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0. Introduction

The Hilbert scheme can be covered by some particular affine schemes [3,9,22,26,15] that have been called Grébner strata
in [15] because they are computed from a monomial ideal by Grébner basis techniques. The behavior of Grébner strata can
provide interesting information on the Hilbert scheme itself. Very recently, in [25,5], Roggero et al. showed that an open
covering of the Hilbert scheme can be constructed from Borel ideals by avoiding introduction of any term order, which is
instead needed for Grobner strata. This fact gives us further reasons to investigate Borel ideals and their particular features.

Among Borel ideals, there are several types of “segment” ideals whose definitions are already well known or arise from
some interesting properties of Grébner strata studied in [ 15] (Definitions 3.1 and 3.7). In Section 3 we characterize, for some
cases, the existence of these kinds of ideals in terms of the corresponding Hilbert polynomial. In this context, we also need
to focus our attention on the shape of admissible polynomials.

In [12], the coefficients of Hilbert polynomials are completely characterized by the numbers of components of certain
subschemes defined by particular ideals called tight fans. In [23], these numbers of components are described by the shape
of the minimal generators of Borel ideals. Although the geometric meaning is contained in the fans, in Section 4, we
observe that this connection between the coefficients of Hilbert polynomials and the minimal generators of Borel ideals
can be directly described without using fans by the combinatorial properties of the Borel ideals themselves. This study
led us to conceive an algorithm for computing all saturated Borel ideals with a given Hilbert polynomial. In Section 5,
we describe this procedure that have been implemented by the second author in a software with an applet available at
http://www.dm.unito.it/dottorato/dottorandi/lella/HSC/borelGenerator.html.
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In [24] and in [20], the smoothness of the points of Hilbert schemes is studied by means of the dimension of the vector
space of the global sections of the normal sheaf to the corresponding projective subscheme. In Section 6, by applying the
results of [15] about Grébner strata, we make some new considerations (Theorem 6.2) on the smoothness of the points in
the Hilbert scheme #ilbj} and, in particular, prove that the point of #ilbj corresponding to the segment ideal with respect
to (w.r.t.) a degreverse term order (Definition 1.1(iii)) is singular (Theorem 6.4). Of course, this result cannot be generalized
to Hilbert schemes with a Hilbert polynomial of a positive degree because in that more general case, the segment ideal with
respect to a degreverse term order does not exist (Remark 3.4(2)(3)). In the literature, we have not found any proof of such
aresult.

1. General setting

Let K be an algebraically closed field of characteristic 0, where S := K|[xo, ..., X,] is the ring of polynomials over K in
n + 1variables such that Xy < x; < --- < X,, and P}, = Proj S is the n-dimensional projective space over K.

A term of S is a power product x* := xwox‘;‘1 ...x5", where o, a1, . . ., @y are non-negative integers. We set min(x*) :=
min{i : o; # 0} and max(x®) := max{i : ; # 0}. We also let T := {x‘gox‘f1 c X0 | (g, 0t - - ., 0y) € N1} be the monoid
of all terms of S and T(n) := TN K[xo, ..., Xn_1].

A graded structure on S is defined by assigning a weight-vector w = (wo, ..., w,) € R”j‘ and imposing v, (x*) =
Z?:O w;«;. For each non-negative integer t, S; is the K-vector space spanned by {x* € T : v,,(x*) = t}. The standard grading
corresponds to w = (1, ..., 1), and we will use it, unless otherwise specified.

Forany N C T, N; is the set of the t-degree elements of N, and A;((N) = [{x* € N; : i < min(x*)}| denotes the
cardinality of the subset of terms of N; that are not divisible by xo, ..., x;_1. For any homogeneous ideal I C S, I; is the

vector space of the homogeneous polynomials in I of degree t, and I, and I5; are the ideals generated by the homogeneous
polynomials of I of degree < t and > t, respectively.

Given any term-order < on T, each f € S has a unique ordered representation f = Zf;l c(f, 7)) t;, where c(f, 7;) € K*,
€ T,7y > -+ > tsand T(f) := 71, is the maximal term of f. Forany F C S, T{F} = {T(f) : f € F}, T(F) :
{ztT(f): f e F, T € T}and N (F) := T\ T(F). For any ideal I C S, T{I} = T(I) and W (I) is an order ideal, often called the
sous-escalier or Grobner-escalier of I. A subset G C I is a Grébner-basis of I if T(G) = T(I) (see, for instance, [21]).

For a monomial ideal I, G(I) denotes the unique set the minimal generators of I consisting of terms.

Definition 1.1. (1) In our setting, we consider mainly the (standard) graded term orders on T. In particular, given two terms
x® and x? of T of the same degree t, we say that x* is less than x? with respect to the following:
(i) the deglex order if o, < Bg, where k = max{i € {0, ..., n} : o; # Bi};
(ii) the degrevlex order if o, > B, where h = min{i e {0,...,n}:a; # Bi};

(iii) a degreverse order if g > B or g = By and % (,0 =< " , where < is any graded term order on T N K[X1, ..., X;]
X

[14, Definition 4.4.1]. Recall that a degreverse order is well suited for the homogenization of a Groébner basis [7],
and that the degrevlex is a particular degreverse order.
(2) Fixing any term order < on T and any weight vector w, the weighted term order <, is defined as follows:

X <y X ifu, (x%) < v, (%) or v, () = v,(**) and x* < xP.
When speaking of w-term order, we understand < to be the deglex order.

LetI C S be any homogeneous ideal. Then, Hs/; (t) denotes the Hilbert function of the graded algebra S/I. It is well known
that there is a polynomial ps/;(z) € Qz], called the Hilbert polynomial, and positive integers py := min{t € N | Hs/(t') =
ps;(t),Vt' > t}anday = min{t € N | Hs(t) < ("“)} which are called, respectively, the regularity of the Hilbert function
H and the initial degree of H (or also of I). For convenience, we will also say that either ps/;(z) is the Hilbert polynomial for
I or I is an ideal with Hilbert polynomial ps,;(z). If I is not Artinian, set AHs(t) := Hs;(t) — Hs;(t — 1) fort > 0 and
AHs;(0) == 1; we use an analogous notation for Hilbert polynomials. If h is a linear form that is general on S/I, then it is
easy to prove that ps,q.n = Aps)i.

The polynomials p(z) € Q[z] that are Hilbert polynomials of projective subschemes are called admissible and are com-
pletely characterized in [ 12] by the fact that they can always be written in a unique form of the following type (see [12,16]),
where /¢ is the degree of p(z) and mg > my > --- > m, > 0 are integers:

Lz Z4+i—m
p(z):;<i+l>_< i+1 )

The saturation of a homogeneous ideal ] C SisI** .= {f € S |Vi€ 0,...,n,3k; : xf"f €I} = Upso( : m™), where
m = (Xo, ..., Xs), and I is saturated if | = %,
If X C Py is a projective subscheme, reg(X) is its Castelnuovo-Mumford regularity, i.e., reg(X) = min{t € N

| H(x(t' —i)) =0,V t' > t}.
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Anideal I C S is m-regular if the ith syzygy module of I is generated in degree < m + i, and the regularity reg(I) of I is
the smallest integer m for which I is m-regular. If I is saturated and defines a scheme X, then reg(I) = reg(X), and we set

Hx (t) := Hs(t) and px(z) = ps;1(2).

For an admissible polynomial p(z), the Gotzmann number r is the best upper bound for the Castelnuovo-Mumford
regularity of a scheme having p(z) as its Hilbert polynomial and is computable by using the following unique form of an
admissible polynomial:

p(z)=(z—i—al)+(z—i—az—1)+H.+(z—|—ar—(r—1))7
a1 a, a,

wherea; > a, > --- > a, > 0. We refer to [10] for an overview of these topics.

