsin (Furumai et al., 2002). Additional

studies will be performed in the future to characterize the phar-

macokinetic properties of the UF010 class of HDACi, after

more potent analogs are developed.

HDACs are assembled into several multisubunit complexes

such as the Sin3 and NuRD complexes and regulatory subunits

in these complexes seem to influence the binding of existing

HDAC inhibitors to HDACs. For example, whereas vorinostat

exerts potent inhibition of all known HDAC complexes, amino-

benzamides seem to show some selectivity against different

complexes (Bantscheff et al., 2011). Specifically, aminobenza-

mides seem inert versus the Sin3 complex. However, we found

thatUF010 can inhibit the Sin3 complex (data not shown), further

supporting the notion that UF010 has distinct HDAC inhibitory

activities.

In addition to acetylation (C2), lysine residues in histones can

also be modified with short-chain N-acylation such as propiony-

lation (C3), and butyrylation (C4) (Chen et al., 2007). Histone

peptides containing such short-chain acylation can bind to the

bromodomains of the bromodomain and extraterminal (BET)

family of proteins (e.g., BRD4), although their binding affinity is

considerably weaker compared with acetylated peptides (Voll-

muth and Geyer, 2010). The short aliphatic chains in the UF010
Chemistry & Biology 22, 273
analogs share certain similarity toN-acylated lysine, which raises

the question as to whether UF010 analogs might inhibit bromo-

domains. Although we did not directly test potential activity of

UF010 analogs versus bromodomains in vitro, we found that

the bromodomain inhibitor I-BET151 synergizes with UF010 to

induce cell death (data not shown), suggesting that UF010 and

I-BET151 have distinct cellular targets.

Pathway analysis of gene expression data revealed that

UF010 exhibits overlapping activities with a number of drugs.

Not surprisingly, known HDACi, including tributyrin, butyric

acid, TSA, and romidepsin, are identified (Figure 5D), un-

equivocally confirming that HDACs are the targets of UF010.

Interestingly, UF010 seems to share activities with genotoxic

chemotherapeutics such as cisplatin, camptothecin, and etopo-

side. This may stem from the ability of HDACi to elicit DNA-dam-

age response (Lee et al., 2010). This property could also be a

consequence of UF010-mediated activation of the p53 pathway

(Figure 1; Figure 5D). Fulvestrant, a selective estrogen receptor

antagonist, was also identified in our bioinformatics analysis

(Figure 5D). The class I HDAC-selective HDACi MS-275 (entino-

stat) has been shown to sensitize ER+ breast cancer cells to

antiestrogen agents, and the combination of entinostat with aro-

matase inhibitors, which block estrogen synthesis, exhibited

improved clinical outcomes for patients with locally advanced

or metastatic ER+ breast cancer in a phase 2 clinical trial (Sabnis

et al., 2013; Yardley et al., 2013). Of note, the ER+ T47D breast

cancer cell line is most sensitive to UF010 among the tested

breast cancer cell lines (Figure 4A). It will be of particular interest

to determine the effects of UF010 on ER pathways in breast

cancer.

Despite the activation of multiple tumor suppressive path-

ways in UF010-treated MDA-MB-231 cells, they are relatively

resistant to UF010-mediated apoptosis (IC50 of 29.1 mM, Fig-

ure 3C). Simultaneous upregulation of stress-response or
–284, February 19, 2015 ª2015 Elsevier Ltd All rights reserved 279
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Figure 4. Antiproliferation Effects of UF010

(A and B) The indicated breast (A) and colon (B) cancer cell lines in the NCI-60 panel of cancer cell lines were exposed toUF010 at various concentrations. Percent

cell growth relative to the cells seeded before treatment is plotted against the UF010 concentrations in log scale. For details see Figure S7.

(C) Effects of UF010 and SAHA (vorinostat) on cell-cycle progression. MDA-MB-231 cells were exposed to DMSO (control) or the indicated doses of UF010 or

SAHA for 24 hr. Cells were then fixed and processed for FACS analysis. Shown are the average values of two experiments along with SEM.

