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Ahstract: In the present paper questions of stability and boundedness of the solutions of systems with impulse effect at 
fixed moments with respect to a manifold are considered. The investigations are carried out by means of piecewise 
continuous vector-valued functions which are analogues of Lyapunov’s functions. By means of a vector comparison 
equation and differential inequalities for piecewise continuous functions, theorems of stability and boundedness of the 
solutions of systems with impulses with respect to a manifold have been obtained. 
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1. Introduction 

Many processes studied by physics, chemistry, biology, etc. are characterized by the fact that 
at certain moments they change their state by jumps. These processes during their evolution are 
subject to short-time perturbations whose duration is negligible in comparison with the duration 
of the process. That is why we can assume that these perturbations are carried out “instantly”, in 
the form of impulses. Adequate mathematical models of such processes are the systems of 
differential equations with impulses. 

In recent years, the mathematical theory of systems with impulses developes intensively in 
relation to their numerous applications in radio engineering, control theory, biotechnologies, etc. 
[l-11]. 

In the present paper questions of stability and boundedness of the solutions of systems with 
impulse effect at fixed moments with respect to a manifold are considered. The investigations are 
carried out by means of piecewise continuous vector-valued functions which are analogues of 
Lyapunov’s functions [lo]. Using a vec:.or comparison equation and differential inequalities for 
piecewise continuous functions, we have obtained sufficient conditions for various types of 
stability and boundedness of the solutions of systems with impulses with respect to a manifold. 
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of PRB under contract No. 61. 
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2. Preliminary notes 
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Let R n be an n-dimensional Euclidean space with norm 11 . 11 and let I = [0, 00). Consider the 
following system of differential equations with impulse effect at fixed moments: 

1 

dx/dt =f(t, x), t # ti, 

Ax[t=,,=Ii(x(ti)), i=l,2 ,..., (1) 

where x E R”, f: I x R” + I$!“, I,: (w” - R”, Ax 1 2=1, = x( t, + 0) - x( ti - 0) and the moments 
{ t, } of impulse effect form a strictly increasing sequence 

0 < t, < t, < . . . -c ti -C . . . and lim ti = co. 
i+CC 

Let (t,, x0) E I X R”. Introduce the notation x( t; t,, x,,) for the solution of system (1) which 
satisfies the initial condition x( t, + 0; t,, x0) = x0 and by 9 + = 9 ‘(to, x0) denote the maximal 
interval of the form (to, w) in which the solution x(t; to, x0) is defined. 

The systems with impulse effect of the type (1) are characterized in the following way: 
(i) For t # ti the solution of system (1) is determined by the system dx/dt = f( t, x) and the 

mapping point (t, x(t)) moves along some of the integral curves of this system. 
(ii) At the moment t = tj system (1) is subject to an impulse effect and the mapping point is 

transferred instantly from the position (ti, x(ti)) into the position (t,, x(t,) + I,(x( t,))). In the 
interval (t,, tl+,] the solution x(t) of system (1) coincides with the solution y(t) of the system 
dy/dt =f(t, y) for which y(t,) =x(ti) + I,(x(ti)). 

(iii) Each solution x(t) of system (1) is a piecewise continuous function with points of 
discontinuity { t, } of first type at which it is left continuous, i.e. the following relations hold 

x(t, - 0) = x(t,); x(t,+ 0) = x(ti) + Ax(ti) = x(t,) + Ii(x(t,)). 

Let g: IXR”+lRk (k G IZ) be a function defined in I X R “. For t E I introduce the sets 

M,(n-k)= {xEW:g(t, x)=0}, 

M,(n - k)(a) = {x E R”: II g(t, x) II < a>, 

M,(n-k)(Z)= {xER”: IIg(t, x)II <a} (00). 

We shall say that conditions (A) are satisfied if the following conditions hold: 
(Al) The function f( t, x) is continuous in I X R’ n and 

respect to x uniformly on t E I with a constant L > 0, i.e. 

lIf(t, xl)-fk x2)11 ~LIIxI-x2ll~ t E I, 

(A2) f( t, 0) = 0 for t E I. 
(A3) The functions 1,(x), i = 1, 2,. . . are continuous in R” and I,(O) = 0. 
(A4) The numbers ti, i = 1, 2,. . . form a strictly increasing sequence 

satisfies the Lipschitz condition with 

x1, x2 E R”. 

0 < t, < t, -c . . . -c ti < . . . and lim ti = co. 

i+m 

(A5) The function g( t, x) is continuous in I X R” and the set M,( y1- k) is an (n - k)- 
dimensional manifold in R’ “. 
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We shall say that condition (B) is satisfied if the following condition holds: 
(B) Each solution x(t; t,, x0) of system (1) satisfying the estimate 

II g(t, x0; lo, xo))jI <h<cc fortE.Y+(t,, x0) 

is defined in the interval (t,, cc). 
We shall give definitions of stability of the zero solution of system (1) with respect to the 

function g(t, x) which correspond to the definitions given in [12]. 

Definition 1. The zero solution of system (1) is called: 
(a) Stable with respect to the function g( t, x) if for any to E I and any c > 0 there exists a 

positive function 8 = S( to, E) which is continuous at to for any E > 0 fixed and such that if 

x0 E A4J n - k)( 8) and t ~9 ‘(to, x0), then x( t; to, x0 E M,( n - k)(c). 

(b) Uniformly stable with respect to the function g( t, x) if the function 8 from (a) does not 
depend on t,. 

(c) Globally equi-attractiue with respect to the function g( t, x) if for any to E I, a > 0 and 
c > 0 there exists a positive number T = T( to, (Y, C) such that if x0 E M,“( n - k)(Z), then 
to + T~.f+(t,, x0) and x(t; to, x0) E M,(n - k)(c) for t a to + T, t E.Y+(t,, x0). 