Example 1.2. If p(z) = dz 4+ 1 — g is an admissible polynomial, then its Gotzmann number is r = (‘21) + 1 —g.Indeed, we
obtain

o o 0 (-2
p(z):<z+1)+m+<z+l d 2)>+<z+0 d 1)>+...+ z40- (%) +g

1 1 0 0

2. Borel ideals and Grobner strata

Definition 2.1. (1) For any x* € T such that «; > 0, the terms obtained from x* via a jth elementary move are:

. i—1 «; 1 .
(i) e]?“(x"‘) = xgo...xf’ ;ljjﬁ ..xn foranyj € {0,...,n— 1} and
.. — i1+1 ai—1 .
(i) e (x*) = X0 ... fill+ 7’ ..xn foranyj € {1,...,n},
and for each positive integer a < «;, we will denote the corresponding elementary move applied a times by (ej’)a and

(&)
(2) For any positive integer t, < denotes the partial order on T, given by the transitive closure of the relation e xP) < xP,

i.e x* <gxP if x* is obtained from x? via a finite sequence of elementary moves e .

(3) Aset B C T, is a Borel set if, for every x* of B and x# of T;, x* < x® implies that x® belongs to B.
(4) A monomial ideal ] C S is a Borel ideal if, for every degree t,] N T, is a Borel set.

The combinatorial property by which Borel ideals are defined is also called strong stability. It was first introduced
in [11] and later discussed in [12], where the ideals that satisfy it are called balanced. In characteristic 0, it is equivalent
to the property of an ideal J being fixed by lower triangular matrices, from which the name “Borel ideals” is derived
from.

From the definition, it immediately follows that if B C T, is a Borel set, then the set N := T, \ B has the property that
for every x € N and x* € T, with x® <z x”, x® belongs to N, that is, N is closed w.r.t. elementary moves e; . In particular, if
J is a Borel ideal, then for every integer t > 0, N (J), is closed w.r.t. elementary moves e;, and J; is closed w.r.t. elementary

moves e;r )

Remark 2.2. Note that, for every term order <, if x*, xf € T, satisfy x* < x, thenx® < x#.Namely, because x* <5 xf means
that there is a finite number of elementary moves e connecting x? to x*, assuming that X | xP for a suitable 0 < j < n, we

. ) _ . p - _

can verify our contention for x* = e; (x”). Setting 7 := %- and writing x* = e;" (x") = x;_17 and x” = x;7, we get x* < x°
J

because x;_1 < x;.

Proposition 2.3. For a Borel ideal ] C S,
(i) in our notation, J°* is obtained by setting xo = 1 in the minimal generators of J,
(ii) the Krull dimension of S/J is equal to min{max(x®) : x* € J} = min{i € {0, ..., n} : x} €], for some t}, and
(iii) the regularity of ] is equal to the maximum degree of its minimal generators.
Proof. (i) For example, see [23, Property 2].
(ii) This result follows straightforwardly from Lemma 3.1(a) of [ 13] or from Corollary 4, Section 5, chapter 9 of [7]. Thus, if ]

is saturated and ¢ is the degree of the Hilbert polynomial of J, we get £ = min{i € {0, ..., n} : x{ € J, for some t} — 1.
(iii) See [2, Proposition 2.9]. O

Remark 2.4. Let B C T, be a non-empty Borel set, N := T, \ Band] = (B) is the Borel ideal generated by the terms of B;
so, N (J); = N. Thus,
N(Dex1 = xoN Ux{x* € N: 1 < min(x*)}
U x{x*eN:2<minx*)}uU...ux,_1{x* e N:n—1< minx%)},
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and T¢;q \ N (J)¢s1 is a Borel set. In particular, if | is a Borel ideal and N := N (J),, for every degree t we have the following
(see [18, Theorem 3.7]):

NDer1 € NJ<)er1 = XN Ux{x* € N: 1 < min(x*)}
U x{x*eN:2<minx")}u...ux,_1{x* € N:n—1<min(x“)},

from which | ¥ (J)e41| < [N J<t)e+1 |= Z?:_ol Ait(N(U<p)) and G()e41 = N U<t)e1 \ N Dieg1-

Definition 2.5. For each Borel subset A C T, the minimal elements of A w.r.t. <g are the terms x* € A such that e x*) €A

for every j > 0 with o; > 0, and the maximal elements outside A w.r.t. <g are the terms xf ¢ A such that ej+ (xP) e Afor
every j > 0 with g; > 0.

Remark 2.6. Let B C T, be a Borel subset, if x* € Band x? ¢ B are respectively a minimal element of B and a maximal
element outside B w.r.t. <g, then both B \ {x*} and B U {xf} are Borel subsets of T; as, by definition, both are closed
w.r.t. elementary moves ej*.

Proposition 2.7. Let p(z) be an admissible polynomial with Gotzmann number r, and let ] C S be a Borel ideal with p(z) as the
Hilbert polynomial. Then, for each s > r, a minimal term of J; w.r.t. <g is divisible by xo.

Proof. Ass > r > reg(]), for each x* € J;, we get x* = t - x” for some x” € G(J) and t € T, with deg(r) > 0. If x* is not

divisible by x, let j > 0 be such that 7 is divisible by x;. Then, X =1 XV, witht/ = Txﬁ satisfies x* € J; and X <p X%,
J

thus contradicting the minimality of x*. O

Given an admissible polynomial p(z), a term order < and a monomial ideal J with p(z) as the Hilbert polynomial, the
Grobner stratum St(J, <) in the Hilbert scheme ](ilb";(z) of subschemes of P" with Hilbert polynomial p(z) is an affine
variety that parameterizes the family of ideals having the same initial ideal ] with respect to < [26,9,15,3,22]. When only
homogeneous ideals are concerned, we write $t;(J, <). Now, we recall briefly the construction of $t(J, <) and hence of
Sty (J, xX), referring to Definition 3.4 of [15], although here we omit many details that make the procedure more efficient.

For any term x* of G(J), we set F, := x* + Z(xﬁew(/) B <x) co,f;xﬂ, considering ¢, as new variables. Then, we reduce all
the S-polynomials S(F, F,/) with respect to {F, }x«¢;. The ideal A (]) generated in K[c, 4] by the coefficients of the monomials
in the variables x of the reduced polynomials is the defining ideal of 8t(J, <) and does not depend on the reduction choices.
In particular, if we set Fy := X% + 3 1 5c v (), - 18 <x) CapXP, where t is the degree of x*, then we obtain the ideal of 8t,(J, <).

For the properties of Grobner strata, we refer to [26 9,15], but it is noteworthy to point out an unexpected feature of Grob-
ner strata, which is that they are homogeneous varieties with respect to some non-standard graduation [9,15]. Thus, the em-
bedding dimension of 8t (J, <), denoted by ed(St,(J, <)), is the dimension of the Zariski tangent space of the stratum at the
origin and can be computed by the same procedure that produces Grobner strata. In fact, the ideal L£(J) generated in K[c,g]
by the linear components of the generators of A4(J), as computed above, defines the Zariski tangent space of the stratum at
the origin (Theorems 3.6(ii) and 4.3 of [15]). This fact offers a new tool for studying the singularities of Hilbert schemes.

3. Segments

Definition 3.1. Aset B C T is a segment w.r.t. a term order < on T if whenever a term 7 belongs to B, all the t-degree terms
greater than t belong to B. A monomial ideal I is a segment ideal w.r.t. <, if N T, is a segment w.r.t. < for every t > 0.

Lemma 3.2. Let | C S be a saturated Borel ideal, < any term order on T and p > q integers. If I, is a segment, then I, is a
segment too.
Proof. Let x* be a term of I; and x” a term of T, such that x* < x”; hence xj “x* < xf"9xf, and because I, is a segment,
xP~xP belongs to I,. Recalling that I is saturated, x® belongs to I, and we are done. O

0 P q

Remark 3.3. A segment is a Borel set, and a segment ideal is a Borel ideal. Indeed, x;x* < x,x* ifi < h; so, x* <gx? implies
that x* < xP, for any term order <. In particular, if < is the deglex order and I is a monomial ideal generated in degree < q
such that I; is a segment w.r.t. X, then I, is a segment too for every p > q.

Remark 3.4. (1) Each admissible polynomial p(z) of degree 0 < ¢ < n corresponds to a unique saturated segment ideal
L(p(z)) w.r.t. deglex order (see [1,16]). In particular for a constant polynomial p(z) = d we have the following

L(d) = (Xn, Xn—1, - - -, X2, X}),
T(2); ifo<j<d
N(L(d); = { YA ydHi=1y i+1 d—1 e . .
0 X .., Xy X, )} ifj=d+i, Vi=0.

