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Abstract 

At the neighbourhood of several drainage objects types in shallow aquifer like fully penetrated wells, partially penetrated wells, 
well with laterals, horizontal drainages etc. groundwater flow forms contain frequently 2D/3D singular behaviours (e.g. 
logarithmical or polar singularities), which require special attention by coarse grid simulations Groundwater reservoir modelling. 
The first objective of the paper is to test the accuracy of Finite Volume Methods with specific reference to one of the most used 
standard reservoir modelling software in groundwater modelling PMWIN/MODFLOW (i.e. Processing MODFLOW for Window), 
Chiang (2001). The numerical experiment will be accomplished mainly for fully penetrating well (W) and partially penetrating 
well (ppW) using various discretization size.  
It will be shown that the standard Well Index method (Peaceman 1983), currently used by coarse grid simulations, allows the local 
correction in well blocks only for hydraulic head (or pressure) in the wellbore obtained by coarse grid simulation for imposed 
global discharge/recharge rate of the well. In the paper an extension of the WI based method will be proposed which allows also 
the well discharge rate correction by coarse grid modelling for imposed hydraulic head (imposed pressure) in the well. The proposed 
method is proved with several numerical simulation examples for fully wells and ppWells. 
© 2016 The Authors. Published by Elsevier Ltd. 
Peer-review under responsibility of the organizing committee of WMCAUS 2016. 
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1. Introduction 

An optimal groundwater management requires reliable mathematical modelling approaches which take into 
account correctly all important physical aspects of the flow system.  

In this regard can be mentioned that for the planning of complex groundwater catchment plant (GWCP) is necessary 
to analyse several modelling scales [6,7]: a large extended spatial region (1st order modelling scale) which includes 
rivers, lakes, zonal inhomogeneity, natural groundwater recharge zones and the (GWCP) as a global effect; the 
neighbourhood region (2nd order modelling scale)  including the GWCP components in which the real flow conditions 
at the components like fully penetrating wells, partially penetrating wells, well with laterals, drains etc. have a great 
importance. The local flow condition at these components leads mathematically to singular behaviour (e.g. 2D 
logarithmical singularity). The same spatial scale problem appears by exploitation of petroleum resources [5]. 

Analytical or semi analytical methods allows the correctly modelling of such singular flow behaviours in near zone 
of drainage objects [10], [2], [9], [6], [7], 10] but these are generally applicable in limited cases like simplified 
geometry and boundary condition, homogeneous aquifer etc.  

The method of decoupled overlapping grid modelling [5] or the coupled analytical modelling for the neighbourhood 
region of drainage objects with the coarse grid simulations for the regional reservoir [6], [7], [8] are also alternatives 
to model correctly the local flow conditions at drainage objects. An important disadvantage of these methods is that 
these involve development and using specialized programs/software which are less common as the known coarse grid 
simulations programs like PMWIN/MODFLOW [11,12]. 

Another possibility for modelling can offer the FDM and FEM based numerical programs, using a highly refined 
mesh in the neighbourhood of drainage object [12]. It is to mention that these methods would significantly increase 
computational cost especially for 3D field-scale simulations with a large number of wells. The most attractive 
alternative to above described method represent the well-known well index (WI) method [3], [14] which is widely 
accepted as standard method for involving well blocks in coarse grid simulations. This method consists in performing 
the coarse grid reservoir simulation (e.g. PMWIN/MODFLOW) in which wellbore are modelled as point sours in well 
blocks followed by correction of the resulted hydraulic head in the well block.  

In the paper there will be shown that the above mentioned widely accepted standard WI-method [3] allows only 
the correction of steady-state well bore pressure (or hydraulic head) in well by imposed discharge/recharge rate of the 
well.  Consequently more frequently technical applications for which the well discharge is searched by given hydraulic 
head, the correction with the currant WI method described above not applicable. In the paper an extension of the 
standard WI method will be proposed which allows also the well discharge correction by imposed head (or pressure) 
in the well. The efficiently of the method will be confirm by means of several numerical tests for partially penetrating 
wells. 