(D)UF010 suppresses cell migration. MDA-MB-231 cells were exposed to DMSO or the indicated doses ofUF010 or SAHA. At 2 hr after adding a compound, the

monolayer cultures were scratched and the denuded areas were photographed at the indicated time points. The uncovered areas were calculated and compared

with the initial open areas. Shown are averages ± SEM (n = 3). *p < 0.01 (versus DMSO treatment).
survival pathways may counteract the apoptotic mechanisms

to allow UF010-treated cells to survive. The NUPR1 stress-

response/chemoresistance pathway was activated in UF010-

treated MDA-MB-231 cells (Table S4), likely contributing to the

survival of UF010-treated MDA-MB-231 cells. Indeed, NUPR1

seems to play a critical role in tumor initiation and progression

(Cano et al., 2014). In addition, ERK1/2 pathway was also acti-

vated (Table S4). These and other cell survival mechanisms are

likely to confer resistance toUF010.UF010 combinedwith inhib-

itors targeting these survival pathways is predicted to enhance

anticancer effects.

In summary, we have identified a new HDACi chemotype that

could potentially overcome some of the noted limitations of

currently known HDACi. The isotype selectivity coupled with

interesting biological activities in suppressing tumor cell prolifer-

ation support further preclinical development of the UF010 class

of compounds for potential therapeutic applications.

SIGNIFICANCE

Small-molecule HDAC inhibitors (HDACi) have therapeutic

potentials for treating cancer and other diseases. Three

FDA-approved HDACi (vorinostat, belinostat, and romidep-

sin) are used in clinical anticancer therapy and many other
280 Chemistry & Biology 22, 273–284, February 19, 2015 ª2015 Else
HDACi have been actively tested in clinical trials. Current

challenges facing drug development of HDACi include the

lack of isoform specificity, undesirable toxicity, and subop-

timal therapeutic efficacy against solid tumors. Most HDACi

in preclinical or clinical evaluations belong to the hydroxa-

mic acid or aminobenzamide classes. The former class

lacks isoform specificity, and the latter shows potentially

undesirable pharmaceutical properties. Thus, the identifica-

tion of HDACi with novel chemical properties and isoform

specificity may unleash the considerable therapeutic poten-

tial of targeting HDACs. Through an HTS campaign and

structure-function relationship study, we have identified a

class of HDACi with a previously undescribed benzoylhydra-

zide scaffold. These compounds are selective to the class I

HDACs with nanomolar potencies. These new HDACi in-

hibited cancer cell proliferation through HDAC inhibition.

They activated tumor suppressionmechanisms, while inhib-

iting oncogenic pathways.

EXPERIMENTAL PROCEDURES

HTS Assays

HCT116 cells were stably transduced with a lentiviral vector carrying the firefly

luciferase gene under the control of Ad MLP (Figure S1). The stable HCT116-

Ad-MLP-Luc cell line was used for the primary HTS assay (Figure S2).
vier Ltd All rights reserved
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Figure 5. Global Effects of UF010 on Gene Expression

MDA-MB-231 cells were exposed to DMSO or UF010 at 1 mM for 24 hr. RNAs were isolated and subject to microarray gene expression profiling.

(A) Volcano plot of gene expression profiles in cell treated withUF010 in comparison with those treated with DMSO. The two vertical lines in red demark ±0.585 of

the x axis to indicate genes that were up- or downregulated by 1.5-fold. The red horizontal line indicates �1.3 of the y axis for p < 0.05.

(B) The cell-cycle regulators that were either activated (left) or suppressed (right) based on the ingenuity upstream regulator analysis. The p value is shown in

negative log10 scale.

(C) qPCR validation of UF010-induced upregulation of CDKN1A encoding p21. Shown are the average values of three experiments ± SEM.