(2) Asegmentideal w.r.t. the degrevlex order exists if and only if the Hilbert polynomial is constant and the Hilbert function
H is non-increasing, i.e, AH(t) < 0 for every t > oy = min{t € N[H(t) < (")} [8,19]. We let A, := A, be the set
of the w smallest terms of T; w.r.t. degrevlex order.
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(3) The same reasoning of [8,19] shows that, in general, a segment ideal ] w.r.t. a degreverse term order exists if and only if
the Hilbert polynomial is constant and the Hilbert function H is non-increasing. Namely, if oy is the initial degree and

X" e (), then x2# " belongs to J, or otherwise, letting T > x°" be the smallest degree oy term in J, x**' would

belong to & (J) with X' > xo7 € J.

Proposition 3.5. If an ideal ] C S of initial degree oy has the property that there exists an integer t > «y and four terms
x4, xf e N(De, X7, X% €, withx®+P = x¥*3 then ] is not a segment ideal w.r.t. any term order <.

Proof. If ] were a segment ideal w.r.t. some <, by the given assumptions, we would have in particular both & (J); 3 x# <
x3 e J;and N (J); 3 x¥ < X’ € J;. From these, we would obtain x*™# < x**+3 < x¥+8 contradicting x**# = x¥*%. O

Example 3.6. (1) The (saturated) Borel ideal ] = (x3, x3x3, x3%2, X3) C K[Xo, X1, X2] is not a segment ideal w.r.t. any term
order because it satisfies the conditions of Proposition 3.5. Namely, its initial degree is 3, and for t = 6 > 3, we have
Jo 2 x3x3, x5 and x2x3x3, Xox1x2 € N (J)6 With x3x3 - X§ = x3x3x3 - X0X(Xa.

(2) Here, we show that Proposition 3.5 cannot be inverted. The Borel ideal ] = (x3, x1X3, X3X2, X2X3, X3X1X2, XoX2, X]) C
K[xo, X1, X2] of [6, Example 5.8] has the property that J5 is a segment w.r.t. degrevlex order, while J; is a segment
w.r.t. deglex order for every t > 4; so, at each degree, it does not satisfy the conditions of Proposition 3.5. Nevertheless,
J is not a segment w.r.t. any term order =, as if it were, from xfxz € J; and xoxﬁ € N(J)3, we would get xox, < x%,

contradicting (xoX2)* € Ja, X] € N (J)4. Note also that J* = (x,, x]) is the saturated lex segment.

Definition 3.7. Let I C S be a non-null saturated Borel ideal and < a term order on T.

(a) [15] I is a hilb-segment ideal if I, is a segment, where r is the Gotzmann number of the Hilbert polynomial of I;
(b) Iis a reg-segment ideal if I5 is a segment, where § is the regularity of I; and
(c) I'is a gen-segment ideal if, for every integer s, G(I); consists of the greatest terms among the s-degree terms not in (Is_1).

Remark 3.8. The criterion given by Proposition 3.5 can also be adapted to hilb-segment ideals and to reg-segment ideals [
by simply verifying it at degree r = the Gotzmann number and at degree § = reg(I), respectively. Computational evidence
suggests that this criterion is also necessary for reg-segment and hilb-segment ideals.

The following results about Grobner strata motivate the definitions of the reg-segment ideal and of the hilb-segment
ideal, respectively.

Proposition 3.9. (i) Let I C S be a Borel saturated ideal. If x; does not appear in any monomial of degree m+- 1 in the monomial
basis of I, then $ty(Ism—1) = Stp(Is) (Theorem 4.7 (iii) of [15]).

(ii) Anisolated irreducible component of J(’ilb;(z) that contains a smooth point corresponding to a hilb-segment ideal is rational
(Corollary 6.10 of [15]).

Proposition 3.10. Let I C S be a saturated Borel ideal and < a term order on T. Then,
(i) I segment ideal = I hilb-segment ideal = I reg-segment ideal = I gen-segment ideal;
(ii) < is the deglex order <> conditions in (i) are equivalent, for every ideal I; and
(iii) If the projective scheme defined by I is 0-dimensional, then | segment ideal < I hilb-segment ideal < I reg-segment ideal.

Proof. (i) The firstimplication is obvious. For the second one, we need to only apply Lemma 3.2 because r > 4. For the third
implication, recall that I is generated in degrees < §, by definition. Moreover, if I is a reg-segment ideal, by Lemma 3.2,
I; contains the greatest terms of degree t for every t < §.

(ii) First, suppose that < is the deglex order. Then, by (i), it is enough to show that a gen-segment ideal is also a segment

ideal. Indeed, by induction on the degree s of terms and with s = 0 as the base of induction, for s > 0, suppose that I;_;
is a segment. Thus, by Remark 3.3, we know that (I;_1)s is a segment, and because the possible minimal generators are
always the greatest possible, we are done.
Vice versa, if < is not the deglex order, let s be the minimum degree at which the terms are ordered in a different way
from the deglex one. Thus, there exist two terms x* and x with maximum variables x; and x;,, respectively, such that
xP < x? butx, > x. Theideal I = (xp, ..., X,) is a gen-segment ideal but not a segment ideal because x? belongs to I
and x* does not.

(iii) We need only show that, in the 0-dimensional case, a reg-segment ideal I is also a segment ideal. By induction on the
degree s, if s < §, then the thesis follows by the hypothesis and by Lemma 3.2. Suppose that s > ¢ and that [;_; is a
segment. At degree s, there are no minimal generators for I; so, a term of I is always of type x*x;, with x* in I,_;. Let x?
be a term of degree s such that xX? > x*x;; so, x’ > x*x,. By Proposition 2.3, we have that (x1, ..., x,)° < I. So, if x? is
not divisible by xo, then x# belongs to I;; otherwise, there exists a term x” such that xX* = x¥x,. Thus, ¥ > x%, and by
induction, x” belongs to I;_1; so, xX* = x”xy belongstol,. O

Example 3.11. Let < be the degrevlex order.
(1) The ideal I = (x%, X1X2) C K[xo, X1, X2] is a hilb-segment ideal, but it is not a segment ideal. In this case, the Hilbert
polynomial is p(z) = z + 2 with Gotzmann number 2 and reg(I) = 2. We have xf € N(I) and xpx1x, € I with

X3 > Xox1X2.
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)r= (xg, xlxg, x%xz) C K[xo, x1, X2] is a reg-segment ideal but not a hilb-segment ideal. In this case, the Hilbert polyno-
mial is p(z) = z + 4 with Gotzmann number 4 and reg(I') = 3. We obtain xox; € I’ withxox3 < x} & I'.

31" = (xi, X3X4, xg) C KXo, ..., X4] is a gen-segment ideal but not a reg-segment ideal. In this case, the Hilbert polyno-
mial is p(z) = 2z% + 2z + 1 with Gotzmann number 12 and reg(I") = 3. We obtain xox3 € I” with xox3 < x3 ¢ I”.

Remark 3.12. If I is a saturated Borel ideal and is also an “almost revlex segment ideal”, as defined in [8], then it is a gen-
segment ideal w.r.t. degrevlex order.

Theorem 3.13. Let ] be the ideal generated by a Borel set B C Ty consisting of all but d terms of degree d. Then, J** defines a
projective scheme with Hilbert polynomial p(z) = d.

Proof. By the Borel condition, x‘f belongs to J or otherwise, |# (J)4| > d + 1 > d so, by Remark 2.4, we have |~ (J);| = d,
for every t > d. The ideal I = J** is the saturated ideal of a projective subscheme with Hilbert polynomial p(z) =d. 0O

Remark 3.14. (1) For every positive integer d and any term order < on T, there exists a unique saturated segment ideal
I C S with Hilbert polynomial p(z) = d. This is a straightforward consequence of Theorem 3.13; it is enough to take the
ideal J generated by all but the least d terms of degree d.

(2) In [19] for the degrevlex order and in [6] for each term order, it is shown that the generic initial ideal of a set X of d
general points in P" is a segment ideal with Hilbert polynomial p(z) = d. As the Hilbert function of X is the maximum
possible, that is, Hy (t) = min{(”t") , d}, we deduce that this is the Hilbert function of the saturated segment ideal of
(1).

