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Least squares estimation of the parameters of a single input-single output 
linear autonomous system is considered where both plant noise and observation 
noise are present. It is shown that under fairly general conditions the estimates 
converge almost surely to the true system parameters and that the estimates are 
asymptotically normal. 

I. INTRODLJCTI~N 

In 1943 Mann and Wald published an article [9] dealing with the problem 
of estimating the parameters of a linear stochastic difference equation. In recent 
years this problem has again attracted attention, in particular in the realm of 
stochastic control theory for linear systems [l, 2, 6, 7, 11, 121. The survey 
article [l I] has an extensive bibliography. Two methods widely used to identify 
the parameters of a discrete time linear system are linear least squares and 
maximum likelihood. Each of these methods has a serious drawback. In the 
linear least squares case, the parameter estimates have an asymptotic bias if 
plant noise is present or if the observation noise is not white. The major drawback 
to use of the maximum likelihood method is that the distributions of the noise 
sequences must be known. Invariably it is assumed that the noise processes 
are Gaussian processes and in this case the properties of the Gaussian density 
make it relatively easy to derive maximum likelihood estimates. 

Two important questions which arise when identifying the parameters of 
a linear system are concerned with consistency of the estimates and asymptotic 
normality of the estimates. As mentioned above, linear least squares estimates 
may fail to be consistent. The instrumental variable method as described by 
Wong and Polak [12] overcomes this difficulty by use of a weighting matrix. 
Aoki and Yue [I] showed that under the assumption that the noise processes 

* This research was supported by the United States Air Force under Contract F33615- 
73-Q-4009. 

376 
Copyright 0 1977 by Academic Press, Inc. 
All rights of reproduction in any form reserved. ISSN 0022-247X 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82462146?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


LEAST SQUARES ESTIMATES 377 

are Gaussian the parameter estimates are both consistent and asymptotically 
normal. 

In this paper, we present a technique for estimating the parameters of a linear 
system which is based on an impulse response model. That is, the observed 
output can be described by 

yk = f hjukpj + noise, 
j=O 

where (z+} is a known input sequence and {hB} is the transfer function for a 
linear system with rational z-transform, viz., 

The estimates for 8 = (a, ,..., a, , b, ,..., b,) are obtained by minimizing the 
mean square deviation between observed output and model output, i.e., 

N-l 
minimize 1 yk - 

k=O 

( f hjUk-jj’p. 
j=o 

Thus, the method is a least squares method based on the impulse response 
model. However, it does not provide a linear least squares estimate of 8. 

In [lo] the authors of this paper showed that the least squares estimates 
converge almost surely to the true system parameters if the plant noises and 
observation noises are both sequences of independent, identically distributed 
random variables with zero means and finite variances and if almost every 
sample sequence of plant noises is a bounded sequence. This last assumption 
of boundedness is quite severe. For example, it does not allow for Gaussian 
plant noise. In this paper we have simplified the proofs of some of the results 
leading to the almost sure convergence and we have removed the hypothesis 
that almost all sample sequences of the plant noises are bounded. Also, we 
show that the least squares estimates are asymptotically normal if the noises 
have finite third moments. Computational experience with the method is 
reported in [13] and the method appears to be quite robust. 

2. NOTATION AND ASSUMPTIONS 

The systems that are treated in this article are of the form 
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k = 0, 1, 2,..., where quantities with negative subscripts are assumed to be zero. 

The sequences E. , El , E2 ,... and 7. , 71 ,y2 ,... are the plant noises and observa- 
tion noises, respectively; aI0 ,..., a,O, b,O,. .., b,O are the parameters to be identified 
and are denoted by the vector RIO. 

Following the notation used in [I, IO], for any sequence w0 , ZII~ ,..., we let 
wN == (w,, , wr ,..., ZU,~-,)~ and 

and we rewrite (1) as 

A&30) XN = BNPO) UN + D.&N 7 

YN=XN+T)N, 
(2) 

where 

AN(e) = i a$,‘, a, = 1, 
j-0 

D, = i @SN). 
i=l 

Stochastic Assumptions 

ASSUMPTION R. Throughout the sequel (6,) and {yk} will each denote 
sequences of independent, identically distributed random variables with zero 
means and finite variances, aI2 = Var[6] and uaa = Var[q,], respectively. The 
state variables and output variables then will be sample functions of stochastic 
processes and will be expressed as functions of w for w belonging to a probability 
space 9. 