(d) Uniformly globally attractiue with respect to the function g( t, x) if the number T from (c) 
does not depend on to. 

(e) Globally equi-asymptotically stable with respect to the function g( t, x) if it is stable and 
globally equi-attractive with respect to the function g( t, x). 

(f) Uniforms globally asymptotically stable with respect to the function g(t, x) if it is 
uniformly stable and uniformly globally attractive with respect to the function g( t, x). 

(g) Unstable with respect to the function g( t, x) if there exist c > 0 and to E I such that for 
any 6 > 0 we can choose x0 E MtO( n - k)( 8) and t e.9 ‘( to, x0) so that the inequality 
11 g(t, x(t; to, x0)) 11 >, E should hold. 

Definition 2. The solutions of system (1) are called: 
(a) Equi-bounded with respect to the function g( t, x) if for any t, E I and any (Y L= 0 there 

exists a positive function p = /3( to, a) which is continuous in to for any (Y > 0 and is such that if 
xo~k$(n-k)(Z), t EY+(to, x0), then x(t; to, x0) eM,(n --k)(P). 

(b) Uniformly b ounded with respect to the function g( t, x) if the function p from (a) does not 
depend on to. 

(c) Ultimately bounded with respect to the function g( t, x) for bound N if there exists a 
number N > 0 and for any to E I and (Y > 0 there exists a positive number T = T( to, a) such that 
if ~~~M,~(n--k)(a), then t,+TEY+(t,, x0) and x(t; to, xo)~A4,(n-k)(N) for tat,+ 
T, t0+(t,, x0). 

(d) Uniformly ultimately bounded with respect to the function g(t, x) for bound N if the 
number T from (c) does not depend on to. 

Remark 1. If the zero solution of system (1) is stable with respect to the function g( t, x) and if 
x, E M,,(n - k), then x( t; t,, x0) E M,(n - k) for t EY+(t,, x0). This shows that the subset 
{(t, x) : t E I, x E M,( n - k)} of 1 X R” is a positively invariant set of system (1). 
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Remark 2. If n = k and g( t, x) = x, then Definition 1 is reduced to the definition of stability by 
Lyapunov of the zero solution of system (1) [9, Definition 21 and Definition 2 is reduced to the 
definition of boundedness of the solutions of system (1) [ll, Definitions 4, 5, 7, 81. 

Together with system (1) consider the following system 

i 

du/ dt = F(t, u), t# t,, 

AuI,=,=Bi(u(ti)), i=l, 2 ,..., (2) 

where UE[W~, F:IxO+R~, B, : $2 -+ R m, L2 is an open subset of Iw m containing the origin. 
In order to formulate the main results of the comparison method we need a partial ordering in 

R” which is introduced in the usual way. 
Of the vectors u=(ul,...,u,)~lRm and u=(ui,...,u,)~R~ we say that u>v if uiaui 

for any iE {1,2,..., m}andu>uif ui>uIforanyi~(1,2,...,m}. 

Definition 3. The function # : f2 + R m is called monotonely increasing in D if q(u) > q(u) for 
u > u and 4(u) >, G(u) for u > u, u, u E Q. 

Definition 4. The function F: I x 52 + Iw * is called quasi-monotonely increasing in 1 x fi if for 
any two points (t, u) and (t, u) of I X D and for any i E { 1, 2,. . . , m} the inequality Fi( t, u) 2 
F;( t, u) holds always when u, = u, and u 2 u, i.e. if for any t E I fixed and any i E { 1, 2,. . . , m } 

the function F,( t, u) is non-decreasing with respect to (ui, _. . , u,_~, u;+~, . . . , u,,,). 

Definition 5. The solution u+ : (to, w) --j II3 m of system (2) such that u+( t, + 0) = u0 is called a 
maxirrzal solution if any other solution u : (t,, &) -+ R” of system (2) such that u( t, + 0) = u0 
satisfies the inequality uf( t) > u(t) for t E (t,, w) n (t,, G). 

A minimal solution u-(t) of system (2) is defined in an analogous way. 
Let e E R’ m be the vector (1, 1,. . . , 1). 
We shall say that condition (C) is satisfied if the following condition holds: 
(C) If {ZEIP: 0 < u 4 he} c 52 and the maximal solution u+(t; t,, u,,) of system (2) 

satisfies the estimate 

u+(t; t,, uo) <he for t E$+(t,, uo), 

then this solution is defined in the interval (t,, 00). 

Let fi 1 { u : 0 G u < e}. Further on we shall consider only such solutions u(t) of system (2) 
for which u(t) 2 0. That is why the following definitions of stability and boundedness of the 
solutions of system (2) are appropriate: 

Definition 6. The zero solution of system (2) is called: 
(a) Stable if for any t, E I and Q > 0 there exists a positive function 6 = 6( t,, 6) which is 

continuous in t, for any e > 0 and is such that if 0 < u0 < 6e and t ~9 ‘(t,, u,,), then 
u+(t; t,, uO) < re. 

(b) UniformZy stable if the function 6 from (a) does not depend on to. 
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(c) Globally equi-attractive if for any t, E I, (Y > 0 and 6 > 0 there exists a positive number 
T= T(t,, CX, 6) such that if 0 d u0 < (be, then t, + T •$+(t~, uO) and u+( t; t,, uO) < Ee for 
t > t, + T, t &Y+(to, uO). 