(3) For the case of degreverse term orders, it is possible to give a direct and constructive proof of (1).If ] C S is a segment
ideal w.r.t. a degreverse order with Hilbert polynomial p(z) = d, its Hilbert function must to be non-increasing by
Remark 3.4(2) and also strictly increasing until it reaches the value d, after which it remains equal to d because J is a
saturated ideal of Krull dimension 1. Thus, Hs (t) must be the maximum and we deduce the following:

(i) ay = py + 1550, = (X1, ..., X,)%;
(ii) oy = pp; s0,] is generated only in degrees oy and y + 1. More precisely, the minimal generators of degree oy are

the greatest (“”*") — d terms of Ty, (50, in N (J)4,, there are d — (“”n*"f]) terms x” with min(x®) > 1), and the

oH

oy +

minimal generators of degree ay; + 1 are all the terms T > x; ! that are not multiples of terms in J,,, (these terms

are at leastd — (“Z;lf”) by Remark 2.4).

It follows that in case (i) we have |G())| = (***"), and in case (ii), |G()| = (***") —d +d — (p”tl”_l> = (””:'_"]_1>.

3.1. On hilb-segment ideals

Let < be any term order and p(z) be an admissible polynomial with Gotzmann number r. We want to see under what

conditions there exists a hilb-segment ideal for p(z). In this context, it is immediately clear that if r = 1, thenp(z) = (Z;[>,

where £ < n is the degree of p(z); so, I = (X1, ..., Xp) is the hilb-segment ideal for p(z). Moreover, we have already
observed that a hilb-segment ideal always exists for a constant polynomial p(z) = d.

Example 3.15. The following saturated Borel ideals are not hilb-segment ideals for any term order:

(1) ] = (%3, x3x2,x}) C Klxo, x1, x2], (see [6]),as forH = (1,3,5,7,...,p(z) =7,...),we have r = 7; so, if ] were a hilb-
segment ideal w.r.t. some <, at degree 7, we should have W (J); 3 x3x%x, < x3x3 € J; and N (J)7 > Xgx3xy < XX} € J7,
contradicting (x3x3x;)% = xox3 - x3x].

2)J = (xg, x1x§, x%xz) C KXo, x1,X2],asforH = (1,3,6,7,...,p(z) =z+4,...),wehavereg(J) = 3and r = 4; so, we
can repeat the same reasoning of (1) with xox2x, € J4 and x}, x3x3 € N (J)a.

Proposition 3.16. In K[xg, X1, X,], every saturated Borel ideal with Hilbert polynomial p(z) = d < 6 is a hilb-segment ideal.
Whereas, for every p(z) = d > 7, a saturated Borel ideal, which is not a hilb-segment for any term order always exists.

Proof. We give a direct constructive proof of the result, based in part on the characterization of the Borel subsets in three
variables of [17].

d < 2 there exists a unique saturated Borel ideal (x;, x‘f), which is the hilb-segment ideal w.r.t. deglex order;

d = 3 there are only two saturated Borel ideals: the hilb-segment ideals (xz,x?) (w.r.t. deglex) and (x%,)qxz,x%)
(w.r.t. degrevlex);

d = 4 there are only two saturated Borel ideals: the hilb-segment ideals (xz,x‘l‘) (w.r.t. deglex) and (x%,xlxz,xf)
(w.r.t. degrevlex);
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d = 5 there are three saturated Borel ideals: the hilb-segment ideals (x,, x?) (w.r.t. deglex), (x%, X1X2, x‘ll) (wrt. (4,2, 1)-
term order) and (x3, X3x,, x3) (W.I.t. degrevlex);

d = 6 there are four saturated Borel ideals: the hilb-segment ideals (x, x?) (w.r.t. deglex), (x%, X1X2, xi’) (w.r.t. (5,2, 1)-term
order), (X3, X3xa, X}) (W..t. (3, 2, 1)-term order) and (x3, X1X3, X3z, x3) (W.r.t. degrevlex);

d > 7 (i) Let us first consider the case d = 2a + 1,a > 3 and the ideal ] = (x%, x{x2, x‘}“). It has Hilbert polynomial
p(z) = 2a+1,because in degree 2a+ 1 the 2a+ 1 monomials {x3"'x{"x,, xg““xf*’, i=1,...,a,j=0,...,a}
belong to the quotient. Moreover, x2*'x2, x3x3™ € J, and x3"2x2x,, X37'x3 "%, ¢ J, but 07 'x2 - x3x3t! =
X2 2x2%, - x3T X x, (if a = 3, this is exactly the ideal of Example 3.15 (1)).

(ii) In the case d = 2a, a > 4, let us consider the ideal ] = (xg, x1x§, x?xz, xf“’3). It has Hilbert polynomial
p(z) = 2a, namely, N (J)2a = (X377 2X2, x2" 2x1%2, X5° "X, 3" %\, i = 0, ..., 2a — 4}. Moreover, X >xX; € Jq,

2a—2,,2 2a—4.,4 2a—3,,2 2 ,2a-2.2 2a—4 4
Xg X5,Xy X7 € N and (x5 "x(X2)7 = X5 X5 - Xy X7 O

Proposition 3.17. Let < be any degreverse term order and p(z) be an admissible polynomial of positive degree with Gotzmann
number r.

(D) If p(r) < (r_:f”), then the hilb-segment ideal for p(z) does not exist.

(2) If p(z) = dz + 1 — g, then the hilb-segment ideal ] for p(z) exists if and only if
(i) r=dorr=d+ 1, whenn = 2, and
(ii)) r=d=1,whenn > 2.

Proof. (1) By the hypothesis, we have that x| belongs to the ideal; so, the Krull dimension must be 1 by Proposition 2.3, and
we are done.

(2) Inthis case, the hilb-segment ideal J exists if and only if p(r) = ("+r_1

n
the least d terms not divisible by xq, and because the term order is degreverse and r > d, the sous-escalier of J, must
also contain the same least d terms not divisible by x,. Hence, by the Borel property, all the terms divisible by x, must

) +d. Indeed, the sous-escalier of (J, Xg), contains

also belong to the sous-escalier of J.. Thus, because r = (;) + 1 — g by Example 1.2, we obtain the following:

2 n 2 2 n

so, J exists if and only if the argument A under the square root is not-negative. By an easy calculation, we obtain the
thesis. O

3.2. On gen-segment ideals for degrevlex order

We describe some procedures to construct gen-segment ideals w.r.t. degrevlex order with a given admissible polynomial
p(z) of degree 1. We have already observed that a hilb-segment ideal always exists and so does a gen-segment ideal for a
constant polynomial p(z) = d.

Lemma 3.18. If p(z) = dz 4+ 1 — g is an admissible polynomial with Gotzmann number r, there exist two integers n > 2 and
j(n) > 0such that (j(");H") < p(j(n) — 1) and p(j(n) + h) < (j(")Jrn’H”)for every h > 0.

Proof. Any projective scheme of dimension 1 with Hilbert polynomial p(z) has regularity < r; so, p(r) < (r:”) for any

n > 2. Now, it is enough to show that there exist integers n > 2 and t < r such that p(t) > (‘I"). In the plane, i.e., for
n = 2,itholds that g < 1(d — 1)(d — 2). Therefore, p(t) =dt +1—g > dt + 1 — 3(d — 1)(d — 2),and for t = d — 1, we

haved(@d—1)+1-3@d-1@-2) = (*}"?).Thusn=2d<jm =r. O

Proposition 3.19. Let p(z) = dz + 1 — g be an admissible polynomial. For any n > 2, there exists a gen-segment ideal I(n) C S
w.r.t. degrevlex order with Hilbert polynomial p(z).

Proof. By Lemma 3.18, we can take an integer n > 2 for which there exists j(n) > 0 such that (“"ﬁ””) < p(j(n) — 1) and
p(i(n) + h) < (j(”)fl“”) for every h > 0. First, we prove the thesis in this case.