The least squares estimate for 8O will be denoted by QN(a). For a given input 
vector ti,” and output vector y&w), Q,(W) is chosen so as to minimize 

F(x 8, w, = (1 iN) 11 Y.&) - AN(e)-1 BN(e) uN 1i2. 

From (2) it follows that 

(3) 

F(N, 8, W> = (l/N) ~l(AN(eo)-’ &(e”) - AN(e)-’ BN(e)) UN 

+ L4N(eo)-1 DN&(w) + %b) 12. (4) 
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For notational convenience we let 

and 

QN(e) = AN(eo)-l BN(q - AN(e)-1 BN(e), 

PN = AN(ey D, ; 

note that the matrices &(e) and PN are of the form 

N-l 

ON(e) = C 4jw sNjl 
j=O 

N-l 

PN = c PjsNj. 

j-0 

Then expanding (4), we have 

w% e7 d = (w) 11 f.?Nce) UN II2 

+ u/w II pN5i&)l12 + U/N II ‘1NkJ)l12 
+ (2/N)<!2N(e) uN Y pNgN(w)) 

+ (2/N)(!i?N(e) uN ) ?N(W)) 

+ (2/N)(pN5N(w), ?N(w)>, 

where we are using the inner product notation (v, w) = vrw. 

(5) 

System Assumptions 

ASSUMPTION S. The set 8 of admissible parameters 8 is a compact subset 
of R2n which contains the true system parameter e” in its interior and for each 
8 E 8, with 8 = (at ,..., a, , b, ,..., b,)=, 

(i) A(z, 0) = I + ‘f aj.zj has no zeros in 1 x I < 1, 
j=l 

03) 

(ii) ~(a, e) = 2 b,zj has no zeros in common with A(., CJ), 
j=l 

and not all bj = 0. These assumptions assure that the system is asymptotically 
stable and completely controllable. 

It follows from (6) that A(., e)-l, the reciprocal of A(., e), is analytic on 
/ z i < 1 and has a series representation 

A(z, e)-1 = i gj(e) ~j validon 1,s < 1. 
j=O 
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Also, 

The matrix S,V is nilpotent of order N; hence i3,,,(e)-l = xFi;‘g,(B) S,vj. 
Similarly it follows that 

and 

N-l 
pN(e) = C qj(e) sINj, 

j=O 

N-1 

where z I %P>l < *9 

PN = 2 PjsN', 
j=O 

where 

Input Assumptions 

ASSUMPTION I. The sequence of inputs (uj} will be assumed to satisfy the 
following conditions: 

(i) {z+> is a bounded sequence, 

(ii) lim,v,, (l/N) ~~~&i,il ~+-~z+-~ = zi(i, j) exists for every integer 
e’aOandj>O, 

(iii) lim,_,(l/N) U~,anU,v,an = 6’ is positive definite, where 

Li;vsnn = (S~tl~ , S,%N ,...) S~u,). 

In [2], a sequence of inputs satisfying conditions (i) to (iii) above was said to 
be “persistently exciting.” 

If X, denotes a random variable for each N = 1,2,..., we write “X, -G X” 
if {X,) converges in distribution to the random variable X. Also we write 
“XN -@ N(0, M)” if the sequence of random vectors {X,} converges in 
distribution to the normal distribution with mean 0 and covariance matrix M. 

3. CONSISTENCY OF THE ESTIMATES 

In order to show that 6N - e” almost surely, we first establish that 
F(N, 8, 0) -+ J(e) almost surely as N-t cc for every e E 8, where 

_= z. go qi(e) qj(e) c&j) + ~1’ go Pj2 + Os2. 
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For this the next three lemmas are useful. The proof of Lemma 1 can be found 
in [lo; Lemma I] and will not be repeated here. 