(d) Uniformly globally attractive if the number T from (c) does not depend on t,. 
(e) Globally equi-asymptotically stable if it is stable and globally equi-attractive. 
(f) Uniformly globally asymptotically stable if it is uniformly stable and uniformly globally 

attractive. 
(g) UnstabZe if there exist 6 > 0 and t, E I such that for any 6 > 0 one can find ZQ, E fi, 

0 < u0 < Se and t > t, so that the inequality u-( t; t,, uO) k me should hold (We shall note that 

the symbol K is not equivalent to the symbol >, and means that there exists j E { 1, 2,. _ . , m } 

such that u;( t; t,, uo) > c). 

Definition 7. The solutions of system (2) are called: 
(a) Equi-bounded if for any t, E I and (Y > 0 there exists a positive function p = p( t,, a) 

which is continuous in t, for any I_X > 0 and is such that if 0 < u0 < (ye and t E 9 ‘(t,, u,,), then 

u+(t; t,, uO> < Be. 
(b) Uniformly b ounded if the function ,8 from (a) does not depend on t,. 

(c) Ultimately bounded for bound N if there exists a positive number N > 0 and for any t, E I 

and (Y > 0 there exists a positive number T = T( t,, a) such that if 0 < u0 < (ye, then t,+ T E 
.Ft(tO, uO) and u+(t; t,, uO) < Ne for t >, t, + T, t EY+(tO, uO)_ 

(d) Uniformly ultimately bounded for bound N if the number T from (c) does not depend on 

t0. 

In the further considerations we shall use piecewise continuous auxiliary functions which are 
an analogue of the classical Lyapunov’s function [lo]. 

Definition 8. We shall say that the vector-valued function I/: I X R” + R”, V= (V,, _. . , V,) 

belongs to the class V. if it satisfies the following conditions: 
(i) The function V is continuous in each of the sets 

G,={(t,x)~IXlR”:t,_,<t<t~}, i=l,2 ,..., to=0 

and I’( t, 0) = 0 for t E I. 

(ii) Th f ct’ e un ion V is locally Lipschitz continuous on x in each of the sets Gi. 
(iii) For each x0 E R” and for any i = 1, 2,. . . there exist the finite limits 

V(t, - 0, x0) = lim lim 
(r,x)-(t,.xo) 

IQ 4; v(ti + 0, x0) = 
(t.x)*(r,J,) 

I% 4 

(l.X)EG, (Z,X)EG,+, 

and the following equality holds 

V(ti - 0, x0) = V(&, x0). 

Let V E Y$. For (t, x) E UPO, ,G, we define the function 

I$,(t, x)= limsup h-‘[V(t+h, x+hf(t, x))- V(t, x)]. 
h-+0+ 

It is immediately verified that if x(t) is any solution of system (l), then I$,( t, x(t)) = 
Dt V( t, x(t)), t # ti, where D+ V( t, x(t)) is the upper right Dini derivative of the function 

V(t, x(t)>. 
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Further on we shall denote by X the class of all continuous and strictly increasing functions 
a: I + I such that a(O) = 0. 

3. Main results 

In the proof of the main theorems we shall use the following lemmas: 

Lemma 1 [lo, Lemma 21. Let the following conditions be fulfilled: 

(i) The function F : I X A2 -+ R m is continuous and quasi-monotonely increasing in I X 9. 
(ii) The functions B, : s2 + R m, i = 1, 2:. . . , are such that the functions #,(u) = u + Bj( u) are 

monotonely increasing in a. 
(iii) The function u+ : (t,, w) + R M is the maximal solution of system (2) for which u+( t, + 0) 
uO, (t,, q,) E I x L’ and u’( t, + 0) E D if t, E (t,, w). 
(iv) The function w : ( t,, S) + s2 (6 G o) is piecewise continuous with points of discontinuity of 

first type { t; } at which it it left continuous and such that 

w(t,+O)Eti ift,E(t,, G), 

w( t, + 0) =S ug 

Dw(t) < F(t, w(t)) fort E (to, G), t f t,, 

where Dw( t) is any of the Dini derivatives of the function w(t), 

w(t; + 0) 6 $,( w(t,)) ift; E (to, 4. 

Then w(t) G u’(t) for t E (to, 6). 

Lemma 2 [IO, Lemma 31. Let the following conditions be fulfilled: 
(i) C on I Ion (i) and (ii) of Lemma 1 hold. d’t’ s 

(ii) The function u- : (t,, w) -+ R m is the minimal solution of system (2) for which u-( t, + 0) = 

uo, (t,, uO) E I x fi and u-( t, + 0) E &I if ti E (to, o). 
(iii) The function w : (t,, 3) + L? (~2 < o) is piecewise continuous with points of discontinuity of 

firsttype {ti} t h‘h’ a w K It is left continuous and such that 

w(t,+O)EG ift;E(t,, G) 

w(t,+O)>uu, 

Dw(t) >, F(t, w(t)) for t E (to, G), t Z ti 

w(t,+O> >$,(w(t,)) fortiE (to, 6). 

Then w(t) > u-(t) for t E (to, G). 

Lemma 3. Let the following conditions be fulfilled: 
(i) Conditions (i), (ii) and (iii) of Lemma 1 hold. 

(ii) Thefunctions k:I+(O, 00) andw:(t,, G)+Rm (3 4 w) are piecewise continuous with 

points of discontinuity { t,} at which they are left continuous and are such that k(t) w( t) E 52 for 
tE(t,, S) andk(t,+O)w(t,+O)EQ ift;E(t,, G). 
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(iii) The following inequalities hold 

k(t,+O)w(t,+O)<u,, 

Dk(t)w(t) O’(t, k(t)w(t)) 

for t E (to, G), t + t,. 

k(ti+O)W(t,+O) <$;(k(ti)w(ti)) iftiE (to, ‘)* 

Then k(t)w(t) <u’(t) for t E(t,, G>. 

The proof of Lemma 3 is analogous to the proof of Lemma 1. Lemma 3.2 from [12] is used. 

