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Abstract

Due to the sign problem, it is exponentially difficult to study QCD on the lattice at finite chemical potential. We propose
a method—an overlap improving multi-parameter reweighting technique—to alleviate this problem. We apply this method
and give the phase diagram of four-flavor QCD obtained on lattices 44 and 4 × 63. Our results are based on O(103–104)
configurations.

 2002 Published by Elsevier Science B.V.

1. Introduction

Quantum Chromodynamics (QCD) at finite tem-
perature (T ) and/or chemical potential (µ) is of funda-
mental importance, since it describes relevant features
of particle physics in the early universe, in neutron
stars and in heavy ion collisions. According to the
standard picture, as baryon density rises there is a
change from a state dominated by hadrons—protons
and neutrons—to a state dominated by partons—
quarks and gluons. In addition, recently a particularly
interesting, rich phase structure has been conjectured
for QCD at finite T and µ [1,2]. Of immediate inter-
est is the existence and the location of the critical point
in the T –µ plane in three-flavor QCD, since it can be
explored by heavy-ion experiments. Clearly, the tran-
sition from hadronic to partonic (or to superconduct-
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ing/superfluid) state is a fully non-perturbative phe-
nomenon.

Lattice gauge theory is a reliable systematic tech-
nique to study the non-perturbative features of QCD.
QCD at finite µ can be formulated on the lattice [3];
however, standard Monte Carlo techniques cannot be
used at µ �= 0. The reason is that for non-vanishing
real µ the functional measure—thus, the determinant
of the Euclidean Dirac operator—is complex. This fact
spoils any Monte Carlo technique based on importance
sampling.

Several suggestions were studied in detail to solve
the problem. We list a few of them.

In the large gauge coupling limit a monomer–dimer
algorithm was used [4]. For small gauge coupling an
attractive approach is the “Glasgow method” [5] in
which the partition function is expanded in powers
of exp(µ/T ) by using an ensemble of configurations
weighted by the µ = 0 action. After collecting more
than 20 million configurations only unphysical results
were obtained: a premature onset transition. The
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reason is that the µ = 0 ensemble does not overlap
sufficiently with the finite density states of interest.
Another possibility is to separate the absolute value
and the phase of the fermionic determinant and use
the former to generate configurations and the latter in
observables [6].

At imaginary µ the measure remains positive and
standard Monte Carlo techniques apply. The grand
canonical partition function can be obtained by a
Fourier transform [7,8]. In this technique the dominant
source of errors is the Fourier transform rather than
the poor overlap. One can also use the fact that the
partition function away from the transition line should
be an analytic function of µ, and the fit for imaginary
µ values could be analytically continued to real values
of µ [9]. At T sufficiently above the transition, both
real and imaginary µ can be studied by dimensionally
reducing QCD [10]. Hamiltonian formulation may
also help studying the problem [11]. One can study
adjoint matter and color superconductivity in two-
color QCD [12]. Nambu–Jona-Lasinio model was also
used as an effective theory for strong interactions
[13]. It has also been proposed to consider a µ

for isospin rather than for baryon number [8,14].
Another approach avoids the sign problem by using
cluster algorithms, in which negative against positive
contributions are cancelled [15].

We propose a method—an overlap improving multi-
parameter reweighting technique—to reduce the over-
lap problem of the Glasgow method and determine the
phase diagram in the T –µ plane. (Note, that a simi-
lar technique was successful for determining the phase
diagram of the hot electroweak plasma [16], e.g., on
four-dimensional lattices, for which the applicability
of a single-parameter reweighting was poor.)

We study the system (say four-dimensional QCD
with dynamical fermions) at Re(µ) = 0 around its
transition point. Using a Glasgow-type technique we
calculate the determinants for each configuration for a
set of µ, which, similarly to the Ferrenberg–Swendsen
method [17], can be used for reweighting. Using
the average plaquette values of the individual con-
figurations for these partition functions an additional
Ferrenberg–Swendsen [17] reweighting can be done
in the other parameter, thus in β , too. For Re(µ) �= 0
and/or Im(β) �= 0 significant cancellations of the com-
plex phases appear, but exactly this feature is used in
the determination of the zeros of the partition func-

tions (Z), when looking for the transition point. Simul-
taneously reweighting in the two parameters µ and β
we can keep the system on the transition line, which
can be controlled, e.g., by the inspection of the Lee–
Yang zeros [18] ofZ at complex β . (Note, that the idea
of performing a reweighting near the QCD critical line
was already suggested in [8].) This technique gives a
good overlap with the original transition-like states. In
principle any other parameter can be used for this type
of reweighting.

We test this method and illustrate its success
compared to the Glasgow method. We present the
exploratory results for the µ–T phase diagram of the
dynamical nf = 4 staggered QCD. Simulations were
done on Lt = 4 lattices of 44 and 4 × 63. We estimate
the phase diagram in physical units using the ρ mass
(mρ) as the definition of the scale.

Due to the small lattices and large spacings our
estimate has systematic uncertainties, which can be
reduced by approaching the continuum limit. The
study of this limit is clearly not the goal of the present
Letter.