LEMMA 1. For any 0* satisfying Assumption S and E > 0, there is an integer 
N* and 6 > 0 such that 

and 

(4 
j=N*+l 

for aEZ 8 E 8 for which 11 8 - 8* I! ( 6. 

COROLLARYTO LEMMA 1. There is a constant M such that 

N* 6; tEfo I a$U G M f or all 8 E 8 and for every E > 0, there is an integer 

(ii) Cj”=Nt+l / qj(e)l < E for all 8 E 8. 

The proof of the corollary follows by using Lemma 1 together with a standard 
argument involving the compactness of 0. 

The next two lemmas are concerned with the convergence of sequences 
such as those which appear as terms in Eq. (5). Therefore, the functions F and G 
which appear in the statement of the lemmas will be analytic functions whose 
coefficients are {qk(e)) or (pk}. I n order to avoid proving several lemmas, all of 
which have nearly identical proofs, we leave it to the reader to choose the 
appropriate definitions of F and G in each application of the lemmas. 

LEMMA 2. Let G and F denote analytic functions in x on (z: I z 1 < l} x 8. 
Let F(z, 0) = C~cofk(e) zk and G(z, 0) = CzCogL(e) zk denote their respective 
power series representations where the coeficient sequences {fk(e)} and {g@)} 
satisfy the conclusions of the corollary to Lemma 1. Let {wk} and {vk} denote sequences 
of real numbers such that 

(i) limdl/N) Xii,, wkvk,+ exists for each j = 0, 1, 2 ,..., 

(ii) lim,,,,(l/N)C~~~ w~+~z)~ exists for each j = 0, 1, 2,..., 

(iii) (l/N)Cf1: wz < Mfor all N = I, 2,..., and 

(iv) (l/N)Crz+ vkz < Mfor aZZ N = 1,2,... . 



382 KORRIS AND SNYDER 

If GN(e) = Cizt gk(0) S,l; and F,,,(e) = Crzl fk(e) JINk, then for ever33 E 3, 0, 
there is an N, such that for N > N,, and for every 0 E 8, 

(1 !N)(GNW wN 3 FN(e) vN) - ,L, z. gk(@)fk(e)(wv)k.i j ( 5 

where (wv)~,~ = bmN,,(SN”wN , S,&N)IN. 

Proof. Let M denote a constant chosen large enough to satisfy inequalities 
(iii) and (iv) in the hypothesis and such that for all 0 E 8, C,“=, If@)1 < M 
and Cz=‘=, 1 g,(e)1 < M. Then we note that 

for all N = 1, 2,... and all k,j = 0, 1,2 ,... . From (7) and the fact that the 
power series for G and F converge absolutely at x = 1, it follows that the 
double series in the conclusion of the lemma is absolutely convergent. 

Now let N* be a fixed positive integer and suppose that N > N*. Then 

1 go ~0gk(9fj(e)(wv)k,j - (l/N) ? ~gk(WXWS~k~~j SN'VN) 1 
k=O J=O 

I 
N* N* 

< c 1 gk(e>fde)[(wv)ktj - (~IN)<SN~WN , SN~VN)] 
k=O j=O I 

i- 2M f f i gkce)i ihwi -t 2M i 5 / gkce)l Ifj(e)i. (8) 
k=N*+l j=O i=N*+l k=O 

The last expression on the right side of inequality (8) is less than or equal to 
2M2 . x;N*+l 1 f$(e)\ for all 8 E 8. By hypothesis this quantity can be made 
uniformly small for all 8 E 0 by choosing N* sufficiently large. Similarly the 
second expression on the right side of (8) can be made uniformly small for all 
8 E 8. For fixed N*, the first expression on the right side of (8) can be made 
uniformly small for all 8 E 8 by choosing No > N* sufficiently large because 
of (i) and (ii) in the hypothesis. Q.E.D. 