Theorem 1. Let the following conditions be fulfilled: 

(i) Conditions (A), (B) and (C) hold. 
(ii) There exists a function V: I x R” --+ R”, V E Y0 and 

sup II v(t, x>II <KG 00, fJ={(uERrn:~(zlJ~ <K}. 

IXR" 

(iii) There exists a function F: I X a -+ R” which is continuous and quasi-monotonely increasing 
in IXfi andF(t,O)=O fortEI. 

(iv) There exist functions B, : ii + IL!“, i = 1, 2,. . . such that the functions q,(u) = u + B,(u) 

are monotonely increasing in D and B,(O) = 0. 
(v) The following inequalities hold: 

(4 a( II g(t, x) II) e< V(t, x)<y(t)b()Ig(t, x)Il)e for (t, x)EIXR” where a, bEX 

and the function y(t) 3 1 is defined and continuous for t E I. 

(b) qlj(t, x) G F( t, V( t, x)) for (t, x) E UzIGI. 
(c) V(ti+O, x+Ii(x))<$,(V(ti, x)) forxER”, i=l,2,.... 

Then : 

(A) If the zero solution of system (2) is stable, then the zero solution of system (1) is stable with 
respect to the function g( t, x). 

(B) If the zero solution of system (2) is globally equi-attractive, then the zero solution of system 
(1) is globally equi-attractive with respect to the function g( t, x). 

Proof. (A) Let t, E I and E > 0 (a(r) < K) be given. From the stability of the zero solution of 
system (2) it follows that there exists a positive function 6* = 6*( t,, E) which is continuous in to 

for any 6 > 0 and such that if 0 < u0 < S*e and t E.Y+( t,, zq,), then u+( t; t,, uo) < a( e)e. Then 
from condition (C) it follows that Y’( t,, uo) = (t,, 00). 

Set 

8 = 8(t,, E) = b-*(6*(t,, e)/&)). 

Let x0 E Mt,(n - k)(6). This shows that y( t,)b( )I g(t,, x0) II) G 6*. Then from condition (a) 
of Theorem 1 we obtain 

v(t, + 0, x0> G ~(h)b( II g(b, x0> Il>e G a*e. 

Hence u+(t; t,, V( t, + 0, x0)) < a(e)e for t > to. 
On the other hand, if x(t) = x( t; t,, x0) is a solution of system (l), then from the conditions 

of Theorem 1 it follows that the function w(t) = V( t, x(t)) satisfies the conditions of Lemma 1. 
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Hence V(t, x(t)) G u+ (t; t,, I’( t, + 0, x0)) for t ~9 ‘(t,, x0). Then, in view of (a), we obtain 
the inequalities 

U( 11 g(t, x(t)) II)e G V(t, x(t)) < u+(t; t0, Vt0 + 0, X0>> < aCEje 
for t EY ‘(to, x0). Hence (( g( t, x(t)) (( < < for t > t,. 

(B) Let to E I, a > 0, c > 0 (a(~) < K, a < b-‘( K/y(t,))). Set (Y* = y(t,)b(a). From the 
equi-attraction of the zero solution of system (2) it follows that there exists a positive number 
T= T(t,, a, E) such that if 0~ u0 < a*e, then to + T~x+(t,, uo) and u+(t; to, uo) < a(e)e 

for t a t, + T, t EY’(t,,, u,,). Hence P(to, uo) = (t,, co). 

Let x0 E M,“( n - k)(G). This means that y( t,)b( I] g( t,, x0) 11) d a*. Then from (a) it follows 
that V(to + 0, x0) 4 y(t,)b( 11 g(t,, x0) Il)e d a*e. Hence u+(t; to, V(to + 0, x0)) < a(e)e for 
tat,+ T. 

Moreover, if x(t) = x(t; t,, x0) is a solution of system (l), then from Lemma 1 it follows that 

V(t, x(t)) < u+(t; t,, V( to + 0, x0)) for t > t,. Then, in view of condition (a) of Theorem 1, we 
obtain the inequalities 

u( ]I g(t, x(t)) Il)e< v(t, x(t)) =G u+(t; to, v(4) + 0, x0)> <a(c)e 

for t > t, + T. Hence (1 g( t, x(t)) I( < c for t z to + T. 
This completes the proof of Theorem 1. 0 

Remark 3. It is known that the function VE V0 is positively definite if there exists a function 
UEX such that u(j]xll)~ V(t, x) for (t, x)EIXR”. If I’( t, x) is positively definite, the 
inequality V( t, x) G y( t)b( II x II), b ES?, holds as well. Hence in the case when g( t, x) = x, 

condition (a) of Theorem 1 is equivalent to the condition I’( t, x) to be positively definite. We 
shall note that in the general case we consider the inequality a( I] g(t, x) I] < V(t, x) does not 
imply condition (a) [12]. 

Corollary 1. Let the following conditions be fulfilled: 
(i) Conditions (A) and (B) hold. 

(ii) There exists a function V: I X R” + IR, V’E Yo, functionsa, b, c E.Yundfunctionsh(t) >,O 

and y(t) > 1 defined and continuous for t E I for which the following relations hold: 

(4 u( II g(t, x) II> d Vt, x> < y(t)b( II g(t, x> II for (t, x) E IX R”, 
(b) $)(t, x) G -h(t)4 II g(t, x) II) for x E R”, t # ti, 
(c) V(t, + 0, x + I,(x)) d V(ti, x), i= 1, 2 ,..., x E R”, 

(d) l,“WcWIW’~WN ds = 00 or any sufficiently small 7j > 0. f 
Then the zero solution of system (1) is globally equi-asymptotically stable with respect to g( t, x). 