The Letter is organised as follows. Section 2
presents the overlap ensuring multi-parameter re-
weighting technique. Section 3 illustrates the applica-
bility of the technique using nf = 4 dynamical QCD
and gives the phase diagram in physical units. We con-
clude in Section 4.

2. Overlap improving multi-parameter
reweighting

Let us study a generic system of fermions ψ and
bosons φ, where the fermion Lagrange density is
ψ̄M(φ)ψ . Integrating over the Grassmann fields one
gets:

(1)Z(α)=
∫

Dφ exp
[ − Sbos(α,φ)

]
detM(φ,α),

where α denotes a set of parameters of the Lagrangian.
E.g., in the case of QCD with staggered quarks α
consists of β , the quark mass (mq ) and µ (which
is included as exp(µ) and exp(−µ) multiplicative
factors of the forward and backward timelike links,
respectively). For some choice of the parameters α =
α0 importance sampling can be carried out (e.g., for
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Re(µ)= 0). Rewriting Eq. (1) one obtains

Z(α)=
∫

Dφ exp
[ − Sbos(α0, φ)

]
detM(φ,α0)

(2)

×
{

exp
[ − Sbos(α,φ)+ Sbos(α0, φ)

]

× detM(φ,α)
detM(φ,α0)

}
.

Now we treat the terms in the curly bracket as an
observable—which is measured on each independent
configuration—and the rest as the measure. It is well
known that changing only one parameter of the set α0
the ensemble generated at α0 provides an accurate
value for some observables only for very high statis-
tics. This is ensured by important but rare fluctuations
as the mismatched measure occasionally sampled the
regions where the integrand is large. This is the so-
called overlap problem. Note however, that we have
several parameters and the set α can be adjusted to α0
to ensure much better overlap than obtained by vary-
ing only one, single parameter. Since the calculation of
the determinants is expensive the most straightforward
way to obtain a good overlap is to fix the parameters
of the matrix M and adjust the parameters which ap-
pear only in the bosonic action (in other words per-
form a Ferrenberg–Swendsen reweighting based on
the bosonic part of the curly bracket).

By simulating at a given set of bosonic cou-
plings and using Ferrenberg–Swendsen reweighting
we can get information on the system at other val-
ues of the couplings, even for complex ones. At fi-
nite volumes Z(α) has zeros—thus the free energy
singularities—for complex values of these couplings.
Standard finite size scaling techniques can be used to
analyse the volume dependence of the Lee–Yang ze-
ros. When looking for these zeros we use reweighting
for some bosonic couplings. Simultaneously chang-
ing two, or more, parameters we can ensure that the
system is reweighted along a transition line. This
can be monitored by inspecting the Lee–Yang zeros
of Z.

3. Illustration: nf = 4 dynamical QCD results

For the case of lattice QCD at nonvanishing µ the
above idea can be applied as follows. We will use

two parameter reweighting, namely reweighting in β
and µ. One performs the simulations at some β,m
and µ with Re(µ) = 0 (note that purely imaginary
µ can be directly simulated). For each independent
gauge configuration one calculates the average value
of the plaquettes and the ratio of the determinants
detM(µ′)/detM(µ; Re(µ) = 0). For each µ′ some
δβ can be used to reweight with the measured pla-
quette values. By this way a much better overlap can
be ensured than by reweighting only in µ (Glasgow
method).

We have tested these ideas in four-flavor QCD
with mq = 0.05 dynamical staggered quarks. The
molecular dynamics Monte Carlo code of the MILC
Collaboration was used [19]. We checked that the
determinants were calculated on independent configu-
rations. Our statistical errors were obtained by a jack-
knife analysis.

In order to directly check the applicability of our
method we first collected 1200 independent V = 4 ×
63 configurations at Re(µ)= Im(µ)= 0 and used the
Glasgow-reweighting and also our technique to study
Re(µ) = 0, Im(µ) �= 0. For our method we used the
transition β (5.040) to generate the configurations,
while for the Glasgow method β = 5.085 was used.
At Re(µ) = 0, Im(µ) �= 0 and at β = 5.085 direct
simulations are possible. After performing these direct
simulations as well, a clear comparison can be done.
Fig. 1 shows the predictions of the three methods for

Fig. 1. The average of the quark condensates at β = 5.085 as a
function of Im(µ), for direct simulations (squares; their sizes give
the errors), our technique (crosses) and Glasgow-type reweighting
(dots).
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Fig. 2. The average of the Polyakov lines (squares) and quark condensates (triangles) as a function of β at Im(µ)= 0, Re(µ)= 0.3 (left panel).
Histogram of the plaquettes at β = 4.938 and µ= 0.3 (right panel). The lattice volume is 44.

the quark condensate. The prediction of our method is
in complete agreement with the direct results, whereas
the prediction of the Glasgow-method is by several
standard deviations off. Fig. 1 indicates that the two-
parameter reweighting is far more trustworthy than the
single parameter one. Note, that imaginary chemical
potential is a useful check on the proposed method,
though it is different from a real chemical potential
in biasing the ensemble towards non-zero baryon
density.