LEMMA 3. Suppose that G and GN are as in Lemma 2 and that {wk} and {vk} 
are sequences of real numbers such that 

(i) lim N-roo(l/N)C~~ll--L wjvj+k = 0 for each k = 0, 1,2 ,..., 
(ii) (l/N)CLi’wj2 < Mfor each N = 1,2,..., and 

(iii) (l/N)C~~~r vjz < Mfor each N = I, 2,... . 
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Then for ewery E > 0, there is an integer N, such that N > N,, implies that 

I(l/N)(G,(B) w, , vN)j < E for all 8 E 0. 

Proof. Let M be a constant chosen large enough to satisfy (i) and (ii) in 
the hypothesis and such that Cr=‘=, 1 g#)j < M for all 0 E 0. Let N* be a fixed 
positive integer and suppose that N > N* + 1. Then 

N-l 

I(W)(Gv(e) WN , vNJ>I = (l/N) c gk(e)(sNkwNy VN) 
k-0 

< y 1 gkte)i * 1 U/N> NF-k wjv’i+k 1 
k=O j=O 

(9) 

< E 1 gk(e)i ’ / (l/W Ni-k Wjvi+k / + Nf1 1 gk(q ’ M 
k=O WI k=N*+l 

(the fact that j(l/N)C~z’ll-k w~v~+~ 1 < M follows from (i) and (ii) in the 
hypothesis and the Schwarz inequality). The second expression on the right 
side of inequality (9) can be made uniformly small for all 8 E 8 by choosing N* 
sufficiently large (by hypothesis, Cr+,*+, I gk(e)i can be made uniformly small 
for all 0 E 0). The first expression on the right side of (9) can be made uniformly 
small for all 0 E 0 by choosing No > N* sufficiently large that each of the 
finitely many terms j(l/N)C~~‘-” wjviflc j, k = 0, l,..., N*, is smaller than 
t-/2M for N > No (because of hypothesis (i) and the fact that CF=‘=, / gk(e)l 6 M 
for all 8 E 0). Q.E.D. 

THEOREM 1. Suppose Assumptions I, R, and S hold. There is an event 
58’ C Ll with P(s2O) = 1 such that for every w E Q” and E > 0, there is an integer 
No = N,(w, C) such that N > No implies that 

for all 0 E 0, where 
1 wv, 0,~) - I(e)i < E 

J(e) = 2; W(N, 0, *)I. 

Proof. Let Q” be the set of all w for which all of the following are true: 

(i) (l/WZ;~: tk2(w) - o12, 

(ii> (l/N> C::ct Tk’(w) - 022, 

(iii) (l/N)~~~~ [k(w) [k+j(W) -+ 0 forj = 1,2,..., 

(iv) (l/N)C;:; &(w) qk+j(w) - 0 for-j = 0, 1, 2,..., 

(V) (l/N)Ctri uk[k+j(w)-0 forj = 0, 1,2,..., 

(4 (1 /NJ Ziiii Uk+jtk(w) --f 0 forj = 0, 1, 2,..., 

(vii) (l/N)Cfzi u~;?~+~(w) -+ 0 forj = 0, 1,2,... . 
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Kolmogorov’s strong law of large numbers [8, p. 2411 implies that each of the 
sequences in (i) to (iii), and (v) to (vii) converges for almost all w. The sequence 
of random variables ([k~l~+j} is j-dependent, and so the strong law of large 
numbers holds (see [4, Theorem 31). It follows that Q” is a countable intersection 
of amost sure events, hence J2O is an almost sure event. 

Let w E fro. Then 

F(N, % w, = ( l/~>(QN(e> UN , B,(e) UN) + (~/W<PNSN(WX PN~N(W)) 

+ (2/N)@N(e) uN 1 PNgN(W)) + (2/N&?N(e) uN 3 qNtW)) 

+ (2/N)(pNh(w>~ ?Ntwb (10) 

Lemma 2 yields the uniform convergence of the first, second, and fourth terms 
in (lo), Lemma 3 implies that the fifth and sixth terms converge uniformly in 0, 
and condition (ii) above yields the convergence of the third term. Q.E.D. 

THEOREM 2. Suppose Assumptions I, R, and S hold. Then for almost all w, 
lim N+m QNcW) = 80. 