Proof. Consider the scalar equation 

g = -h(t)c[b-‘[--&)I 

without impulses (i.e. Bi(x) = 0). 
From condition (d) it follows that the zero solution of this equation is globally equi-asymptoti- 

tally stable. 
Then from Theorem 1 it follows that the zero solution of system (1) is globally equi-asymptoti- 

tally stable with respect to the function g(t, x). 
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Theorem 2. Let the following conditions be fulfilled: 
(i) Conditions (i)-(iv) of Theorem 1 hold. 

(ii) The inequalities that follow are satisfied: 

(4 a( II g(t, x) II) e < V(t, x) < b( 11 g(t, x) Il)e for (t, x) E IX R”, a, b EZ. 

(b) ql,(t, x) G F(t, V(t, x)) for (t, x) E WIGi 
(c) V(t,+O, x+I,(x))<$,(V(t,, x)), xER”, i=l,2 ,... . 

Then : 

(A) If the zero solution of system (2) is uniformly stable, then the zero solution of system (1) is 
uniformly stable with respect to the function g( t, x). 

(B) If the zero solution of system (2) is uniformly globally attractive, then the zero solution of 
system (1) is uniformly globally attractive with respect to the function g( t, x). 

The proof of Theorem 2 is analogous to the proof of Theorem 1. It suffices to note that in this 
case we can choose the function 6* (hence the function 6 as well) and the number T 

independent of t,. 

Theorem 3. Let the conditions of Theorem 1 hold and let a( r ) + 00 for r -+ 00. Then: 
(A) If the solutions of system (2) are equi-bounded, then the solutions of system (1) are 

equi-bounded with respect to the function g( t, x). 
(B) If the solutions of system (2) are ultimately bounded for bound N, then the solutions of system 

(1) are ultimately bounded for bound a-‘(N) with respect to the function g( t, x). 

Proof. (A) Let t, E I and a: > 0 ( CY < bb’( K/y(t,))) be given. Set (Y* = y(t,)b( a). Then from 
the condition a(r) + 00 for r -+ 00 it follows that (Y + 00 for (Y* + co. 

From the equi-boundedness of the solutions of system (2) it follows that there exists a positive 
function pi = &( t,, a) which is continuous in t, for any (Y > 0 and is such that if 0 < u,, < a*e 
and t E.f+(t,, I+), then u+(t; t,, uO) < &e. Hence Yf(to, uo) = (to, co). 

Set P = P(to, a) = a-‘(Pl(to, a)). 
Let x0 E M,,(n - k)(Z). Then y( ta)b( 1) g( t,, x0) II) G (Y* and since V( t, + 0, x0) < 

y( t,)b( II g( t,, x0) jl)e, then V( t, + 0, x0) < a*e. Hence u+( t; t,, V( t, + 0, x0)) < &e for t > to. 

On the other hand, from Lemma 1 it follows that if x(t) = x( t; t,, x0) is a solution of system 
(l), then V(t, x(t)) < u+(t; t,, V(to + 0, x0)) for t > t,. Hence, in view of condition (a), we 
obtain the inequalities a( 11 g( t, x(t)) Il)e G V( t, x(t)) 6 u+( t; t,, V( t, + 0, x,,)) < &e for t > t,, 

whence it follows that 11 g( t, x(t)) II < a-‘( &) = p for t > t,. 

(B) Let t, E I and (Y > 0 (CY < bbl(K/y( to))). Set (Y* = y(t,)b(a). 
From the ultimate boundedness of the solutions of system (2) it follows that there exist 

positive numbers N and T = T(t,, a) such that if 0 d u0 d a*e and t 2 t, + T, then 
u+(t; t,, uO) < Ne. 

Let x0 E Mt,(n - k)(Z). Then y(t,)b( )I g(to, x0> 11) G a*. In view of condition (a) we obtain 
V(to + 0, x0) G a*e. Hence u+( t; to, V( to + 0, x0)) < Ne for t a to + T. 

Let x(t) = x(t; to, x0) be a solution of system (1). From Lemma 1 we obtain that for t > to 

the inequality V( t, x(t)) =s u+(t; to, V(to + 0, x0)) holds. Hence 

a( II dt, x(t)) Il>e< v(t, x(t)) G u+(t; to, v(t, + 0, XC,)) <Ne 
for t z to + T, whence it follows that (I g( t, x(t)) II < a-‘(N) for t 2 to + T. 

Theorem 3 is proved. 0 



314 G.K. Kulev, D.D. Bainoo / Method of Lyapunov 

Theorem 4. Let the conditions of Theorem 2 hold and let a(r) + 00 for r + 00. Then: 
(A) If the solutions of system (2) are uniformly bounded, then the solutions of system (1) are 

uniformly bounded with respect to the function g( t, x). 
(B) If the solutions of system (2) are uniformly ultimately bounded for bound N, then the 

solutions of system (1) are uniformly ultimately bounded for bound a-‘(N) with respect to the 
function g( t, x). 

The proof of Theorem 4 is analogous to the proof of Theorem 3. In this case the function /? 
and the number T can be chosen independent of t,. 

Theorem 5. Let the following conditions be fulfilled: 
(i) Conditions (i), (ii), (iii) and (iv) of Theorem 1 hold. 

(ii) There exists a positive function k : I -+ (0, 00) which is piecewise continuous with points of 

discontinuity of first type ( ti} at which it is left continuous, k(t) += 00 for t + 00 and k( ti + 0) > 0 
for i= 1, 2,... 

(iii) The following inequalities hold: 

(4 a( II g(t, x) II) e G v(t, x) G y(t)b( II g(t, x) II>e 

for (t, x) E I X IR”, a, b EX and the function y(t) > 1 is defined and continuous for 

t E I. 