Under the given assumptions, we have p(j(n)) — (j<”);1+“) > d = p(j(n)) — p(j(n) — 1); thus, by Remark 3.4(3),

in Apgjmy).jm), there are at least d terms x* such that min(x*) > 1, and we let 1y < --- < 7y be the least among them
w.r.t.degrevlex order. We also set forevery 0 < t < j(n),N(t) := T, N(G(n)) = Ap(n).jm), N() = Xo'Nt_1I_IX’11-{‘L'1, R 718
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forevery t = j(n) + h,h > 1,and N := Li;>o N(t). By construction, N C T is such that Ny = N(t), foreacht > 0, and
| N¢ |= p(t), forevery t > j(n).Thus, the monomial ideal I(n) C S such that ./ (I(n)) = N is, by construction, a gen-segment
ideal with Hilbert polynomial p(z). Moreover, G(I(n)); = @, fort < j(n) and t > j(n) + 1; so,reg(I(n)) <jn) + 1 <r.

Now, suppose that n is such that p(t) < (“*") for every t > 0, and let ng := max{n’ | Jj(n’) : (j("/);,pr"/) < p(j(n’y —

n
1) and p(j(n")) < (j("/;,*"/)}. Above, we proved that for such an ny, there exists a gen-segment ideal I(ng) C K[xo, ..., Xy, ]

w.r.t. degrevlex order with Hilbert polynomial p(z). Now, it is enough to observe that I(n) := (I(ng), Xpg41, - - ., Xp) C S'is
a gen-segment ideal w.r.t. degrevlex order, as claimed. O

Remark 3.20. Given an admissible polynomial p(z) = dz+1—g,letN; := A, be the set of the lower p(l) terms of degree |
w.r.t. degrevlex order. If n > 2 is such that p(t) < (H,;”) for every t > 0 and there exists I(n) := min{l € N : A1 ;(N;) > d}, by
a similar procedure, we can construct a gen-segment ideal J(n) C S w.r.t. degrevlex order with Hilbert polynomial p(z) that
is different from those coming from the smaller n”’s as in the proof of Proposition 3.19. Indeed, under the given assumptions,
Apmy),imy C Timy Nno longer contains at least d terms x* with min(x*) > 1, but its expansion in degree I(n) 4 1 does, and
we let 77 < --- < 74 be the least one of them w.r.t. degrevlex order. Similarly as before, we take M(t) := T, for every
0 <t < I(n),MUM)) = Apny.im MAM) +1) := xo-MIM)U{T, ..., Tg}and M(t) := xo-M(t—1)ux," V7, ..., 7)
for every t > I(n) + 1. We finally let J(n) be the gen-segment ideal such that & (J(n)) = M := U;>¢ M(t) and note that it
has p(z) as its Hilbert polynomial and regularity < I(n) + 2.

Example 3.21. The Gotzmann number of the admissible polynomial p(z) = 6z — 3 is 12, and we obtain the following
gen-segment ideals:

(i) if n = 2, we can apply the procedure described in the proof of Proposition 3.19 with j(2) = 9 and construct the ideal
12) = (5, X133, 2325, X}x3);

(ii) if n = 3, there is not a j(3), yet we can apply the procedure described in Remark 3.20 with [(3) = 2 because

o < (3

(iii) if n > 4, neither j(n) nor I(n) exists, and we have only (I(2), X3, ..., X;) and (J(3), X4, ..., X;).

) for every t > 0, obtaining J(3) = (x3, x3x3, x3) besides (I(2), x3); and

Proposition 3.22. The saturated segment ideal L(p(z)) C S w.r.t. deglex order with Hilbert polynomial p(z) is a gen-segment
ideal w.r.t. the degrevlex order if and only if deg(p(Z)) < 1 or there are only two generators of degree > 1.

Proof. In Section 1, we recalled that given an admissible polynomial p(z) of degree ¢, there exist unique integers mg > m; >

... >m; > 0suchthatp(z) = Y., (f:;)—(zt:lm’) [16,12,1]. Let ap := my, dp_q :== My_q1—my, ..., dg = Mg —m;. Note
thatL(p(z)) C S hasthen+1—£—2 greatest variables as the generators of degree 1, i.e., ¥ (L(p(2)))1 = {Xo, - . ., Xe+1}. Thus,
for every j < ay, the greatest term of & (L(p(2))); is X, . w.r.t. both deglex and degrevlex orders (namely, N(L(p@))); =

e+1
T; N K[xo, ..., X¢+1]). In degree a, + 1, the ideal L(p(z)) has a new generator x‘Zle; 50, N(L(P(2))ay+1 = (Tgp+1 N

Klxo, ..., xex1D\ {xz‘_ﬁ] }. Therefore, its greatest term w.r.t. both deglex and degrevlex orders, is x[foH and so on, until there

. . . . s et . s )
is a new generator in degree a, + a,—y + 1if a_» # 0, whichis x," '™ x¢’, | (or, if a;_, = 0, the new generator is x," ' X7, ;).

At this point, the greatest term in & (L(P(2)))a, 4a,_ +1 15 X' x04" wr.t. degrevlex order and x,_1x}'x{" , w.r.t. deglex

order (similarly for the case in parentheses). Moreover, because the new generator of L(p(z)) at degree a; +ay—1 +a;,— + 1
. ap_gH1_ag . . . . o apy ap_ L
is x," 2" 'xg"71x0 | (if € = 2, the third generator of degree > 11is X{°x3'x32, and if a;_3 = 0, it is x;2x;"'x}, ), it is not the

greatest term w.r.t. degrevlex order. O

Example 3.23. (i) The ideal L(p(z)) = (x4, X3, X3x5, x5x2x3) is the saturated segment ideal w.r.t. deglex in K[xq, . . ., X4],
with Hilbert polynomial p(z) = 2z 42z 4 1 and Gotzmann number 12, but it is not a gen-segment ideal w.r.t. degrevlex
order.

(ii) The ideal L(p(z)) = (xs, xz, xng) is the saturated segment ideal w.r.t. deglex in K[Xo, . . ., Xs], with Hilbert polynomial
p(z) = 2/3z> + 22> — 11/3z + 10 and Gotzmann number 6, and it is also a gen-segment ideal w.r.t. degrevlex order.

4. Saturations of Borel ideals and Hilbert polynomial

Let] C S be a Borel ideal. Recall that in our notation, the (Borel) ideal J** is obtained by setting X, = 1 in each minimal
generator of J (Proposition 2.3(i)). In this section, we let Jy, := J** and denote as Jyx, the Borel ideal obtained by setting
Xo = X1 = 1inthe minimal generators of . We call ], x, the x;-saturation of ] and say that ] is x;-saturated if | = Jy,. Hence,
an ideal J that is x;-saturated is also saturated.

Remark 4.1. Anideal] C S thatis x;-saturated and has Hilbert polynomial p(z) := ps/;(z) has the same minimal generators
as the saturated Borel ideal ] N K[xq, ..., X,] C K[x1, ..., X,] for which the Hilbert polynomial is Ap(z).
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The following result is analogous to Theorem 3 of [23], where the notion of “fan” is used. Here, we apply only the
combinatorial properties of Borel ideals.

Proposition 4.2. Let | C S be a saturated Borel ideal with Hilbert polynomial p(z) and Gotzmann number r. Let I = ]y «, be the
x1-saturation of J, and let q := dimg I, — dimg J,.. Then,

(i) ps;i(z) = p(z) — q, and
(ii) qis equal to the sum of the exponents of x; in the minimal generators of ].

Proof. (i) We show that if ¢ = dimg I; — dimg J; then g = dimg I;,q — dimg Js4 for every s > r.Let x1, ..., xP be the
terms of I; \ J;. Thus, xox®1, ..., xoxP are some terms of I, \ Js41, and so, dimg I, ; — dimg Ji;1 > q because xox’i
belongs to J;,1 if and only if x belongs to J;, as J is saturated. Now, to obtain the opposite inequality, it is enough to
show that every term of I \ Js11 is divisible by xq. Let x” € I;¢ be such that min(x") > 1, and let x* be a minimal
generator of I such that x = x%x°. Because J is saturated and I is the x;-saturation of J, x“x{ is a minimal generator of |

for some non-negative integer a. Hence, for every X of degree s+ 1 — || and with min(x‘s/) > 1, by the Borel property,
x*x® belongs to Js+1. In particular, X” € Js11.