Proof. Let w E J2O, where fin0 is the set of probability one defined in the 
proof of Theorem 1. The parameter set is compact, so {I,} has a convergent 
subsequence, say limj,, @,~(oJ) = 8*. S uppose e* # e". Then JO*) > J((eO) 
because J has a unique minimum (see [l, proof of Theorem 11). Let 
l = J(e*) - J(eo). N ow, F(N, , eNj(w), W) < F(N, , O”, W) for each j; hence 
lim+, sup F(N, , QN,(a), W) < J(t3O). For j sufficiently large it follows 
that F(N,, 6,,(w), W) < J(T(eO) + (c/4). By Theorem 1 for fixed w EQO, 

limN+rn F(N, 8, CO) = J(e) and the convergence is uniform in 8. SinceF(N, ., W) 
is continuous on 0, it follows that J(.) is continuous on 0. By the continuity 
of J(.) and the uniform convergence of F(N, . , w), it follows that forj sufficiently 
large, 

1 J(e*) - w, , ~N,w, 4 

< 1 J(e*) - ](6Nj(w))I + 1 J(4N,(~)) - F(& , I,, W)l < (E/B) + k/8>. 

Then J(t)*) <F(N, , @,j(w), W) + (c/4) < J(e”) + (c/2), from which it follows 
that J(e*) - J(T(eO) -=c c/2, contrary to the choice of E. 

4. ASYMPTOTIC NORMALITY OF THE ESTIMATES 

Let +N(e) = V$-‘(N, 8, w). In showing that 6N is asymptotically normal, we 
will use the equation 

0 = &@N) = $N(eo) + (vo+N(eN*)) ’ (6, - e’), (11) 
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for some O,* satisfying I[ 8,* - 60 11 < 11 aN - 0s 11. We will show that Nr/2+,v(Oo) 
converges in distribution to a normal distribution and that Vs$,(ONo) converges 
almost surely to a degenerate random matrix which is invertible. 

In this section we assume, in addition to the previous hypotheses, that the 
sequences of random variables (5,) and (~7~) have finite third moments. 

LEMMA 3. Let Q,,,~ and filnn , for k = 0, l,..., m - 1 and m = 1,2 ,..., denote 
uniformly bounded real numbers. If 

m-1 

and 

;z f ,%k + 2 &k] = co, 
I k=O k-0 

Then S,/[var(S,)] 1 I2 converges in distribution to the standard normal distribution. 

Proof. For the proof it suffices to show that 

lim cafe E(I Ol,kEk 1)” + cafe E(I Bmk7]k 1)” = 0 

m+m [var(S,)]3/2 

and then apply the Basic Lemma in [8, p. 2771. 
Let us consider the case where both 

m+m k=O 

m-1 

lim C c& = 03 and 
m-1 

The proofs in the other cases are analogous. Let M denote a bound for the 
amk’s and jgmK’s. We have 

CT2 JqI %k5k I)” + czif Jw Bm7c?r lr 
[var(S,)]“/” 

409/59/2-12 
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Now it is easily seen that both of the expressions on the right side of the 
inequality go to zero as m + co. Q.E.D. 

Let +,,,(eO) denote the ith component of +N(eo). Using matrix calculus, we 
find that for i = 1, 2 ,..., n, 

and 

+N,@‘) = (2/N)<PA’kV + qN 3 (ANo)-2 BNoSNiUN) 

+N,i+,@‘) = -(2/N)(PN5N + ?N , (ANo)-1 sNiuN)* 

LEMMA 4. For each i = 1,2 ,..., 2n, $N,i(eo) is asymptotically normal. 

Proof. We will give the proof only for i = 1, 2,..., n since the proof for 
i = 71 + I,..., 2n is analogous. 