(b) D+x(t>V(t, x) O’(t, k(t)F’(t, x)) 

for t # t, where 

D+k(t)V(t, x) = 1 imsuph-‘[k(t+h)V(t+h, x+hf(t, x))-k(t)V(t, x)] 

(C) k(t, + O)V(t, + 0, x”;1:(x)) < $;(k(t,)V(ti> x)), i=l,2,... . 

Then, if the zero solution of system (2) is stable, then the zero solution of system (1) is globally 

equi-asymptotically stable with respect to the function g( t, x). 

Proof. Let h = inf t > ok( t). From condition (ii) of Theorem 5 it follows that A > 0. 
Let t, E I and 6 > 0 (a( E) < K). From the stability of the zero solution of system (2) it follows 

that there exists a positive function S* = 6 *(to, 6) which is continuous in t, for any 6 > 0 and is 

such that if 0 < u0 < 6*e and t > t,, then u+( t; t,, uO) < Xa( e)e. Set 

6 = a(&,, c> = b-i(S*(t,,, &‘&,)%)). 

Then, if x0 E Mz,(n - k)(6), then k(t,)y(t,)b( 11 g(to, x0) 11) < 6*, whence, in view of condi- 
tion (a) we obtain 

k(t,)v(t, + 0, x0> G k(&_,)v(k,)b( II g(k, x0> Il>e < 6*e. 

Hence u+(t; t,, k(t,)V(t, + 0, x,,)) < ha(e)e for t > t,. 
Let x(t) = x( t; t,, x0) be a solution of system (1). From Lemma 3 it follows that the 

inequality k( t)V( t, x(t)) < u+( t; t,, k( to)V( t, + 0, x0)) holds for all t > t,. 

Then for t > t, the following inequalities hold 
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x4 II g(t, x(t)> II> e =s k(t)V(t, x(t)) 

4U +(c to, k(t,)J+, + 0, x0)) -Q4+ 
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whence it follows that 11 g(t, x(t)) 11 < E for t > to, i.e. the zero solution of system (1) is stable. 
We shall prove that the zero solution of system (1) is globally equi-attractive. 
Let to E I, 17 > 0. From the stability of the zero solution of system (2) it follows that there 

exists a positive function 6 * = S *(to, 77) which is continuous in to for any n > 0 and is such that 
if 0 d u. G 6*e and t > to, then uf( t; to, uo) < ve. 

Let to E I, (Y > 0 and E > 0 be given. Choose the number 77 > 0 so that the following equality 
should hold: 

a = b-‘@*(4), ?l)/Wo)Y(to)). 

Then, if x0 E M,,(n -k)(G), then k(t,)y(t,)b( 11 g(t,, x0) 11) G 6*. On the other hand, from 
condition (a) of Theorem 5 we obtain 

k(to)~(to + 0, x0) G k(to)Y(to)b( II ho, x0> Il)e, 
i.e. k(t,)V( to + 0, x0) d 6”e. Hence u’( t; to, k( to)V( to + 0, x0)) < qe for t > to. 

Let x(t) = x(t; to, x0) be a solution of system (1). Applying Lemma 3, we obtain that for 
t > to the inequality k(t)V( t, x(t)) d u+(t; to, k( to)V( to + 0, x0)) holds. Then, from inequality 
(a) we obtain 

k(t)a( II g(t, x(t)) II>e d k(t)V(t, x(t)) G u+(t; to, k(t,)V(t, + 0, x0)) < ge 

for t > to, whence it follows that 

II sk x(4) II -Q-WW). 
Since k(t) + 00 for t + 00, then aP1(n/k( t)) + 0 for t + co, hence there exists a positive 

number T* = T*(to, a, c), such that if t a T*( to, (Y, c), then II g( t, x(t)) II < E. 
Let T= T(t,, a, E) = T*( to, (Y, e) - to. Then for t > to + T the inequality II g( t, x(t)) II < 6 

holds, i.e. the zero solution of system (1) is globally equi-attractive. Theorem 5 is proved. 0 

Theorem 6. Let the conditions of Theorem 5 be fulfilled and let a(r) + 00 for r 4 00. 
Then, if the solutions of system (2) are equi-bounded, then the solutions of system (1) are 

equi-bounded and ultimately bounded with respect to the function g( t, x). 

Proof. Let X = inf, r ok( t). Then X > 0. 
Let to E I and LY > 0. Set cx* = k( to) y( to) b( a). From the condition a(r) + co for r + 00 it 

follows that (Y + cc for (Y* + co. 
From the equi-boundedness of the solutions of system (2) it follows that there exists a positive 

function & = ,8r( to, a) which is continuous in to for any (Y > 0 and is such that if 0 G u. 4 a*e 
and t > to, then u+(t; to, uo) < h&e. 

Set P = P(to, 4 = a-l(Pl(to, 4). 
Let x0 E MJn - k)(Z). This means that 

k(to)y(to)b( II dto, x0> II) G a* 
and since k( to)V( to + 0, x0) G k( to)y( t,)b( II g( to, x0) /)e, then k( to)V( to + 0, x0) G o*e. 
Hence u+( t; to, k( to)V( to + 0, x0)) < h&e for t > to. 
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On the other hand, if x(t) = x( t; t,, x0) is a solution of system (l), then from Lemma 3 it 
follows that for t > t, the inequality k(t)V(t, x(t)) d u+(t; t,, k( to)V( t, + 0, x0)) holds. 

Hence the inequalities 

W II gk x(t)) II> e < k(t)V(t, x(t)) < U+ (t; to, k(to)V(to + 0, x0)) <X&e 
are satisfied for any t > to, whence it follows that 11 g( t, x(t)) 11 < a-‘( &) = p for t > t,, i.e. the 
solutions of system (1) are equi-bounded with respect to the function g( t, x). 