(ii) Let x"‘lxsll, .. ,)(D‘h)cslh be the minimal generators of J with x* not divisible by x1, for every 1 < i < h. Because the ) _s;
terms x“fxi"ffngla”lfs"“, 1<t <s;areinl; \ J,,one hasq > Y s;. Vice versa, we show that each term x3in I, \ J, is of
the previous type. We can write x* = x#x ¥ ""x with min(x) > 2 and u < s;. Let s be the minimum non-negative

integer such that xﬁxsl is in J. Then, there exists an i such that x""‘xsl" |x‘3x51, i.e., x%|xf ands; < s. By the definition of s, we
obtain s; = s, and there exists ¥ with min(x”) > 2 such that x¥* = x®x”. Because x® does not belong to J, we have

ly| < si = s, or otherwise, x“fx‘lyl, and hence, by the Borel property, x* = x%x" should belong to J. Now we can take

xﬁxi_‘y| and observe that this term belongs to ] because it follows x*ix] in the Borel relation. Thus,s < s—|y|;so,y =0,

ie.x? = x% asclaimed. O

Proposition 4.3. Let | C S be a saturated Borel ideal with Hilbert polynomial p(z) and Gotzmann number r. Let xfxy be a term
of J of degree s > r that is minimal in ] w.r.t. <g. Then, the ideal H := (G((J;)) \ {x?x}) is Borel, and ps/u(z) =p2) + 1.

Proof. First, note that H is closed w.r.t. <g by Remark 2.6. We show that, for every t > 0, xﬁxé“ is the unique term in

Js+t \ Hspe. For t = 0, we have the hypothesis. For ¢ > 0, note that x®x,™ cannot belong to H. On the contrary, there would

be a term x” € H; such that x” # xPxo and x” | xPx,™". But every degree s factor of x’x,** different from x#x, is lower
w.r.t. <g, and so, it cannot belong to H;. Then, xﬁxé“ & Hg, . 1f x* is a term of Js; \ Hs¢, there exists a term of [y 1 \ Hs¢—1
that divides x*. By induction, this term is xﬂxg, and the thesis follows from the fact that every multiple of degree s+t of xﬁxto
different from x’x) " belongs to Hyy. O

Proposition 4.4. Let I and | be Borel ideals of S. If, for every s > 0, we have Iy C Js and ps;;(z) = ps;;(z) + a, with a € N, then
I and ] have the same x-saturation.

Proof. Let s > max{reg(l), reg(J)}. In the a = 1 case, there exists a unique term in Js;, \ Is4 for every t > 0. Let x* be
the unique term in J; \ I. Then, both x*xy and x*x; belong to ;.. By the Borel property, x*x; must be in I, and so, the
unique term in Jsi \ sy iS X*xo". This is enough to say that I and J have the same x;-saturation. If a > 1, the thesis follows
by induction and by applying Proposition 4.3. O

Corollary 4.5. Let p(z) be an admissible polynomial of degree h < nand P := {q(z) = p(z) + u | u € Z and q(z)admissible}
be the set of all admissible polynomials of degree h differing from p(z) only for an integer. Then,

(i) there is a polynomial p(z) in P such that for every q(z) in P, q(z) = p(z) + ¢ with ¢ > 0, and
(ii) every saturated Borel ideal I with Hilbert polynomial ps;; = p(z) is x;-saturated.

Proof. (i) Every admissible polynomial p(z) has a unique saturated lex segment ideal L(p(z)). If H is the saturated lex
segmentideal of p(z)+u,thenwe have H C L(p(z)) ifu > 0Oand L(p(z)) C H ifu < 0.Thus, we can apply Proposition 4.4,
finding that L(p(z)) and H have the same x;-saturation, I. We claim that p(z) is the Hilbert polynomial of I. Indeed, by
Proposition 4.2, the Hilbert polynomial of I is of type p(z) — q.If p(z) = p(z) — q — t with t > 0, then the saturated lex
segment ideal of p(z) should have I as the x;-saturation and should be contained in I, which is possible only if t = 0.

(ii) Let ] be a Borel ideal with p(z) as the Hilbert polynomial. If ] were not x;-saturated, by Proposition 4.2, the x;-saturation
of ] should have a Hilbert polynomial of type p(z) — q, with ¢ > 0, against the definition of p(z).

Definition 4.6. The polynomial p(z) of Corollary 4.5 is called the minimal polynomial.

Remark 4.7. An alternative proof of the previous statement can be obtained by following the construction of the Gotzmann
number.
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Fig. 1. To the left is the graph of K[xo, ..., X3]3, the center is the graph of (x%, X2X3, x§)3, in which we colored the minimal elements, and the right is the

graph of (x2, x1x3, x3)3, which is not Borel (the terms in the ideal are the boxed ones).

Example 4.8. By Proposition 4.2, a Borel ideal with a minimal Hilbert polynomial is x;-saturated. The opposite is not true.
For example, the ideal I = (x%, X2X3, x%) C K[xo, X1, X2, X3] is xq-saturated and is a reg-segment ideal w.r.t. the degrevlex
order. The corresponding Hilbert polynomial is ps/;(z) = 3z + 1, which is not minimal because the Borel ideal (x3, x3) has
Hilbert polynomial 3z.

Remark 4.9. From the proof of Corollary 4.5, we deduce the following fact. Let I C K|xo, ..., X;] be a Borel ideal with
Hilbert polynomial p(z). If I = I, - K[xo, ..., xn], where I, C K[xy, ..., x,] is the hilb-segment ideal w.r.t. deglex order
with Hilbert polynomial Ap(z), then p(z) = p(z2).

5. An algorithm to compute saturated Borel ideals

In this section, by exploiting the results of Section 4, we describe an algorithm for computing all the saturated Borel
ideals with a given Hilbert polynomial p(z). We first give an efficient strategy to find the minimal elements in a Borel set B,
which consists of representing B by a connected planar graph in which the nodes are the terms of B and the edges are the
elementary moves connecting the terms. In Fig. 1, we give some examples showing that it is easy to single out the minimal
terms by looking at these graphs.

Let 0 < k < n be an integer. Recall that, if I C K[x, ..., X,] is a saturated Borel ideal that has a non-null Hilbert
polynomial p(z) with Gotzmann number r, then ] = (i;’:‘)) C K[Xg41, - - -, Xp] has Hilbert polynomial Ap(z) with x; as a
Klxg,..., xn]

non-zero-divisor on

This fact shows that every saturated BorelidealI C K[xy, ..., x,] with Hilbert polynomial p(z) “comes from” a Borel ideal
J C K[Xg41, - - -, xo] with Hilbert polynomial Ap(z) and generated in degrees < r. So, our idea to construct all saturated Borel
ideals with a given Hilbert polynomial p(z) consists of applying a recursion on the number of variables. By the hypothesis
we know all of the Borel ideals J in the n — k variables generated in degrees < r with Hilbert polynomial Ap(z). Then, we

construct the saturated Borel ideals I in n — k + 1 variables such thatJ := (g:"‘)) for some of the ideals J.
Let] C K[Xk+1,---,X,] be a Borel ideal with Hilbert polynomial Ap(z) and I := (J*% . K[xy, . .., Xa])r, where r is the

Gotzmann number of p(z). Let N be the set of terms x¥ of K[X, . . . , X,]; such that there exists a composition F of elementary
moves of type e and a term t of N (J), such that F(r) = x®. Hence, by construction, the terms of N \ .~ (J) are not

maximal, and N is contained in the sous-escalier of any ideal of K[xy, ..., X,] having J as the hyperplane section. Note that
the Gotzmann number of A¥*1p(z) is not higher than the Gotzmann number of A*p(z).

Lemma5.1. & (I); = N.
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J

~
=]

Fig. 2. Partition of K[xy, ..., X,].

Proof. It is enough to show that K[xy, ..., Xl = (I, N) (Fig. 2). Indeed, let x* = x;* - - - x;" be in K[X, . . ., X,],. The term
xP = (e] )" (x") belongs to K[Xy1, . .., Xa]; and is hence in J; or in & (), If x is in J;, then x5’ - - - X" belongs to J5* and
thus to I; otherwise, x* = (e, )" (x’) isinN. O

Proposition 5.2. With the above notation, the Hilbert polynomial p(z) for I differs from p(z) only by a constant. If ¢ =
p(r) — p(r) > O, execute the following instruction q times: select a minimal term t in I, and set I := (G((I;)) \ {t}). After
these q steps, the new ideal obtained has Hilbert polynomial p(z).