Consider 
N-l 

(PNPN + ?N , (ANOY BN'SN~UN) = c (SN'PN 9 (AN')-' BN'SN~UN> ' tk 
k=O 

N-l 

+ c ceN.kp (AN')-~ BNOSN~UN> ylc 7 
k=O 

where PN = (PO , PI ,..., pN-I)T and 6?Nsk = (6s,, ,..., 6N-I,k)T with Sk,, = 1 
and Sj,k = 0 for j = k. We now apply Lemma 3 with ol,,, = 
(SNkpN , (ANo)-2 BNOSN’tiN) and fiN,k = (eN,k , (ANo)-2 BN”SNCN>. We only 
need to show that cr:t fi%,k --f CO as A&--+ CO. But 

N-l 

= /I BN”SNiuN 11: , 

where ]I * /lo denotes the norm defined by the positive definite symmetric matrix 
((AN0)2 (ANo)2r)-1. Since there are positive mumbers pl, ps such that pJ, < 
(AN0)2 (AN”)OT < pJN , where IN is the N x N identity matrix, it follows that 
II BN”S~~~N /I2 + CO as IV-+ 03 if and only if ]I BNoSNiuN \I2 --f co as N-t co. 
But limN,&/N) . I] BNoSNiuN II2 exists and is positive since 

(l/N> 11 BN'SN~UNI/~ = (l/N) (f b,SN”Srhv , gl b,s,‘&iUjv) 
k=l 

= il tl bkb,(l/N)<Si+:iu, > $hN), 

which converges to Cz==, CIXl bkbiC,+,,f;i as N--f co and the matrix [z&+~,~+J~,~,~ 
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is a positive definite submatrix of the positive definite matrix 0. It now follows 
that 11 BNOSNduN /I-+ 00 and consequently 11 B,OS/uN iI2 ---f co as N -+ co. 

Q.E.D. 

LEMMA 5. Nl~z+,..,(eo) is asymptotically normal, the covariance matrix of the 
limit distribution is MO = lim,,,(N * MN) where MN is the covariance matrix of 
+,(eO), and MO > 0. 

Proof. First we show that lim,,,(N . MN) exists. Let MN,i,j denote the 
(i,j)th entry of MN . For i, j = 1,2 ,..., n, 

MN,t,j = (4012/N2) . (PNT(ANo)-2 B,OS,iuN , PNT(A,o)-2 BNoSJuN) 

+ (~u~~/N~) . ((A,o)-2 B,“S,i~N , (A,o)-2 B,,r”S,,&,); 

MN,i,i+n = ( -4a12/N2) . (PNT(A,o)-2 BNo$,riu, , P,,rT(A,o)-l S,,+u,) 

+ (-4Q/N2) * ((ANo)- B,OS$uN, (A,O)-l SJuN); 
and 

MN,i+n,i+n = (4u12/N2) . (P,,r=(A,O)-l S&, , PN=(A,O)-l S&q,,) 

+ (4aJN2) . ((ANo)--l S,C, , (ANo)--l S,%.a,). 

If we let HN = [S,xN , SN2xN ,..., SNnxN , -S,u, ,..., -SNnuN], where xN = 

(4,W BN”uN , then we can express N * MN as 

N . MN = (4a12/N) HNTKNHN + (4u,2/N) HNTLNHN , 

where KN = (A,O)-lT P,&‘,T(A,vo)-l and L, = (A,O)-lT (ANo)-I. It was shown 
in [l] that the second matrix in the sum above has a limit that is positive definite. 
The first matrix is clearly nonnegative definite, and so we only need to show 
that the limit of the first matrix exists. 

Let us consider the (i,j)th entry for i,j = 1,2,..., n: 

N-l N-l 
= (4u,2/N) C c p&&S’“,T(A,“)-” BNoSNiuN , SgT(ANo)-’ BCS,3uN>. 

k=O m=O 
(11) 

By a technique similar to the proof of Lemma 1, it can be shown that the limit 
of (11) exists as N + 00 and likewise for the other entries of the matrix. 

From Lemma 4 we know that for each i = 1,2,... 2n, 

~~.i(e”>/~~~ * NO, 11, where vIN,( = Var($N,i(CJo)). 

Then also N1/24N,i(00)/(N. VN,i)1/2 -J N(0, 1). Since N. I’,, i = Var(N1/2+N,i(Bo)) 
and since lim,,, N - V,,i = Mo,i,i, the (i, i)th entry of MO , it follows that 



388 NORRIS AND SNYDER 

N1+5N,i(eo) converges in distribution to a normal distribution with zero mean 
and variance Mo,i.i . 