2. Performing of error estimation by coarse grid simulation of wells  

For examination the reliability of FVM (e.g. PMWIN/MODFLOW) by modelling of extraction wells, a numerical 
experiment was performed for partially penetrating wells (pWell) located in a homogeneous confined aquifer (Fig.1). 
In the standard coarse grid reservoir simulation programs (e.g. PMWIN/MODFLOW) extraction/injection wellbore is 
modelled as point source placed in discretization blocks (well-blocks) which are crosses from the wellbore. The 
modelling errors occur because the real form of solution function between hydraulic head and the distance from well 
(e.g. logarithmic) is replaced with simplified relations (e.g. linear) currently used in the numerical methods. To 
perform the numerical experiment for error estimation several sizes of space discretisation are used ( x= y= =10m, 
5m, 2m and 1m and z= z). It was analysed two representative cases of the wellbore modelling: Case 1 when is 
searched the hydraulic head (hW) or drawdown (i.e. HW=hR-hW) in the well by given well discharge QW and Case 2: 
when is searched the well discharge QW by given drawdown or hydraulic head in the wellbore. In both cases the 
hydraulic head (hR) at the external boundary of the reservoir is given. 
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Fig.  1 Scheme of a partially penetrating well (ppW); notations and spatial discretization. 

The numerical estimation of the discharge (QWN) calculated numerical using MODFLOW, will be compared with 
the discharge (QWA) calculated by means of an analytical solution using the Muscat formula (1973): 

            
            (1) 

 
 
 
For fully penetration HP = H on obtain from (1) the well-known case of fully penetrating well. 
The values of function f (HP/H) used in (1) are given in Table 1. 
 
Table 1. Function values for Muskat formula. 

HP/H 0.05 0.1 0.20 0.30 0.40 0.50 0.60 0.80 1.0 
f(HP/H) 8.0 6.5 5.2 4.2 3.6 3.0 2.4 1.4 0.0 
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Results for drawdown errors by given well discharge for different grid size and well radius are presented in Fig. 2.  

 

Fig.  2. . Relative error (Eh %) of the Hydraulic Head Drawdown in a fully penetrated Well by given Discharge for parameter: R=100m, H=20m, 
S=2m, k=0,000278m/s 

In Fig.3 there are depicted the well discharge errors for ppW by given hydraulic head (drawdown) in well for 
different grid size and well radius. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.  3. Relative error (E Q %) of ppW - Discharge by given hydraulic head, calculated analytical (1) and numerical (PMWIN/MODLOW 
software) for different discretization size and ppW radius for Parameter: R=100m, H=20m, hR=24m; hW=22m, S=2m, k=0.000278m/s 
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The relative errors of the hydraulic head drawdown in well (E h%) and of the well discharge EQ% are defined as 
follow:     

                ;                   (2) 

 

where hRWN  and hRWA denote the drawdown in well calculated numeric indexed as (N) respectively analytic 
indexed as (A).  

One can see that spatial discretization size significantly influences the hydraulic head drawdown in wells for given 
well discharge (Fig. 2), error range about (-35%  +15%). The error range of the well discharge by given hydraulic 
head is even higher (Figure 3) about (-35 %  +135%). 

These numerical tests shown that standard coarse grid reservoir modelling software in groundwater modelling (e.g. 
PMWIN/MODFLOW) don’t be applied for solving wellbore problems, without local corrections in well blocks. In 
the next paragraph the WI correction method is presented including also its extension. 

3. Well-Block-Index based correction of well drawdown and its extension for well discharge correction  

The correction of the numerical results obtained using coarse grid simulation for hydraulic head (or drawdown) in 
the well by given discharge, can be made using the well-known Well-Index method (WI) introduced in [3] and widely 
accepted as standard method [14]. The basic relations for a well element of the length lW= z, situated in a well-block 
( , , z), Fig.1 are: 

 
 
 

  (3) 
 
 
 
hWA, hWN are hydraulic heads in wellbore (index A analytic respectively N numeric), WI is the so called Well Index 

resulting from water rate balance for the well-block, hWAN  is the hydraulic head or drawdown (S) correction (head 
difference between analytic-numeric) in well-block corresponding to an well discharge of QWN, rw is the wellbore 
radius and kf is the aquifer hydraulic conductivity. This relation allows only the correction of the numerical calculated 
hydraulic head (hWN) in the wellbore to obtain of the real hydraulic head (hW) or drawdown (S) in the well. It is to 
mentioned that for a fully penetrating well in (3) QWN will be substituted with the total well discharge QWN and z 
with the total thickness H of the aquifer (Fig.1)  

In Fig.4 there are represented comparatively the calculated drawdown in wellbore before correction and after WI 
correction for fully penetrating well. We can see a very god efficiency of the WI based correction: errors have 
decreased from 35% at values lower than 2%. 
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Fig.  4.  Relative error (E h %) of the Hydraulic Head/Drawdown in a fully penetrated Well by given Discharge,  
before and after Well Index based correction. 