Proof. The theses follow from the results presented in Section 4. O

Proposition 5.2 suggests the design of the following two routines BORELGENERATOR and REMOVE, which have been
implemented by the second author in a software with an applet available at http://www.dm.unito.it/dottorato/dottorandi/
lella/HSC/borelGenerator.html.

procedure BORELGENERATOR(n,p(z),r,k) —> F
if p(z) = 0 then
return {(1)};
else
& < BORELGENERATOR(1,Ap(z),r,k + 1);
F <0
forall] € & do
I <] -klxg,...,%]; _
q < p(r) - dimk k[Xk; e Xn]r + dimk Iy,
if g > 0 then _
F <« F UREMoVE(n,k,r.1,q);
end if
end for
return ¥ ;
end if
end procedure
procedure REMOVE(n,k,r,],q) — &
& «— U
ifq=0then _
return & U [5%;
else ~
F < MINIMALELEMENTS(I,r)
forallx* € ¥ do _
& < & UREMOVE(n,k,r,(G((I;)) \ x*),q — 1);
end for
return &;
end if
end procedure

Remark 5.3. The terms removed by our strategy are minimal in I. An alternative strategy consists of adding to J,K[x, . . . , X,]

n—k+r

the maximal terms of I, \ J. In this case, because we want to have dimg I, = ( .

) — p(r) and we already have
("_(kf])”) — Ap(r) terms of J, we should add


http://www.dm.unito.it/dottorato/dottorandi/lella/HSC/borelGenerator.html
http://www.dm.unito.it/dottorato/dottorandi/lella/HSC/borelGenerator.html
http://www.dm.unito.it/dottorato/dottorandi/lella/HSC/borelGenerator.html
http://www.dm.unito.it/dottorato/dottorandi/lella/HSC/borelGenerator.html
http://www.dm.unito.it/dottorato/dottorandi/lella/HSC/borelGenerator.html
http://www.dm.unito.it/dottorato/dottorandi/lella/HSC/borelGenerator.html
http://www.dm.unito.it/dottorato/dottorandi/lella/HSC/borelGenerator.html
http://www.dm.unito.it/dottorato/dottorandi/lella/HSC/borelGenerator.html
http://www.dm.unito.it/dottorato/dottorandi/lella/HSC/borelGenerator.html
http://www.dm.unito.it/dottorato/dottorandi/lella/HSC/borelGenerator.html
http://www.dm.unito.it/dottorato/dottorandi/lella/HSC/borelGenerator.html

F. Cioffi et al. / Discrete Mathematics 311 (2011) 2238-2252 2249

J = <n—k—|—r)_p(r)_(n—(l<+1)—|—r)+Ap(r): (n—k—l—i—r)_p(r_l)

r r r—1

terms for any J, where g’ depends only onr, n — k and p(z); hence, we will write ¢'(r, n — k, p(z)) instead of q'. However, the
value of g = p(r)—|N,| = p(0)—p(0) depends on]. Note that ¢'+q = dimg I, —dimg J,. Observe thatifn—k > deg(p(z))+1,
then ¢’ > g. The minimal polynomial p(z) of Definition 4.6 can be recovered from Ap(z) by the Gotzmann decomposition
in the following way. If

Ap(z):(z—ti)—lb1>+<Z+Zz—1>+m+(z—i—bt;(t—l))
t

withby > by, > --- > b > 0, then

ﬁ(z):(z+a1>+<z+az—1>+m+<z+ar—(t—1)>’
a; a; ag

where a; = b; + 1. The Gotzmann number of Ap(z) is also the Gotzmann number 7 of p(z). If r is the Gotzmann number of
p(z),thenr — F = p(0) — p(0) > p(0) — p(0) = q. We prove that ¢ > g by an inductiononc = r — r. If c = 0, then we
obtaing = 0.If ¢ > 0, by induction, we have that ¢'(r — 1,n — k, p(z) — 1) > q — 1; hence,

, r—14+n—-k
q(r,n—k,p()) =< . )—P(r—l)

k
r—24+n-—k r—14+n—k—1
= + —pr—=1D) +pr—2)—p@r—2)
n—k n—k—1

-1 —k—-1
:q/(r—l,n—k,p(z)—l)—f—(r tnok
n—k—1

_ r—14+n—k-—1
i+ —Ap(r—1) -2,
n—k—1

>—Ap(r—1)—1

v

and (r_;f';:’]‘_l) — Ap(r — 1) > 2 because r — 1 is an upper bound of the Gotzmann number of Ap(z) and J is not a

hypersurface becausen — k — 1 > deg(Ap(z)) + 1.

Example 5.4. (a) If p(z) = d,thenr =dandf =0,soq=dandq = (d_,lf”) — d. Moreover, if n = deg(p(z)) + 1, then
qg =0.
(b) The Gotzmann number of p(z) = 3z + 1isr = 4,and ifn = 3and k = 0, then q'(r, n, p(z)) = (’*:f”) —p(r—1) =

20— 10 = 10andr — 7 = 1.IfJs = (x3,x3)4, we obtain [N,| = 12 and ¢ = 1; meanwhile, if J4 = (x3, x2x3, X2), we
obtain [N,| = 13and g = 0.

6. Degreverse points

In this section, by exploiting results of [ 15], we study the points corresponding to the hilb-segment ideals in the Hilbert
scheme #ilbj of subschemes of P" with Hilbert polynomial p(z) = d, where d is a fixed positive integer. Recall that for
p(z) = d, the Gotzmann number is d itself.

From now, ] C S is a hilb-segment ideal with respect to some term order < and with Hilbert polynomial p(z) = d, and
let 8 .= {x € N()g : x1x® € J}. Recall that G(J) denotes the set of minimal generators of J, and ed(St,(J, <)) is the
embedding dimension of the Grébner stratum Sty (J, <).

Lemma 6.1. With the above notation, we obtain that ed(St,(J, <)) > |G(J))| - |B|.

Proof. With the same notation introduced in Section 2, by Theorem 4.7(i) of [15], it is enough to look at the variables c,g

appearing in the polynomials F, such that x* = xng_l”‘, where x” belongs to G(J). More precisely, we need to count the

number of such variables that do not correspond to a pivot in a Gauss reduction of the generators of L(J) (see also Proposition
4.3 and Definition 4.4 of [15]).

First, we note that in every S-polynomial involving such an F,, the polynomial F,, itself is multiplied by a term in which
at least a variable x, appears with h > 0 (otherwise the other polynomial involved in the S-polynomial should have xg as
its initial term). It is enough to investigate the terms x®x;, where x? belongs to B because if x’x; belongs to J4,1, then x’x;
belongs to J44 for any h > 0. Because J is a hilb-segment ideal, every term x? of B is less than x*. By the definition of B,
every term x? of B is always involved in a reduction step so it does not appear in any generator of L(J) (see Criterion 4.6
of [15]). The number of such terms is at least |G(J)| - ||, and we are done. O
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Theorem 6.2. If, for the hilb-segment ideal ], we have |G(J)| - | B| > nd, then ] corresponds to a singular point in Filbj.

Proof. Let Hgs be the unique irreducible component of J#ilb}; containing the lexicographic point [24]. Recall that Hgs has a
dimension equal to nd and that every Borel ideal belongs to Hgs [23]. Because J is a hilb-segment ideal w.r.t. <, the Grébner
stratum St (J, <) is an open subset of Hgs (Corollary 6.9 of [ 15]), and hence, dim St,(J, <) = nd. Thus, the point J is smooth
for #¢ilbg if and only if it is smooth for the Grébner stratum St; (J, <) (see Corollary 4.5 of [15]). In particular, J is smooth if
and only if ed(St,(J, <)) = nd. By Lemma 6.1, the thesis is proved. O

In the following, it is important to keep in mind that if < is a degreverse term order and « is the initial degree of a
degreverse segment ideal ] for p(z) = d, then $t,(J) = $th(J>o) = Stn(J>o+k) for every k > 0, by Proposition 3.9(i) and
Remark 3.14.