Let y1 , y2 ,..., yzn be arbitrary real numbers for which xy:, yf2 + 0 and 
let YN = N1/2(y1+N,r(00) + ... + y2,+,,,,.&eo)). From Lemma 3 it follows that 
Y,/[Var( Y,,,)]r/a +d N(0, 1). Also Var( YN) = N(yTMNy), where y = (yr,..., yzn)T 
and lim,,,,, Var(Y,) = yTMoy. Hence yN -+d N(0, yTMoy). By the Cramer- 
Wold Lemma [3], it follows that N1/2+N(00) +d N(0, MO). Q.E.D. 

LEMMA 6. Let R(B) = lim,,, E(Vs&(B)). Then 

(a) lim,+, v,+,(e) = R(e) almost surely, and 

(b) lim,+, vs+N(e,*) = R(CJO) almost surely. 

Proof. Using matrix calculus, we find that the (i, j)th component of V,&,(e) 
is as follows: for ;,j = 1,2 ,..., n, 

a2F/aai aaj 

= (2/N)(A;;“B,S,+q,, , A-,2B,SNi~h,> 

- (4/N)(P& + qN + (AN’)-’ BNouN - A;lBNuN, A;3BipS$h& 

for i = I,..., n andj = k + n, k = l,..., n, 

a2F/aai ab, 

= - (2/N)(A~2B,&,hN, A:SNkuN) 

+ (2/N)<P&, + q~ + (AN')--l BN'UN - &'BNuN, Ai2S?ku~); 

and for ;,j = n + l,..., 2n,k=j-n,m=i-n, 

a2F/ab, ab, = (2/N)(A-,IS,“u,, A&Y,%,). 

Part (a) is established by using Lemma 1 and Kolmogorov’s sufficient conditions 
for the strong law of large numbers just as in the proof of Theorem 1. 

To prove (b) we first will show that 

for every E > 0 there are a 6 > 0 and an integer Nr such that 
11 V,+,(e) - R(O)11 < E for all 8 such that I/ 8 - 8O I/ < 6 and (12) 
N > Nl . 

A typical expression in the expansion of the (i j)th term of V,+,(e) is of 
the form (l/N)(G#) v, , FN(B) wN), where G&3) = G(S, ; 0) and F,., = 
F(S, ; 0) for some functions G(z; 6) = ~~=ogi(e) zi and F(z; 0) = C~sofi(0) zi 
which are analytic on / x I < 1 and for which G(.; 0) - G(.; e”) and 
F(.; e) --f F(.; e”) uniformly on compact sets as 0 --f 8O. Also, the sequences 
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(~~);=a and {w,v}GI, will satisfy hypotheses (i)-(iv) of Lemma 1. Given E > 0 
there are 6-t 0 and an integer Ns such that 

and !. I g@)l < i I giPo)l + 1 
i=o 

for all 0 satisfying 11 0 - 8O 11 < 6. (For proof see [lo, Lemma I].) 
We have 

+ 2 f 2 I gi(*)h(*)l . M + 2 f 5 I gd*)h(*)/ * M 
i-o j=lvotl i=N,,+l i-0 

where M is a bound for all the sequences of averages as in Lemma 1. From (13) 
we see that 8 > 0 and N,, can be found so that the last two terms are small. 
Having fixed No , we can choose Nr >, N,, large enough that the first term is 
small. Thus we have (12). 

Next we note that R(e) is continuous at 6O. The (i, j)th term of R(8) is a finite 
sum of expression of the form CEoC~=ogi(B)fj(B)(~~)i,j . It suffices to show 
that these vary continuously with 8 and this can be done by using (13) and the 
fact that g,(m) andfj(.) are continuous functions of 8. 

The continuity of R(.) together with (12) and the fact that 8,*(w) -+ 90 for 
almost all w yields part (b) of the lemma. Q.E.D. 

Remark. The matrix R(6O) can be expressed as 

‘(8’) = $2 (2/N) HNTLNHN . 

It was noted in the proof of Lemma 5 that this matrix is positive definite. 