Based on these experiences we expect that our
method is superior also at Re(µ) �= 0.

Next we study the physical Re(µ) �= 0 case. In or-
der to have a better overlap and to check further the
applicability of our reweighting technique we carried
out simulations on 44 lattices at four different imag-
inary µ values Im(µ) = 0,0.1,0.2,0.3. The results
obtained by the different runs are in complete agree-
ment after reweighting. In the following we use our
largest sample generated at Im(µ)= 0. On this smaller
V we used 13 000 independent configurations. On the
4 × 63 lattice Im(µ)= 0 was used with 1200 indepen-
dent configurations. The runs were carried out at the
transition β values at Re(µ)= 0.

Let us illustrate that we are really at a transition
point for nonvanishing µ = 0.3. Fig. 2 shows the
reweighted Polyakov-line and chiral condensate as a
function of β . Furthermore, we check the correctness
of our Lee–Yang reweighting approach by showing the
structure of a histogram. As it can be seen the turning
point (indicating the coexistence of the two phases,
thus the transition) is at ≈ β = 4.94. At µ = 0.3

Table 1
Lee–Yang zeros obtained at different µ values

Re(µ) Re(β0) for V = 44 Re(β0) for V = 4 × 63

0.0 4.988(1) 5.040(2)
0.05 4.987(1) 5.038(2)
0.1 4.983(1) 5.033(2)
0.15 4.977(1) 5.023(2)
0.2 4.968(1) 5.009(2)
0.25 4.955(2) 4.993(3)
0.3 4.938(2) 4.975(3)
0.35 4.924(3) 4.965(4)
0.4 4.920(4) 4.959(4)

the histogram method predicts a equal-weight double-
peak structure at βc = 4.939(5), which is in complete
agreement wit the prediction of the Lee–Yang zero
technique (see later).

Table 1 gives the real parts of the Lee–Yang zeros.
Only zeros with the smallest imaginary parts are listed.
The real parts of these zeros are usually used as a
definition of the transition β at finite V . (Note, that the
V → ∞ limit of the imaginary parts tells the order of
the transition, cf. [18,20].) Based on V = 44 and 4×63

we estimated the V → ∞ limit by 1/V scaling. The
critical β in this limit is used to transform the results
to physical units.

It is of particular interest to determine the phase
diagram of QCD on the T –µ plane. Though the
lattices we used are absurdly small and the spacing
is quite large, it is illustrative to transform β , mq
and µ into physical units. Several parameters can be
chosen to fix the scale, they give quite different values
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Fig. 3. The phase diagram in the T –µ plane for nf = 4 QCD. The
physical scale is set by mρ . In physical units mq ≈ 25 MeV. The
last point (µ≈ 190 MeV) corresponds to our largest reweighted µ.

at our β couplings. In the present analysis we fixed
the scale by mρ = 770 MeV. For small β values,
studied by the present Letter, mρ can be obtained by
interpolating between the strong coupling regime [21]
and the early measurements [22]. Fig. 3 shows the
phase diagram in physical units. The errorbars indicate
the statistical uncertainties reached on our sample of
only O (103–104) configurations. Note, that Lt = 4
lattices with the above definition of the scale restrict T
to be larger than approximately 100 MeV (for clarity
we used this value at the origin).

4. Conclusions, outlook

We proposed a method—an overlap improving
multi-parameter reweighting technique—to numeri-
cally study non-zero µ and determine the phase dia-
gram in the T –µ plane. We applied this technique
for nf = 4 QCD with dynamical staggered quarks.
We showed that for Im(µ) �= 0 the predictions of
our method are in complete agreement with the di-
rect simulations, whereas the Glasgow method suffers
from the well-known overlap problem. Based on rather
small statistics we were able to determine the criti-
cal gauge couplings as a function of the real chemical
potential, which result was transformed into physical
units.

In this exploratory study we concentrated on the
transition line separating the two phases. Clearly,
the same technique can be applied to T –µ values

somewhat below or above the line, for which the
configurations should be collected at an appropriately
chosen β—below or above the transition one—and at
Re(µ)= 0.

Note, that the factor in curly braces in (2) is of
order exp[−V δ], with δ, of course, dependent on the
parameters α and α0 and the configuration φ. Making
δ small by a judicious choice of α0 seems to work
reasonably well at finite temperature. Nevertheless,
there are two apparent limitations of the method.
For large enough volumes the reweighting factor
will always be exponentially suppressed, and at zero
temperature δ is larger than at finite T , thus the
method most probably cannot be applied to locate the
transition at T = 0.

Our method can be easily applied to any number of
Wilson fermions, whereas for nf = 2 or nf = 2 + 1
staggered fermions the situation is more complicated
due to the ambiguity of the roots of the determinants
[20].

Note, that the present reweighting does not provide
a general solution to the sign problem in QCD, but
could be useful to locate the critical point of QCD,
for which we are interested in a relatively small µ and
high T region of the phase diagram and may get away
with relatively small volumes. Another application is
to determine the curvature of the phase diagram [23].
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