Nowlet t,EIanda>Obegivenandlet (Y*= k( to)y( t,)b( a). Choose the positive function 
p * = /I*( to, a) so that if 0 < u. < a*e and t > to, then u+( t; to, uo) < P*e. 

Let x0 E A4,J n - k)(Z). This means that 

Wo)y(to)b( II b+m x0> II> 6 ff* 

and since 4to)Vto + 0, x0) G Wto)y(to)W II &to, x0) ll)e, then k( to)V(to + 0, x0) < a*e. 
Hence u+(t; to, k( to)V( to + 0, x0)) < p *e for t > to. 

Moreover, if x(t) = x( t; to, x0) is a solution of system (l), then from Lemma 3 it follows that 
the inequality k( t)V( t, x(t)) G u+( t; to, k( to)V( to + 0, x0)) holds for t > to. 

Hence 

k(t)a( II g(t, x(t)> ll>e < k(t)V(t, x(t)) < u+(t; to, k(t,)V(t, + 0, x0)) < P*e 
for t > to, whence it follows that 

II sk x0>> II < oP*/w). 
From the condition k(t) + 00 for t + co it follows that a-‘( /3 */k( t)) + 0 for t + co. Hence, 

if N > 0 is given, then there exists a positive number T * = T * ( to, a) such that for t > T * ( to, a) 
the inequality (I g( t, x(t)) II < N should hold. Then, if we set T = T( to, a) = T*( to, a) - to, we 
obtain that for t >, to + T we have II g(t, x(t)) II < N, i.e. the solutions of system (1) are 
ultimately bounded with respect to the function g(t, x). 

Theorem 6 is proved. 0 

Theorem 7. Let the following conditions be fulfilled: 
(i) Conditions (i), (ii), (iii) and (iv) of Theorem 1 hold. 

(ii) For any 6 > 0 and to E I there exists x0 E A&( n - k)( 8) such that V( to, x0) > 0. 
(iii) The following inequalities hold: 

(a) V(t, x) d 4 II g(t, x) ll)efor (t, x) EIX R”, a Ey, 
(b) “‘(r,(t, X) > F( t, V( t, X)) for X E R”, t # tiy 

(c) V( ti + 0, x + I,(x)) >, #j(V(ti, x)), i = 1, 2,. . . . 
Then, if the zero solution of system (2) is unstable, then the zero solution of system (1) is unstable 

with respect to the function g( t, x). 

Proof. From the unstability of the zero solution of system (2) it follows that there exist e* > 0 
andto~Isuchthatforany6*>Othereexistuo~52:O~uo~6*eandt*~to,t*~~f(t~, u,), 
for which the inequality U-( t *; to, uo) K e*e holds. 

Choose the number E > 0 so that a( 6) < e *. 
(i) Let to # ti, i = 1, 2,. . . and let 6 > 0 be given. From condition (ii) of Theorem 7 it follows 

that we can choose x0 E M(,(n - k)(6) such that V( to, x0) > 0. Let 6* > 0 be chosen so that 
0 <6*e< V(to, x0). Then there exist uo, 0 < u. < 6*e and t * > to, t * EY+( to, uo) such that 

u-(t*; to, uo) Kt*e. (3) 
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Let x(t) = x(t; t,, x0) be a solution of system (1). From Lemma 2 it follows that for 
t E .Y ‘(t,, x,)fV ‘(t,, uO) the following inequality holds 

v(t, x(t)) >, u-(t; t,, u(j). (4) 

Assume that for any t E .Y’( t,, x0) we have 

II g(t, x(t)) II < E. (5) 

Then from condition (B) we obtain that X+(to, x0) = (t,, 00). Applying condition (a) of 
Theorem 7, (4) and (5), we obtain 

c*e>a(c)e>a(IIg(t*, x(t*))jl)e>V(t*, x(t*))>u-(t*; to, uo) 

which contradicts (3). 
Hence )I g(t, x(t)) 11 k 6 for some t E.Ya+(to, x0). 

(ii) Let t, = ti for some i E N. We shall prove that in this case for any 6 > 0 there exists 
x0 E MJ n - k)( 6) such that V( t, + 0, x0) > 0. 

Suppose that this is not true, i.e. that there exists 6 > 0 such that for any x0 E M,“( n - k)( 6) 
and for some s E { 1, 2,. . . , m} the following inequality holds 

V,( t, + 0, xl-J> < 0. (6) 

From the continuity of the function g( t,, x) for x = 0 and condition (A5) it follows that there 
exists a number 6, (0 < 6, < S) such that if I] x + I,(x) I] < 6,, then 

II &I7 x + 4(x)) II < 6. (7) 
On the other hand, from the continuity of the function I,(x) for x = 0 and condition (A5) it 

follows that there exists a number S, (0 < 6, < S,) such that if x E MJ n - k)(6,), then the 
following inequality holds 

Ilx+li(x) II <61. (8) 
Let x0 E M,& n - k)( S,) be such that V(to, x0) > 0. Then, in view of (8), (7) and (6) and 

condition (c) of Theorem 7, we obtain the contradiction 

0 2 v,(t, + 0, x0 + MG)) 2 +i&+,, x0)) ’ 0. 

Further on we can carry out the proof as for item (i) with the only difference that we choose 
the number 6 * so that the inequality 0 < 6 *e G V( t, + 0, x0) should hold. 

This completes the proof of Theorem 7. 0 

4. Examples 

Example 1. Consider the scalar equation with impulse effect at fixed moments 

i 

dx 
- = [sinlog(t + 1) + coslog(t + 1) - (Y]x, 

A:]~-‘& 

t # t,, 

i= 1, 2,..., 

where - 1 < p < 0. 
We shall make use of the function 

V( t, x) = x2 exp[2( t + l)( (Y - sinlog( t + 1))] . 