Example 6.3. The generic initial ideal of 7 general points in P*> w.r.t. a degreverse term order, i.e., the (saturated) hilb-
segment ideal with Hilbert polynomial p(z) = 7, can be one of the two following saturated Borel ideals with a maximal
Hilbert function: the hilb-segment ideal I w.r.t. degrevlex or I’ = (x3, x3x,, X3X1, x2, X2x1, xox%, X3).

We obtain & (I)7 = {5, x5x1, X5X2, X5X3, X3X3, XgX1X2, XoX1x3}, and B = {xgx3, xoX1Xa, Xpx1x3}. Thus, [G(I)| - |B| = 6-3 =
18 < nd = 21. But, as it is shown in [15], we can compute directly the Grébner stratum of I>7 showing that its embedding
dimension is 27 > nd = 21. Actually, in [15], the authors construct the stratum of I3, which is isomorphic to the stratum
of I>7, obtaining a significant improvement in the computation.

For the ideal I, we obtain N (I'); = {x), x5x1, X3x2, X5x3, Xx2, XoX1X2, X5X3} S0 B’ = {x3x%, X3x1X, X3x3} with |8'| = 3
and |G(I')| = 7. Hence, we obtain |G(I")| - |8'| =7 - 3 = 21 = nd = 21. But, also in this case, we can compute directly the
Grobner stratum and its embedding dimension, which is 29 > 21.

For 8 points in P3, the (saturated) hilb-segment ideal I w.r.t. degrevlex with the Hilbert polynomial p(z) = 8 is the
unique Borel ideal with a maximal Hilbert function. We obtain & (I)s = {x3, xjx1, XoX2, XoX3, X3x3, X5x1%2, X5X1x3, X5%5 } and

= {x5x3, x5x1X, X5x1x3, x5x3} with |B| = 4. Because |G(I)| = 7, we get |G()| - |B| =7 -4 =28 > 3-8 = 24.

Theorem 6.4. For every d > n > 3, the hilb-segment ideal ] w.r.t. a degreverse order corresponds to a singular point in #ilbj.

Proof. In Remark 3.14, we observed that ] must have a maximal Hilbert function; so, the regularity py of its Hilbert
function is the integer such that (”“*n”") < d < ("F"). Moreover, if d = (***"), then |G())| = (”""]'); otherwise,

Gl = ().

Ifd=n+1,thenpy = landJ = (xq, ..., X2)?; 50, |G(J))| = (H” 1) = ("‘ZH). Moreover, B consists of the terms of

type xg_]x, with i > 0; thus, || = n, and the statement is true because ("“) -n > n(n+ 1) foreveryn > 3.
Ifd > n+ 2,then py > 2.
Ifd = (p”+"), we show that |8| > py + 1. If we multiply every term of degree py in the variables xq, . . ., x, by ngp“,

we obtain terms of degree d that multiplied by x; give (p“+” 1) terms that belong to 8. Thus, |8| > (p”+" 1) > py + 1,
and [G()| - 18] > ;85 - (pu + 1) = dn.
Ifd < (") and py > 3, we show that | 8] > py + n. Let x* be any of the (””ﬂfz) terms of degree py — 1in the

variables x1, ..., x,. Thus, if x’x; belongs to J, then xﬂxd PHH belongs to B; otherwise, if x’x; does not belong to J, then

xﬁngp”m belongs to B. Either way, the term x'f’x1 belongs to J because it is not divisible by xy and has degree py + 1, and

the terms of W (J),,+1 are all divisible by xo. Such terms are all distinct; so, |8| > (””*" 2) Now it is easy to check that

(””*” 2) > py + nforevery py > 3and n > 3.Thus, |G()| - |8 > (””,ﬂ”) - (b +n) > nd, by Remark 3.14(3).

n+1
2

(”“) <d < (2:”).Ifd < (”“) then we immediately obtain |G(J)| - |8| > nd. If ("“) <d < ("“) all the d

n

It remains to study the case py = 2 in which |G(J)| > ( ) and |B| > n because of the above results with

terms of & (J)4 are in B except for most the n + 1 terms divisible by xo ~1.Thus, in this case, | 8| > d — (n + 1), which is
> n+ 2 except forn = 3 and d = 7, 8. These last two cases have been directly studied in Example 6.3. O

Example 6.5. We can list all the saturated Borel ideals in K[x, . . ., x3] with constant Hilbert polynomial d ford = 4, 5, 6, 7,
e.g., by the implementation BORELGENERATOR of the algorithm described in Section 5. Then, we see if these Borel ideals
correspond to smooth or singular points in inlbg by a direct computation, as in Example 6.3.

For d = 4, the segment ideal | w.r.t. degrevlex is the unique Borel ideal that corresponds to a singular point of }t’ilbi.
More precisely, the singular locus of .%’ilbi is determined by the 3-dimensional orbit of ] under the action of the projective
linear group on P3.
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Also, for d = 5, the segment ideal ] w.r.t. degrevlex is the unique Borel ideal that corresponds to a singular point of
inlbg. In this case, the singular locus of J(’ilbg is 6-dimensional and contains the orbit of the ideals J(A) = (x%, X3X7,
x%, X3X1, X2X1, x% (x1 + Axo)) (a linear family depending on the parameter A € K) under the action of the projective linear
group on P2, For A = 0, we get the ideal J itself, while for A # 0, the subscheme defined by J(A) = (x%, X3X3, xﬁ, X3X1,
X2X1, xf) N (x3, X2, X1 + AXg) is the union of the degree 4 non-reduced scheme given by the segment ideal w.r.t. the degrevlex
of degree 4 and one more point.

For d = 6, there is one more Borel ideal ]/ = (x%, X3X2, x%, X3X1, X2X1, x‘l‘) that corresponds to a singular point of the
Hilbert scheme in addition to the segment ideal ] w.r.t. degrevlex. Both of them are naturally related to the segment ideal
w.r.t. the degrevlex of degree 4; indeed J and J’ are the initial ideals w.r.t. degrevlex of the ideal defining the union of the
degree 4 non-reduced scheme on the point O (given by the degree 4 segment ideal w.r.t. degrevlex) and of two more points
P, Q. We obtain ] if O, P, Q span a plane, and we obtainJ’ if O, P, Q span a line.

Finally, for d = 7, there are four Borel ideals corresponding to singular points on J(.’ilb?. Two of them are segments ideals
w.r.t. degreverse term orders (see Example 6.3), and two of them are not.

Ford =4,5,6,7, J€ilb3 only has one component (see [4]), and we can see this for d = 4, 5 directly by our computations.

By observing the following,

(i) a segment ideal w.r.t. degrevlex order gives rise to a singular point in #ilb} and defines a scheme not contained in any
hyperplane and

(ii) a segment ideal w.r.t. deglex order gives rise to a smooth point in #ilb} and defines a scheme contained in some
hyperplane,

one might guess that there is a relationship between the smoothness of a point in #ilbj corresponding to a (saturated)
monomial ideal and the presence of linear forms in the ideal. But, the next example (for which we are indebted to G. Floystad)
shows that this is not the case.

Example 6.6. (i) Let | = (XT, .. ,x?i, ...,Xxo") be a (saturated monomial) complete intersection ideal defining a 0-

dimensional scheme X of degree d = [, a; in P", and let z denote the corresponding point of #ilbj. As I is a monomial
ideal, z lies in the closure of the lexicographic point component of #ilb} (see, for example, Corollary 18.30 of [20]).
Using the normal sheaf to X, we get that the dimension of the tangent space to #ilbj at z is nd, coinciding with that of
the lexicographic point component. Thus, I gives an example of a monomial ideal that does not contain linear forms and
that corresponds to a smooth point in #ilb.

(ii) LetJ C KIxq, ..., X,] be a saturated monomial ideal giving a singular point z; of J{’ilbg_l; so, the dimension of the

tangent space to ,}‘(’ilbg_l inzyisa > (n — 1)d. Taking ] = ((xo) +J) C K[xo, ..., Xp], the dimension of the tangent
space to #ilbg in zrisa +d > (n — 1)d + d = nd, and hence, z; is singular too.
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