(D) Major pathways affected by UF010 in MDA-MB-231 cells. The gene expression data were analyzed using ingenuity pathway analysis software as in (B).
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Compounds that activated the MLP-Luc reporter were tested for in vitro as-

says for HDAC1 inhibition using the HDAC-Glo I/II reagents (Promega, Fig-

ure S4). Selected hits were profiled against all zinc-dependent HDACs at the

Reaction Biology Corporation.

HDAC Activity Assays

Purified HDAC1, HDAC2, and HDAC3 (in complex with the deacetylase activa-

tion domain of the human NCOR2 (amino acids 395–498)) were obtained from

BPSBioscience. The enzyme activities were initially tested in a serial dilution of

eachHDAC using the HDAC-Glo I/II reagents (Promega) according to theman-

ufacturer’s protocol. Luminescence was detected using the BMG POLARstar

Omega microplate reader. A concentration of each HDAC within the linear

response region was used for assaying inhibition of HDAC activity by UF010

and analogs. Each compound was tested in 10-point dose-response assay

in triplicate. IC50 values were determined through linear regression of inhibition

data using the Prism 6 software.

Cell Culture, Viability Assays, and Western Blotting

Cell lines were obtained from ATCC and cultured with DMEM supplemented

with 10% bovine calf serum, penicillin to 10 units/ml, and streptomycin to

10 mg/ml. For viability assays, 5,000 cells/well were seeded in 96-well plates.

Compounds or DMSO control were added 24 hr later. Viability assays were

performed 96 hr after compound addition using the CellTiter-Glo reagents

(Promega). UF010 was tested against the NCI-60 panel of cancer cell lines

for a one-dose initial screening and the subsequent five-dose titration assays

at the Development Therapeutics Program of the NCI (Shoemaker, 2006). For

western blotting, cell cultures were exposed to compounds as indicated in

relevant figures. Total cell lysates or isolated histones were subjected to

SDS-PAGE and western blotting essentially as described (Yang et al., 2013).

Antibodies used in this study are described in Table S1.

Cell-Cycle Analysis and Migration Assay

MDA-MB-231 cells were treated with DMSO, UF010, or vorinostat for 24 hr.

Cells were fixed and subject to cell-cycle analysis using FACS as described

(Li et al., 2011). For cell migration assays, a confluent monolayer culture of

MDA-MB-231 cells was pretreated with DMSO, vorinostat, or UF010 for

2 hr. The cells were scratched with a pipette tip, and the wounded areas

were imaged at various time points. The denuded area was quantified using

the TScratch software (Geback et al., 2009), and the % areas that were not

covered with cells relative to the initial denuded areas were calculated.

Gene Expression Studies

MDA-MB-231 cells were cultured in a 6-well plate. Cells were exposed in trip-

licate to DMSO or UF010 at 1 mM final concentration at 24 hr after cell plating.

Total RNAs were isolated from the treated cells using the RNeasy kit (Qiagen).

The RNAs were then processed for microarray hybridization to the Affymetrix

GeneChip Human Transcriptome Array 2.0. Data acquisition, processing, and

analysis are described in Supplemental Materials and Methods. For quantita-

tive real-time PCR, the isolated RNAs were reverse transcribed with random

hexamers using 2 mg of RNA, an RNase inhibitor, and Multiscribe reverse tran-

scriptase (Life Technologies). The resulting cDNAs were diluted and used as

input for qPCR using the SYBR green detection method. The qPCR primers

are provided in Table S2. The relative levels of gene expression were deter-

mined with the DDCt method.

Molecular Docking

Compounds for docking were generated utilizing OPLS-2005 force fields.

Crystal structures against which our compounds were evaluated (denoted

by the following Protein Data Bank codes: HDAC1, 4BKX; HDAC2, 4LXZ;

HDAC3, 4A69; HDAC8, 1W22; HDAC7, 3ZNR) were minimized by Schrö-

dinger’s protein preparation wizard to 0.30 Å root-mean-square deviation by

adding hydrogens and adjusting bond orders where needed. For details,

please see Supplemental Materials and Methods.

Synthesis of UF010 Analogs

A series ofUF010 analogs were synthesized; they are described in detail in the

Supplemental Materials and Methods.
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