(9) 
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Ifa > 1, then V(t, x) is positively definite. Moreover, I&( t, x) = 0, t # ti and V( tj + 0, x + 

/3x) = (1 + p)2v(ti, x) < qt;, x). 
The zero solution of the equation 

du/dt=O, tf ti, 

Au I I=t, = 0 
00) 

is stable. Then from Theorem 1 it follows that the zero solution of system (9) is stable with 
respect to the function g( t, x) = x. 

The conditions of Theorem 5 are satisfied as well. Hence the zero solution of equation (9) is 
globally equi-asymptotically stable with respect to the function g( t, x) = x. 

Example 2. Consider the system 

i 

dx/dt = e-lx +Y sin t - (x3 + xy’) sin2t, t f t, 

dY/dt = x sin t + e-’ y - (x2y +y3) sin*t, t # ti 

Ax) <ct, = ax + by, Ay I t=l, = bx + ay, 

where 

.=;(,/G+/+,-21, b=;(/K-jl)c, 

-l<c,<O, -l<c,<O. 

Consider the comparison system 

I 

du/dt = (e-l + sin t)u, t f ti 

du/dt = (eFf - sin t)u, t Z t,, 

Au I 1=f, = clu, Au I t=t, = c2v. 

We shall make use of the vector-valued function 

v(t, x, y) = ((x +L'122 b -YJ2jT 

Straightforward calculations show that 

i(x l tY)' forxy>O, 

:a$$(‘3 x, Y) = 
i 

(x-y)’ forxy<O, 

X2 for y=O, 

forx=O. 

01) 

(12) 

(13) 

Hence I’( t, x, y) is positively definite and I’( t, x, y) -+ 0 for x2 + y2 + 0 uniformly on t E I. 

Moreover, the inequality 

q&t, x3 Y> G 
i 

e 
P.-r + sin t 0 

0 e -t - sin t 1 
v(t, x3 Y> 
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holds for t # t;. We have 

V( ti + 0, x + ax + by, Y + bx + OY) 

Hence the conditions of Theorem 2 are satisfied and since the zero solution of system (12) is 
uniformly stable, then the zero solution of system (11) is uniformly stable with respect to the 
function g( t, x, y) = /w. 

Moreover, the conditions of Theorem 4 are satisfied and since the solutions of system (12) are 
uniformly bounded, then the solutions of system (11) are uniformly bounded with respect to the 
function g( t, x, y) = dX2+L.2 

Example 3. Consider the system 

( 

dx/dt=x(2+Y) sin t, t#ti, 

dy/dt = (2ax +Y) sin t, t # ti, 

Ax 1 t=f, = - ix, Ay I f=f, = (l/6 - 1)~. 

Let g( t, x, y) = y* - 4ax and V( t, x, y) = g2 = (y2 - 4a~)~ 
We shall make use of the comparison equation 

i 

du/dt = 4u sin t, t # t,, 

Au] *xt, = - $u. 
(15) 

Straightforward calculations yield 

Tj14)(tr x, y) =4V(t, x, y) sin t for t# tj 

and 

qt, + 0, x - 4x, y + (l/\/2 - 1)y) = +V(ti, x, y) 

= V(ti, x> Y> - 3V(ti> x> Y)* 

Moreover, the zero solution of equation (15) is stable. Applying Theorem l(A), we obtain that 
the zero solution of system (14) is stable with respect to the function g( t, x, Y) = Y2 - 4c~x. 

The solutions of equation (15) are equi-bounded. Then by Theorem 3(A) the solutions of 
system (14) are equi-bounded with respect to the function g( t, x, y) = y* - 4ax. 

Example 4. Consider the system 

dx/dt = -2x[ Y2 - (2 + sin t)x12 - 2xlzltt, t + t,, 

i 

dy/dt = -Y[Y2 - (2 + sin t)x]‘, t # ti, 

Ax 1 f=f, = -:x, Ay ) t=I, = (l/o - 1)~. 

Let g( t, x, y) =y2 - (2 + sin t)x and V(t, x, y) = g2. 

06) 
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Consider the equation 

du/dt = -4u2 for t + t,, 

Au If=*, = - &A. 

Straightforward calculations show that 

J&(t, x, y) = -4V’(t, x, y) for t f ti 

and 

Y(t,+O, x-ix, y+(l/fi-l)y)= v(t,, x, y)-$v(t,, x, y). 

Moreover, the zero solution of equation (17) is uniformly globally asymptotically stable. 
Applying theorem 2, we obtain that the zero solution of system (16) is uniformly globally 
asymptotically stable with respect to the function g. 

The solutions of equation (17) are uniformly bounded and uniformly ultimated bounded, 
Then from Theorem 4 it follows that the solutions of system (16) are uniformly bounded and 
uniformly ultimately bounded with respect to the function g. 

Example 5. Consider the scalar equation with impulses 

dx/dt = -h(t)x, t # ti, 

ax) t=f, = cix, 

where the function h(t) is positive and continuous for t E I, - 1 < ci < 0. 
If h(t) + 0 for t --, cc, and j,“h( t)d t = co, then the zero solution of system (18) is not 

uniformly globally asymptotically stable. 
But for the function V( t, x) = ix’ the conditions of Corollary 1 are satisfied. 
In fact, 

J&)(t, x) = -h(t)x2 for t f ti, 

V(ti + 0, x + CiX) = f(1 + ci)2X’ < :x2 = fqti, x). 

Hence the zero solution of system (18) is globally equi-asymptotically stable with respect to 
the function g( t, x) = x. 

This example shows that the conditions of Corollary 1 do not imply uniform global asymp- 
totic stability of the zero solution. 
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