LEMMA 7. For each N = I, 2 . . . let CN be a random (m x k) matrix and X, 
a random k-vector. If C, --GJ C, a degenerate random matrix, and X, -4 X as 
N-t co, then C,XN-+d CX as N-+ CO. 
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Proof. Since X, --td X, E(exp[i(t, X,v)]) -+ E(exp[i(t, X)]) for all t E Rk. 
Thus 

E(exp[i(T, CX,)]) = E(exp[i(FT, X,)]) --f E(exp[i(CTT, X)]) 

= E(exp[i(T, CX>]) 

for all T E R”l. By the continuity theorem for characteristic functions [S, p. 1911, 
CXN +a cx. 

By [3, Corollary 1 of Theorem 5.11, // X, Ij dd Ij X 11. Also 11 C - C, /I +P 0 
so by [3, Problem 1, p. 281 or [5, Theorem 4.4.61 it follows that 
// X, Ij . II C - C,,, // --+P 0. This implies that 11 CXN - C,X, 11 -+p 0 since 
/I CXN - C,X, 11 < 11 X, /I . 11 C - C, 11. Therefore, by [3, Theorem 4.11, 
c,x, _td cx. 

THEORERX 3. N1/2(6N - e”) is asymptotically normal. 

Proof. We observed above that N11a(6N - e”) = (V,~,(8,*)-1(N1’2~,(80)), 
for some e,v* such that I/ e” - e,* II < I/ e” - 8, II. By Lemma 6, V0&,&v*) - 
R(B”) almost surely so (ve+N(eN*))-l --f (R(V))-l almost surely. By Lemma 5, 
NlP&,,(eo) -@ N(0, MO). Hence by Lemma 7, we have that IW2(aN - e”) -G 
N(0, R-lMoR-lT) where R, = R(BO). 

REFERENCES 

1. M. AOKI AND P. C. YUE, On certain convergence questions in system identification, 
SIAM J. Control 8 (1970), 239-256. 

2. K. T. ASTROM, T. BOHLIN, AND S. WENSMARK, “Automatic Construction of Linear 
Stochastic Dynamic Models for Stationary Industrial Processes with Random 
Disturbances using Operating Records,” IBM Nordic Laboratory TP18.150, 1965. 

3. P. BILLINGSLEY, “Convergence of Probability Measures,” Wiley, New York, 1968. 
4. J. R. BLUM, D. L. HANSON, AND L. H. KOOPMANS, On the strong law of large numbers 

for a class of stochastic processes, Z. Warscheinlichkeitstheorie und Verw. Gebiete, 2 
(1963), l-11. 

5. K. L. CHUNG, “A Course in Probability Theory,” 2nd ed. AcademicPress, New York, 
1974. 

6. R. L. KASHYAP, Maximum likelihood identification of stochastic linear systems, 
IEEE Tram. Automatic Control AC-15 (1970), 25-34. 

7. M. LEVIN, Estimation of system pulse transfer function in the presence of noise, 
IEEE Trans. Automatic Control AC-9 (1964), 239-235. 

8. M. LOEVE, “Probability Theory,” Van Nostrand, New York, 1955. 
9. H. B. MANN AND A. WALD, On the statistical treatment of linear stochastic difference 

equations, Econometrica 11 (1943). 173-220. 
10. D. 0. NORRIS AND L. E. SNYDER, Consistency of least squares estimates used in linear 

systems identification, SIAM J. Control 13 (1975), 1183-1193. 
11. K. J. ASTROM AND P. EYKHOFF, System identification-a survey, Automatica 7 (1971), 

123-162. 



LEAST SQUARES ESTIMATES 391 

12. K. Y. WONC AND E. POLAK, Identification of linear discrete time systems using the 
instrument variable method, IEEE Trans. Automatic Control AC-12 (1967), 707-718. 

13. D. 0. NORRIS AND L. E. SNYDER, “Statistical Properties of a Least Squares Identifi- 
cation Algorithm Used in Modeling Human Operator Performance,” Aerospace 
Medical Research Laboratory Technical Report AMRL-TR-75-29, Wright-Patterson 
Air Force Base, Ohio, May 1975. 