The above presented WI correction only for hydraulic head is applicable. So it is logical to be named Well-Head-
Index (WHI).  

For technical application of wellbore modelling to solve groundwater or petroleum reservoir exploitation problems 
the correction in case 2 (e.g. correction of well discharge values obtained numerical by using coarse grid simulation 
for given hydraulic head in wellbore) is also very important because generally the well discharge distribution along 
the wellbore is beforehand unknown. Furthermore, on propose an extension of the available WHI method by 
introducing a new correction parameter which we name Well-Discharge-Index (WDI). 

To define the proposed WDI-method we observe that for the ppW element well-block (Fig.1) or generally for a 
drainage element object is valid the following analytical relation between the total drawdown (S=hR-hW) and discharge 

QWA in wellbore element: 
 

(4) 
 
As example for mathematical expression of the function FA we can see the case of ppW or fully well (formula (1)). 

On the other hand, between the imposed head in wellbore (hWNi) and the numerical obtained discharge ( QWN) exist a 
similar relation bot with another function FN, different from FA, which depends on the discretization size  used in 
coarse grid simulation: 

 
      (5) 

 
We note that QWN (numerical obtained value) is different from QWA (searched real discharge equal to analytical 

value) because it is depending from the discretization size . We observe that the same discharge QWN can be 
expressed formally as analytical solution i.e. using the function form FA instead of FN  when we take into account the 
supplementary head difference (Analytical-Numerical) in wellbore element (i.e. hWAN) as additional drawdown: 

 
     (6) 
 

The supplementary head difference in wellbore hWAN can be determine from (3-1) 
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For usually numerical modelling the imposed head in wellbore is equal to the given head in well i.e.  hWNi= hWA. 
Replacing hWNi in (6) with hWA and hWAN from (3-1) we obtain  

 
      (7) 
 

 
From the ratio of the two relationships (4) and (7) we obtain: 
 
 

        (8) 
 
 
That is the proposed correction coefficient for discharge which we name Well Discharge Index (WDI). We can 

see that WDI allows the correction of numerical calculated well discharge QWN from coarse grid simulation (e.g. 
PMWIN/MODFLOW) obtaining the corrected discharge QWA. By adding the wellbore elements, we can be obtaining 
the corrected total well discharge QWA. The proposed method was tested for a ppW using the following parameter: 
R=100m, H=20m, S=2m, k=0.000278m/s, rw=0.25m, rw=0.5m, hR=24m.  

Some test results are presented in Fig. 5. On can see a very god efficiency of the proposed WDI correction: 
discharge errors have decreased from 135% at values of few %. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.  Comparative errors of the total discharge (EQ %) for a ppW calculated before and after correction using the proposed method. 
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4. Conclusion 

In the paper on analyse the reliability of coarse grid based simulation in neighbourhood of wellbore means several 
numerical experiments performed for partially penetrating wells and particularly fully penetrating wells. The 
performed numerical tests shown that the discretization size influence significantly the numerical results: for hydraulic 
head by given discharge errors up to 35% and much drastically for well discharge by given head errors more as 130%. 

These numerical tests shown that standard coarse grid reservoir modelling software for groundwater modelling 
(e.g. PMWIN/MODFLOW) for solving wellbore problems require local corrections in well blocks. The available 
standard Well Index method allows the local correction in well blocks only for hydraulic head (or pressure) in the 
wellbore resulting for imposed global discharge/recharge rate of the well. But in several practical example such as 
partially penetrating wellbores or horizontal drainage the discharge cannot known in advance. In the paper an 
extension of the WI based method is proposed, which we name Well-Block-Discharge-Index (WDI), allows also the 
correction of the well discharge rate obtained numerically for imposed hydraulic head (imposed pressure) in the 
partially penetrated well. 

The proposed method was tested for partially penetrated well. The numerical tests performed for various parameters 
confirms a very good efficiency of the proposed correction method: discharge errors have decreased from 135% at 
values of few %. 
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